AIR QUALITY MONITORING REPORT FOR MM PORT FZE PROJECT ESIA

EXECUTIVE SUMMARY

Overview: The Ambient Air Quality study of the proposed project area was conducted from July 4th to July 17th, 2023. The exercise was carried out in compliance with statutory requirements as per approved ToR by FMEnv. Monitoring locations within and outside the project area were chosen for the air quality study, an hourly mean monitoring was carried out for 14 to 23 hours.

Methodology: The air quality study exercise was conducted using digital gas detector instruments. The parameters measured were sulphur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), hydrocarbon (CxHy) as CH₄, volatile organic compounds (VOCs), ammonia (NH₃), total suspended particulate matter (TSPM), particulate matter PM₁₀, and particulate matter PM_{2.5}). A total of fourteen (14) sampling stations were monitored for the assessment of existing baseline ambient air quality status of the project area. Twelve (12) stations were established within and around the project site, while two (2) stations were established outside the project area as control stations. Secondary data from previous studies conducted in the area was used for the dry season analysis.

Result: Baseline results obtained from field monitoring indicated that mean values of sulphur dioxide ranged from $2.19\mu g/m^3$ to $3.13\mu g/m^3$; nitrogen dioxide from $8.18\mu g/m^3$ to $10.54\mu g/m^3$; carbon monoxide from $4.29\mu g/m^3$ to $6.71\mu g/m^3$; ground-level ozone from $5.93\mu g/m^3$ to $8.88\mu g/m^3$; hydrocarbon (as methane) from $1.57\mu g/m^3$ to $2.65\mu g/m^3$; volatile organic compounds from $1.57\mu g/m^3$ to $2.91\mu g/m^3$; ammonia from $1.23\mu g/m^3$ to $2.70\mu g/m^3$; total suspended particulate matter from $21.68\mu g/m^3$ to $26.45\mu g/m^3$; PM₁₀ particulate matter from $11.55\mu g/m^3$ to $13.40\mu g/m^3$; and PM_{2.5} particulate matter from $6.18\mu g/m^3$ to $7.63\mu g/m^3$. These values are below both FMEnv and IFC permissible limits. Seasonal variation showed significant change in pollutant

concentrations in both dry and rainy seasons. The concentrations of NO_2 and particulate matter were higher in the dry season than in the wet season.

Identified existing potential sources of air pollution around the project site were exhaust emissions from trucks, heavy duty equipment/ machinery, and power generating facilities around the proposed project site. The domestic burning of firewood for smoking of fish and cooking; and burning of biomass as well as the use of electric generators (DG sets) were observed in the communities (ANC1 and ANC2), which are considered as control stations in this study.

Conclusively, baseline results showed that concentrations of air pollutants in the area are generally low and air shed can be categorized as un-degraded. This represents the baseline condition of existing air environment of the proposed project area before construction and operation activities.

1. Introduction

Field monitoring exercise of ambient air quality for the proposed project was conducted from July 4th to July 17th, 2023. The ambient air quality survey was carried out in compliance with statutory requirements, as per approved ToR by FMEnv. Ambient air quality monitoring was required to determine the quality of the existing air environment in the proposed project area. The ambient air quality objectives/standards are pre-requisite for developing management programme for effective management of ambient air quality and to reduce the impact. The results of baseline ambient air quality obtained from field monitoring were compared with the maximum stipulated permissible limits by the Federal Ministry of Environment (FMEnv.) of Nigeria and World Bank Ambient Air Quality Guidelines (International Finance Corporation (IFC, 2007).

1.1 Aim and Objectives of the study

The specific objectives of the air quality study are to:

- i. Assess the existing baseline conditions of air quality of the proposed project area.
- ii. Identify potential impacts of the proposed project on air quality environment during construction and operation.
- iii. Proffer control and mitigation measures to minimize impacts during construction and operation.
- iv. Develop air quality management and monitoring plans during construction and operation.

2. Methodology

2.1 Sampling Strategy

The ambient air quality monitoring survey was carried out at fourteen (14) sampling stations (shown in Table 1) within the proposed project geographical zone. The ten (10) out of the fourteen (14) stations were located within the proposed site, two (2) located at nearby to the project site, while two (2) control stations were located about 2 to 3 kilometres away from the project site. Sampling stations were established during the preliminary survey of the project area.

A brief description of the locations of the sampling stations relative to the project site, the sampling station codes, and tentative coordinates are presented in Table 1 and Google earth map is shown in Figure 1. The first controls station (ANC1) was monitored at Owo ogono, located approximately 1.8km from the project site; while the second control station (ANC2) was monitored at Ele, located about 2.7km from the project site.

Station	Description	Latitude	Longitude
AN1	Within the project site boundary in South, Southeast directions	4°40'00.60''N	7°8'47.40"E
AN2	Within the project site boundary in South, Southwest directions	4°40'02.30"N	7°8'37.88"E
AN3	Within the project site boundary in South, Southwest directions	4°40'05.95"N	7°8'28.79"E
AN4	Within the project site boundary in West, South directions	4°40'07.01"N	7°8'20.89"E
AN5	Within the project site boundary in West, Northwest directions	4°40'22.98"N	7°8'21.48"E
AN6	Within the project site boundary in North, Northwest directions	4°40'22.62"N	7°8'30.84"'E
AN7	Within the project site boundary in North, Northeast, Southeast directions	4°40'19.76"N	7°8'42.39"E
AN8	Inside the project site	4°40'10.79"N	7°8'41.83"E
AN9	Middle of project site	4°40'09.97"N	7°8'29.96"E
AN10	Inside the project site	4°40'07.56"N	7°8'45.88"E
AN11	Nearby the project site boundary in South, Southeast directions	4°40'05.08"N	7°8'51.93"E
AN12	Nearby the project site boundary in East, North, Southeast, directions	4°40'17.68"N	7°8'52.74"E
ANC1	Outside the project site boundary in South, Southeast directions – Owo-ogono	4°39'33.39"N	7°9'21.92"E
ANC2	Outside the project site boundary in Northeast, Southeast directions - Ele	4°41'23.76"N	7°9'39.04"E

Table 1: Sampling stations and Coordinates

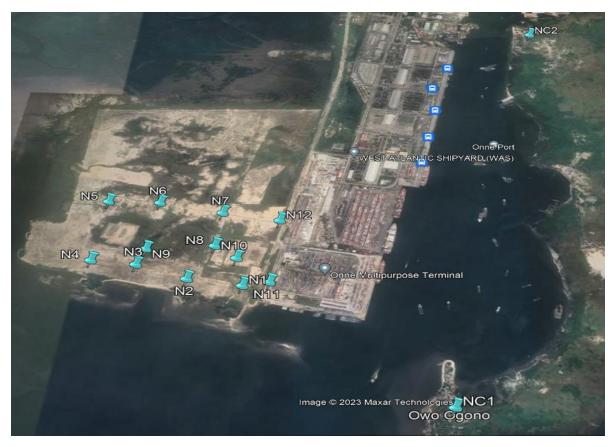


Figure 1: map showing ambient air quality monitoring stations.

2.2 Instrumentation and Sampling Techniques

The digital AEROQUAL 500 series monitor with sensor heads were used to monitor and record the priority parameters of ambient air quality. The different and calibrated sensor heads were used for the specific gases and particulate matter monitored. The battery-operated monitor has on-board diagnostics, which will inform the user about the functionality of sensor head. The monitor can log up to 8188 data points. The data can be downloaded to a personal computer or can also be logged directly to a personal computer via a serial connection while displaying real time data on the monitor screen. The data logging interval was set in one-minute increments. A mini-volume portable air sampler (Airmetrics [®]) with a pre-weighed membrane filter (45µm) was used to collect total suspended particulate matter. After sampling, the membrane filter was dried in a desiccator and weighed in the laboratory to determine concentrations. PM₁₀, PM_{2.5} and gases were monitored by using Aeroqual 500 series monitors fixed with sensor heads. The details of sensors heads used are shown in below table 2.

Table 2: Sensor details

Sensor	Sensor type	Range	Minimum detection limit	Accuracy	Resolution
Nitrogen dioxide (NO2)	GSE (Gas Sensitive Electrochemical)	0-1ppm	0.005ppm	<±0.02ppm 0- 0.2ppm <±10% 0.2-1ppm	0.001ppm
Sulphur dioxide (SO2)	GSE (Gas Sensitive Electrochemical)	0-10ppm	0.04ppm	<±0.05ppm 0- 0.5ppm <±10% 0.5-10 ppm	0.01ppm
Carbon Monoxide (CO)	GSE (Gas Sensitive Electrochemical)	0-25ppm	0.05ppm	<±0.5ppm 0-5ppm <±10% 5-25 ppm	0.01ppm
Ozone (O3)	GSE (Gas Sensitive Electrochemical)	0-10ppm	0.01ppm	<±0.01ppm + 7.5%	0.01ppm
Ammonia (NH3)	GSE (Gas Sensitive Electrochemical)	0-25ppm	0.05ppm	<±0.5ppm 0-5ppm <±10% 5-25 ppm	0.01ppm
Hydrocarbons (CxHy)	GSS (Gas Sensitive Semiconductor)	0-25ppm	0.1ppm	<±0.1ppm +10%	0.1ppm
Volatile organic compounds (VOCs)	PID (Photo Ionization Detector)	0-20ppm	0.01ppm	<±0.02ppm +10%	0.01ppm
Particulate Matter (PM2.5 & PM10)	LPC (Laser Particle Counter)	0.001- 1000 mg/m3	0.001mg/m3	±0.005 mg/m3 +15%	0.001 mg/m3

2.3 Air Quality Sampling Procedure

The sampling period for ambient air quality within the project area and its environs was varied from minimum fourteen hours to twenty-three hours depending on the location of sampling station and security of equipment and personnel. At each locations the readings of all the parameters were taken on hourly basis. The monitoring period was carried out from day to day so that reading could be taken from early morning to late at night over the monitoring period. All precautions taken when setting up the instruments. The instruments were positioned away from obstacles like buildings and tall vegetation. The series of monitors with specific sensors head are fixed in a stand about 2-3m above the ground level in open space and allowed to run for an hour to determine the values. After recording the values, the instrument was allowed to run for suitable period with recording values every hour. Table 3 shows the monitoring dates and hours for each sampling station including field observation.

Secondary data from a previous study conducted around the proposed project area (ICTS, 2022) was used for the dry season analysis. The data were aggregated, processed, and analysed to determined trends.

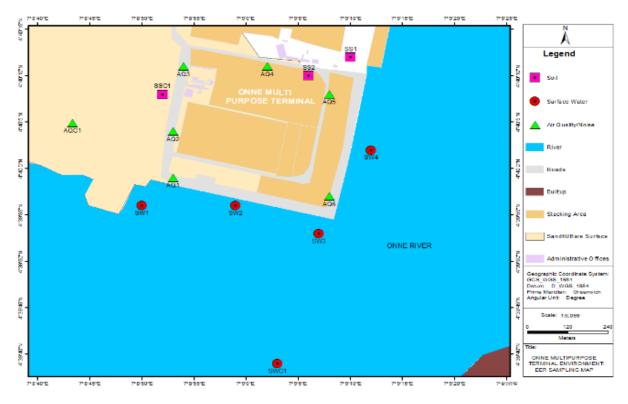

Station Code	Sampling Location	Monitoring Date	Monitoring Duration	Remark or Field Observation, if any
AN1	Within the project site boundary in South, Southeast directions	04/07/23	20	A dense fume emission from a Nigerian Navy Ship (NNS) power generating and earth moving equipment.
AN2	Within the project site boundary in South, Southwest directions	05/07/23	22	A dense fume emission from a Nigerian Navy Ship (NNS) power generating and earth moving equipment.
AN3	Within the project site boundary in South, Southwest directions	06/07/23	21	A dense fume emission from a Nigerian Navy Ship (NNS) power generating and earth moving equipment.
AN4	Within the project site boundary in West, South directions	07/07/23	21	A dense fume emission from a Nigerian Navy Ship (NNS) power generating and earth moving equipment.
AN5	Within the project site boundary in West, Northwest directions	08/07/23	22	A dense fume emission from a Nigerian Navy Ship (NNS) power generating and earth moving equipment.
AN6	Within the project site boundary in North, Northwest directions	09/07/23	21	A dense fume emission from a Nigerian Navy Ship (NNS) power generating and earth moving equipment.
AN7	Within the project site boundary in North, Northeast, Southeast directions	10/07/23	20	A dense fume emission from a Nigerian Navy Ship (NNS) power generating and earth moving equipment.
AN8	Inside the project site	11/07/23	23	A dense fume emission from a Nigerian Navy Ship (NNS) power generating and earth moving equipment.
AN9	Middle of project site	12/07/23	22	A dense fume emission from a Nigerian Navy Ship (NNS) power generating and earth moving equipment.
AN10	Inside the project site	13/7/2023	21	A dense fume emission from a Nigerian Navy Ship (NNS) power generating and earth moving equipment.
AN11	Within the project site boundary in South, Southeast directions	14/7/2023	19	A dense fume emission from a Nigerian Navy Ship (NNS) power generating and earth moving equipment.
AN12	Within the project site boundary in East, North, Southeast, directions	15/7/2023	18	A dense fume emission from a Nigerian Navy Ship (NNS) power generating and earth moving equipment.
ANC1	Outside the project site boundary in South, Southeast directions-Owo- ogono	16/7/2023	14	Domestic burning of biomass and use of petrol generators.
ANC2	Outside the project site boundary in Northeast, Southeast directions-Ele	17/7/2023	18	Domestic burning of biomass and use of petrol generators.

 Table 3: Monitoring station details

3. Results of Baseline Air Quality

This section provides information on the existing baseline air quality environment of the proposed project area, which shall be used as benchmarks for future monitoring during project construction and operation. The summary results, showing average values of air pollutants measured in the wet season during field survey is presented in Table 4.

Table 5 shows the summary results, showing mean values of air pollutants in the dry season obtained from a previous study conducted around proposed project environment as and used as secondary data in this study (EIA-ICTS, 2022). Figure 2 shows the sampling stations including coordinates, monitored during this dry season study.

Stn.	Longitude	Latitude	Stn.	Longitude	Latitude
AQ1	7° 08' 53" E	4° 39' 59" N	AQ5	7° 09' 08" E	4° 40' 08" N
AQ2	7° 08' 53" E	4° 40' 04" N	AQ6	7° 09' 08" E	4° 39' 57" N
AQ3	7° 08' 54" E	4° 40' 11" N	AQC1	7° 09' 00" E	4° 40' 03" N
AQ4	7° 09' 02" E	4° 40' 11" N			

Figure 2: Dry season sampling stations including coordinates (Janu-2022)

Parameter	AN1	AN2	AN3	AN4	AN5	AN6	AN7	AN8	AN9	AN10	AN11	AN12	ANC1	ANC2	FMEnv limit	IFC limit
$SO_2(\mu g/m^3)$	2.71	3.00	2.79	2.98	2.51	2.27	2.30	2.2	2.29	2.19	2.66	2.43	3.05	3.13	26	20
$NO_2 (\mu g/m^3)$	9.85	9.65	9.84	9.48	9.24	9.91	8.35	9.05	9.02	8.18	9.04	8.74	10.54	9.55	75-113	40*
CO (µg/m ³⁾	4.29	5.61	6.27	4.92	5.41	6.06	5.63	4.90	5.31	5.66	5.82	6.14	6.71	6.37	22.8	
O ₃ (µg/m ³)	6.26	7.10	7.33	6.24	6.75	7.23	6.98	5.93	6.58	6.74	7.35	7.89	8.88	8.25	117	100
CxHy (µg/m ³)	1.57	2.13	1.77	1.89	2.08	2.15	2.18	2.04	2.31	2.02	2.01	2.30	2.65	1.97		
VOC (µg/m ³)	2.57	1.57	2.70	2.70	2.73	2.43	2.27	2.46	2.32	2.54	2.33	2.64	2.91	2.52		
NH ₃ (μg/m ³)	1.33	1.45	2.13	1.33	1.23	1.75	1.63	2.07	1.76	1.73	1.92	1.81	2.70	2.33		
TSPM (µg/m ³)	22.58	22.17	23.04	21.68	22.26	24.12	24.45	23.28	22.00	22.71	23.26	24.93	26.45	25.28		
PM ₁₀ (µg/m ³)	12.61	15.51	12.47	11.55	11.96	12.20	11.76	12.36	12.60	13.13	12.75	12.44	13.40	12.76		75
PM _{2.5} (µg/m ³)	7.28	7.12	7.10	6.24	6.76	6.85	6.72	6.18	6.62	6.71	6.45	6.93	7.63	7.34		35
WIND SPD (m/s)	1.40	1.55	1.61	1.64	2.05	1.84	2.09	2.17	1.93	1.97	1.99	2.26	1.64	1.84		
TEMP (°C)	27.36	26.21	28.79	28.28	28.50	29.38	29.08	28.44	29.55	28.60	26.36	29.04	28.39	29.20		
REL. HU (%)	86.91	86.38	83.12	87.65	86.23	86.36	84.00	88.40	83.99	86.14	87.99	85.06	86.14	86.74		

Table 4: Summary of Wet Season Baseline Air Quality of the proposed project area

*Annual Average (1Hour max - 200µg/m³)

Parameter/ Station	$SO_2 \\ (\mu g/m^3)$	$\frac{NO_2}{(\mu g/m^3)}$	CO (µg/m ³)	$O_3 (\mu g/m^3)$	CxHy (µg/m ³)	VOC (µg/m ³)	NH ₃ (μg/m ³)	$\begin{array}{c} PM_{10} \\ (\mu g/m^3) \end{array}$	PM _{2.5} (μg/m ³)
AQ1	0.00	22.57	0.00	0.00	0.00	0.00	0.00	52.00	19.00
AQ2	0.00	24.45	0.00	0.00	0.00	0.00	0.00	48.00	21.00
AQ3	0.00	30.10	0.00	0.00	0.00	0.00	0.00	33.00	17.00
AQ4	0.00	18.81	0.00	0.00	0.00	0.00	0.00	54.00	22.00
AQ5	0.00	22.57	0.00	0.00	0.00	0.00	0.00	47.00	16.00
AQ6	0.00	30.10	0.00	0.00	0.00	0.00	0.00	35.00	26.00
AQ7	0.00	22.57	0.04	0.00	0.00	0.00	0.00	39.00	18.00

Table 5: Summary of Dry Season Air Quality

Note: 0.00 indicates below instrument's detection limit.

The dry season air quality data retrieved from previous study (EIA-ICTS, 2022) indicates that the study followed spot monitoring procedure in which the pollutants were measured for maximum of 10 minutes and values were recorded and presented.

4. Discussion of results and findings

4.1 Sulphur dioxide (SO₂)

Result (shown in Table 4) indicates that the wet season mean concentration of sulphur dioxide ranged from $2.19\mu g/m^3$ to $3.13\mu g/m^3$; whereas, the dry season mean SO₂ from secondary data (Table 5) was below instrument's detection limit of $1.75\mu g/m^3$. The minimum wet season mean value ($2.19\mu g/m^3$) of SO₂ was observed at station AN10, located inside the project site; while the maximum mean value of $3.13\mu g/m^3$ was obtained at station ANC2 (Ele community), located outside the project site boundary. The reason for sulphur dioxide can be attributed to the use of petrol or diesel power generators, vehicles exhaust emissions and operation activities of earth moving and other heavy equipment. The level of SO₂ observed at the control can be attributed to human activities. Table 4 and Figure 3 show that the mean values of SO₂ both at the project site and the control are below both FMEnv and IFC permissible limits. This result represents the baseline concentration of sulphur dioxide in the air environment of the proposed project area before construction and operation activities.

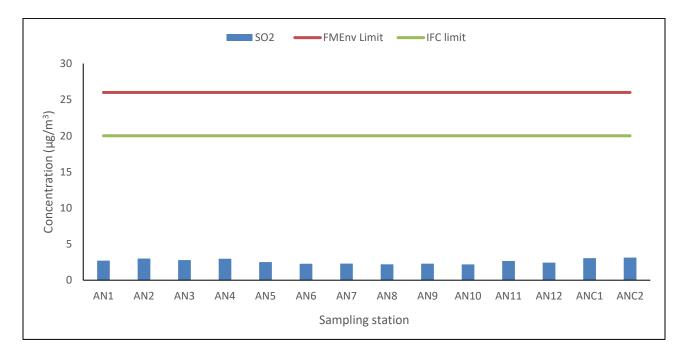


Figure 3: Trend in mean concentration of sulphur dioxide

4.2 Nitrogen dioxide (NO₂)

The field measurement (Table 4) in the wet season shows that the mean concentration of nitrogen dioxide ranged from $8.18\mu g/m^3$ to $10.54\mu g/m^3$; while the dry season secondary data (Table 5) shows that mean NO₂ ranged from $18.81\mu g/m^3$ to $30.10\mu g/m^3$. The mean values of NO₂ are higher in the dry season than in the wet season. Figure 4 shows the trend in the diurnal variations of mean concentration of nitrogen dioxide in comparison with regulatory standards. The minimum value $(8.18\mu g/m^3)$ of NO₂ was observed at station AN10, located inside the project site; while the maximum value of $10.54\mu g/m^3$ was obtained at station ANC1 (Owo gono community), outside the project site. The level of nitrogen dioxide observed in the project area may be caused by emissions from trucks, heavy duty equipment, power plants emissions as well as operation activities of earth moving equipment. The level of NO₂ observed at the control may be caused by domestic activities such as combustion of fossil fuels and burning of biomass. Table 4 and Figure 3 show that the values of NO₂ are below both FMEnv and IFC permissible limits. This result represents the baseline concentration of nitrogen dioxide in the air environment of the proposed project area before construction and operation activities.

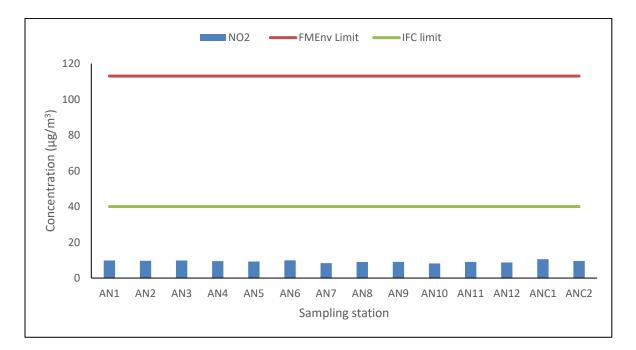


Figure 4: Trend in mean concentration of Nitrogen dioxide

4.3 Carbon Monoxide (CO)

The mean concentration levels of carbon monoxide obtained during field monitoring ranged from $4.29\mu g/m^3$ to $6.71\mu g/m^3$ as shown in Table 4. However, dry season secondary data (Table 5) indicates that CO was below instrument's detection limit of $0.95\mu g/m^3$. Figure 4 shows the trend in the diurnal variations of mean concentration of carbon monoxide in comparison with regulatory standards. The minimum value $(4.29\mu g/m^3)$ of CO was recorded at station AN1, located within the project site boundary; while maximum value of $6.71\mu g/m^3$ was obtained at station ANC1 (Owo ogono), located outside the project site boundary. The level of carbon monoxide observed in the project area may be caused by emissions from trucks, heavy duty equipment/machinery, power plants as well as operation activities of earth moving equipment. Similarly, the level of CO obtained at ANC1 (Owo ogono) could be attributed to domestic burning of firewood for smoking of fish and cooking; and burning of biomass as well as the use of electric generators. As indicated in Table 4 and Figure 5, CO values obtained during field monitoring are below both FMEnv permissible limits. This result represents the baseline concentration of carbon monoxide in the air environment of the proposed project area before construction and operation activities.

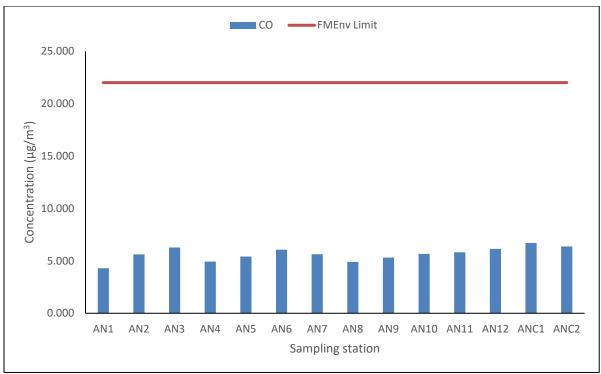


Figure 5: Trend in mean concentration of carbon monoxide

4.4 Ground-level ozone (O₃)

The mean concentrations of ground-level ozone monitored in the area during field sampling ranged from $5.93\mu g/m^3$ to $8.88\mu g/m^3$ as shown in Table 4; while the dry season values of O₃ from secondary data (Table 5) was below instrument's detection limit of $0.33\mu g/m^3$. The trend in the diurnal variations of mean concentration of ground-level ozone in comparison with regulatory standards is shown in Figure 5. The minimum value ($5.93\mu g/m^3$) of ground-level was recorded at station AN8, located inside the project site; while maximum value of $8.88\mu g/m^3$ was obtained at station ANC1 (Owo gono community), located outside the project site boundary. The presence of ground-level ozone in ambient air is a common characteristic of the Niger Delta region where the proposed project is to be sited due to hydrocarbon activities. It is evident from Table 4 and Figure 6 that O₃ values obtained during field monitoring are below both FMEnv and IFC permissible limits. This result represents the baseline concentration of ground-level in air environment of the proposed project area before construction and operation activities.

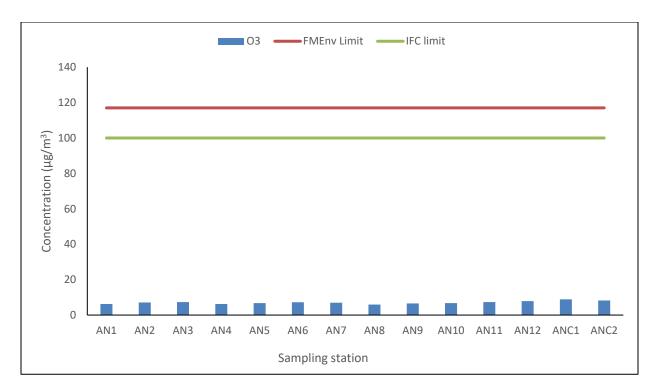


Figure 6: Trend in mean concentration of ground-level ozone

4.5 Hydrocarbon (as methane, CH₄)

The mean concentration of hydrocarbon (as methane) obtained during field monitoring ranged from $1.57\mu g/m^3$ to $2.65\mu g/m^3$ as shown in Table 4; however, the dry season methane hydrocarbon from secondary data (Table 5) was below instrument's detection limit of $1.23\mu g/m^3$. The trend in the diurnal variations of mean concentration of hydrocarbon is shown in Figure 7. The minimum value ($1.57\mu g/m^3$) of methane hydrocarbon was recorded at station AN1, located within the project site boundary; while maximum value of $2.65\mu g/m^3$ was obtained at station ANC1 (Owo ogono), located outside the project site boundary. Also, the presence of hydrocarbon in ambient air is a common characteristic of the Niger Delta region where the proposed project is to be sited due to hydrocarbon activities. This result represents the baseline concentration of methane hydrocarbon in the air environment of the proposed project area before construction and operation activities.

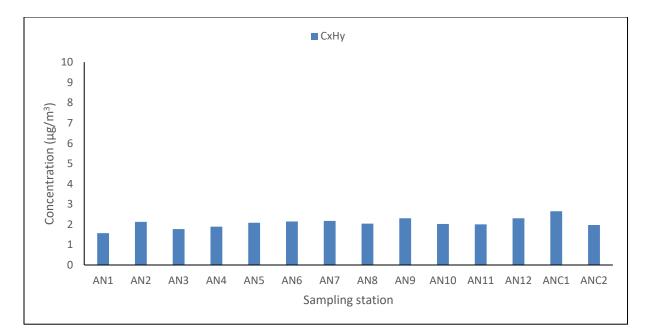


Figure 7: Trend in mean concentration of hydrocarbon as methane

4.6 Volatile Organic Compounds (VOC)

The result of field measurement (Table 4) indicates that the mean concentration of volatile organic compounds in the area ranged from $1.57\mu g/m^3$ to $2.91\mu g/m^3$, while the dry season VOCs from secondary data (Table 5) was below instrument's detection limit of $1.12\mu g/m^3$. The trend in the diurnal variations of mean concentration of volatile organic compounds is shown in Figure 7. The minimum value $(1.57\mu g/m^3)$ of volatile organic compounds was recorded at station AN2, located within the project site boundary; while maximum value of $2.91\mu g/m^3$ was obtained at station ANC1 (Owo ogono), located outside the project site boundary. The presence of volatile organic compounds in ambient air may be due to human activities around the Onne port area. This result represents the baseline concentration of volatile organic compounds in the air environment of the proposed project area before construction and operation activities.

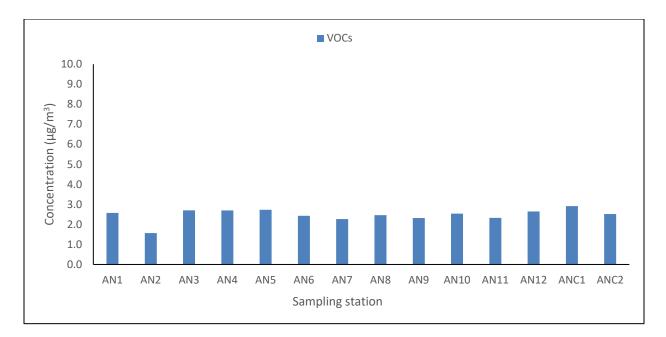


Figure 8: Trend in mean concentration of volatile organic compounds

4.7 Ammonia (NH₃)

The mean concentration of ammonia (Table 4) measured during field monitoring of the project area ranged from $1.23\mu g/m^3$ to $2.70\mu g/m^3$; while the dry season results secondary data (Table 5) indicates that NH₃ was below instrument's detection limit of $0.58\mu g/m^3$. The trend in the diurnal variations of mean concentration level of ammonia in the proposed project area is shown in Figure 9. The minimum value $(1.23\mu g/m^3)$ of NH₃ was recorded at station AN5, located within the project site boundary; while maximum value of $2.70\mu g/m^3$ was obtained at station ANC1 (Owo ogono), located outside the project site boundary. The presence of traces of ammonia in ambient air may be due to anthropogenic activities. This result represents the baseline concentration of ammonia in the air environment of the proposed project area before construction and operation activities.

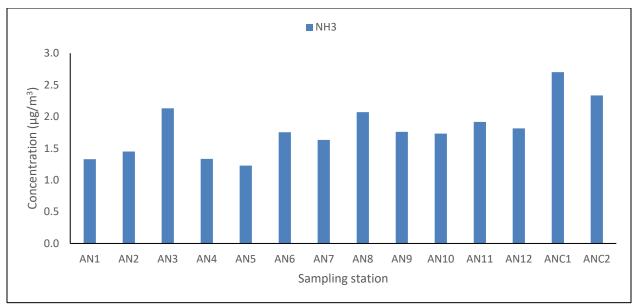


Figure 9: Trend in mean concentration of ammonia

4.8 PM₁₀ Particulate Matter

The mean concentration levels of PM₁₀ particulate matter obtained during field monitoring (Table 4) ranged from 11.55μ g/m³ to 13.40μ g/m³; while the dry season mean values of PM₁₀ from the previous study ranged from 33.00μ g/m³ to 54.00μ g/m³. The mean values of PM₁₀ are higher in the dry season than in the wet season. Figure 10 shows trend in the diurnal variations of mean concentration of PM₁₀ particulate matter in comparison with regulatory standards. The minimum mean value (11.55μ g/m³) of PM₁₀ particulate was obtained at AN4, located within the project site boundary; while maximum value of 13.40μ g/m³ was obtained at ANC1 (Owo ogono), located outside the project site boundary. The level of particulate matter observed in the project area may be caused by emissions from trucks, heavy duty equipment, power plants emissions as well as operation activities of earth moving equipment. The level PM₁₀ obtained at control 1 was due to domestic activities. It is clearly shown in Figure 10 that PM₁₀ values obtained during field monitoring are below IFC permissible limits. This result represents the baseline concentration of PM₁₀ in air environment of the proposed project area before construction and operation activities.

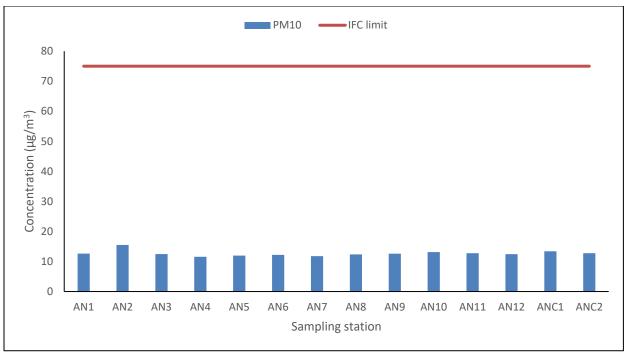


Figure 10: Trend in mean concentration of PM₁₀ particulate matter

4.9 PM_{2.5} Particulate Matter

The mean concentration levels of PM_{2.5} particulate matter obtained during monitoring (Table 4) ranged from $6.18\mu g/m^3$ to $7.63\mu g/m^3$; while the dry season mean values of PM_{2.5} from the previous study ranged from $16.00\mu g/m^3$ to $26.00\mu g/m^3$. The mean values of PM_{2.5} are higher in the dry season than in the wet season. Figure 11 shows trends in the diurnal variations of mean concentration of PM_{2.5} particulate matter in comparison with regulatory standards. The minimum mean value ($6.18\mu g/m^3$) of PM_{2.5} particulate was obtained at AN8, located inside the project site; while maximum value of $7.63\mu g/m^3$ was obtained at ANC1 (Owo ogono), located outside the project site boundary. The level of particulate matter observed in the project area may be caused by emissions from trucks, heavy duty equipment, power plants at the port as well as operation activities. It is clearly shown in Figure 11 that PM_{2.5} values obtained during field monitoring are below IFC permissible limits. This result represents the baseline concentration of PM_{2.5} in air environment of the proposed project area before construction and operation activities.

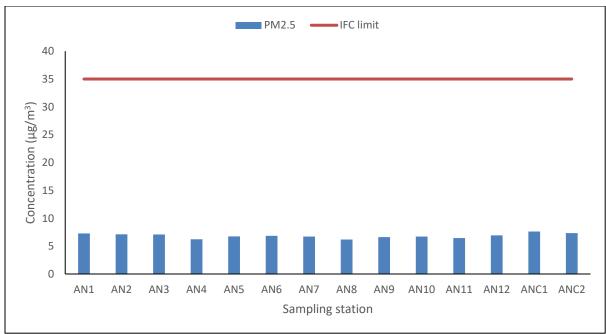


Figure 11: Trend in mean PM_{2.5} particulate matter

5. Conclusion

Generally, the environmental baseline describing the pre-construction air quality of the project area has been conducted through intensive measurements of air pollutants and meteorological parameters of the area. Existing air quality in the proposed area is affected by the daily weather condition of the area, particularly the strength of the North-East and South-West trade winds that are prevalent in the wet and dry seasons respectively. Baseline results showed that concentrations of air pollutants in the area are generally low, and the air shed can be classified as un-degradable. Seasonal variation showed significant change in pollutant concentrations in both dry and rainy seasons. The concentrations of NO₂ and particulate matter were higher in the dry season than in the wet season. These results represented the baseline condition of the area prior to the construction and operation of the proposed project.

6. Air Quality Impact Assessment

a) Construction phase

This section of the study describes the potential environmental impacts that are likely to result from the construction phase of the proposed project. Construction activities would cause the release of some number of gaseous pollutants and dust, which may have short-term impacts on the environment. This will cause reversible short-term degradation of the air quality of the area. The release of air pollutants will emanate mainly from the following activities:

- \checkmark Use of earthmoving equipment during earth works (grading and surfacing),
- ✓ Vehicular movements such as heavy trucks for hauling materials
- \checkmark Power generating engines.
- ✓ Construction equipment/machineries
- b) Operation phase
- i. The following activities may have potential to impact air quality.
- ii. Vehicular exhaust emissions

Transportation of ammonia and urea from IEFCL complex to port will increase the traffic. This may likely cause increase in vehicular exhaust emissions.

- iii. Power generating gas engines during operation will also release emissions.
- iv. Fugitive emissions

Leakages from storage tanks, valves, flanges will cause fugitive emissions of NH₃.

7. Mitigation of Air Quality Impacts

A series of mitigation measures will be employed to minimize impact on air quality during construction and operation using best available technologies (BAT). With these measures in place, air quality impacts would be minimal or minor. The overall impacts during operation phase may be judged minor. However, some mitigation measures would be taken to further reduce any unpredicted negative impacts on air quality to acceptable levels.

During construction phase, trucks and earth moving machines would be maintained in good condition. Water spray system would be employed in all active construction areas to reduce the generation of dust particles during construction activities. All trucks hauling sand, soil, and other loose materials would be covered to prevent the escape of dust particles.

Recommended measures for controlling fugitive emissions include:

- ✓ Selection of appropriate valves, flanges, fittings during design,
- ✓ Implementation of monitoring, maintenance, and repair programs, particularly in stuffing boxes on valve stems and seats on relief valves, to reduce or eliminate accidental releases.
- \checkmark Installation of gas detection sensors in sensitive areas.
- ✓ The ammonia storages, unloading and loading arms shall be provided with vapor recovery system.
- ✓ Leak detection alarm system shall be installed on storage tanks.

Calibration Certificates

.WA GU A	FMAIL: waldenoiltechse	et, Eneka Roa 08033122641, 0 ervices@yahoo	ad, Procana co 08180181350,0	mplex, 2nd Floc 8035088792 aldenoiltechser	or, Port Harcourt	W O S L
	CED	TIEICATE	OF CALIB	RATION		
	CALIBRATION CERT					
	CUSTOMER NAME: EI INSTRUMENT TYPE: A SERIAL NUMBER: OZ MODEL: OZONE SEN <u>ENVIRONMENTAL CO</u> Temperature: 28.9 degree	AEROQUAL O2 UL1904206-071 ISOR, Ultra Lov	ZONE SENSOR 1-146 w, 0-0.15ppm	HEAD	IMITED	
	Measurements			7 (15	0.00	
	Calibration Standard/ppm	0.017	5.510	7.645	0.000	
F	AQL Sensor (Mean) /ppm	0.016	5.520	7.034	0.000	
The A	ration Standard Aeroqual ozone sensor was NE UV photometer who izations.	calibrated in a c ose traceability	controlled enviro is maintained	nment against a l I with internatio	NATA certified onal standards	
	CALIBRATED BY:			th.		
	N.	AME: ADENIY TLE: SUPPOR	I OLAWALE	A)	\sim	
	SI	GNATURE:	/		-	
	D	ATE OF CALIB	RATION: 19/03	/2021		
	D	ATE OF NEXT	CALIBRATION	1: 20/03/2022		
		ientes Ientes	Technology for Second of Market		Amarinth	oual

WALDEN OILTECH SERVICES LIMITED GU Ake- Eliozu , 32 Worlu Street, Eneka Road, Procana complex, 2nd Floor, Port Harcourt MOBILE: 08033122641, 08180181350,08035088792 EMAIL: waldenoiltechservices@yahoo.com, info@waldenoiltechservices.com S Website: www.waldenoiltechservices.com CERTIFICATE OF CALIBRATION CALIBRATION CERTIFICATE NO: WOSL/ESCLAQNO21 CUSTOMER NAME: ENVIRONMENTAL & CHEMICAL SERVICES LIMITED INSTRUMENT TYPE: AEROQUAL NITROGEN DIOXIDE SENSOR HEAD SERIAL NUMBER: ENW-1409202-006 MODEL: ENW-N02, 0-1 ppm ENVIRONMENTAL CONDITIONS Temperature: 28.6 degree centigrade. Relative Humidity: 69.4%RH This sensor was calibrated against a chemiluminescence NOx analyser after Zero calibration using Aeroqual R42 Calibration kit with calibrations traceable to primary standards. Measurements 0.000 0.000 0.055 0.147 Calibration Standard/PPM 0.000 0.054 0.000 0.146 Sensor(Mean)/PPM The calibration is traceable to the National Standards which realize the units of measurement according to the International System of Units (S.I) ISO 10012-1 and ANSI/NCSL Z540.3-2006. The User is obliged to have the instrument re-calibrated at appropriate interval CALIBRATED BY: NAME: ADENIYI OLAWALE TITLE: SUPPORT ENGINEER SIGNATURE: ------DATE OF CALIBRATION: 19/03/2021 DATE OF NEXT CALIBRATION: 20/03/2022 YOWELL VALVES PRICE: PUMP 🔺 TR aeroqual ANTER Hermetic CRIS ARMATUREN SAMMI MACHINERY SCIENTIFIC Technology for the Future. AKOS.

WALDEN OILTECH SERVICES LIMITED \mathbf{V}

GU Ake- Eliozu , 32 Worlu Street, Eneka Road, Procana complex, 2nd Floor, Port Harcourt MOBILE: 08033122641, 08180181350,08035088792 EMAIL: waldenoiltechservices@yahoo.com, info@waldenoiltechservices.com Website: www.waldenoiltechservices.com

CERTIFICATE OF CALIBRATION

CALIBRATION CERTIFICATE NO: WOSL/ESCLAQMT21

CUSTOMER NAME: ENVIRONMENTAL & CHEMICAL SERVICES LIMITED INSTRUMENT TYPE: AEROQUAL METHANE SENSOR HEAD SERIAL NUMBER: MT-0403191-020 MODEL: Methane 0-10000 ppm

ENVIRONMENTAL CONDITIONS

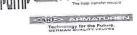
Temperature: 28.9 degree centigrade. Relative Humidity: 75.2%RH

This sensor was calibrated against a certified mixture of methane in synthetic air diluted with zero air using mass flow controllers with calibrations traceable to National Institute of Standards and Technology (NIST).

Maganamonto

vieasurements		0.15	0.000	0.000
Calibration Standard/PPM	220	245	0.000	0.000
	220	210	0.000	0.000
Sensor(Mean)/PPM	220	248	0.000	0.000
School (Wieun) / I I II				

The mean deviations are calculated from three consecutive readings.


The calibration is traceable to the National Standards which realize the units of measurement according to the International System of Units (S.I) ISO 10012-1 and ANSI/NCSL Z540.3-2006.

The User is obliged to have the instrument re-calibrated at appropriate interval

CALIBRATED BY:

NAME: ADENIYI OLAWALE TITLE: SUPPORT ENGINEER SIGNATURE: -----DATE OF CALIBRATION: 19/03/2024 DATE OF NEXT CALIBRATION: 20/03//2022

SAMMI MACHINERY

aeroqual

WALDEN OILTECH SERVICES LIMITED \//

GU Ake- Eliozu, 32 Worlu Street, Eneka Road, Procana complex, 2nd Floor, Port Harcourt MOBILE: 08033122641, 08180181350,08035088792 EMAIL: waldenoiltechservices@yahoo.com, info@waldenoiltechservices.com

Website: www.waldenoiltechservices.com

S

oeroqual

CERTIFICATE OF CALIBRATION

CALIBRATION CERTIFICATE NO: WOSL/ECSLAQSO21

CUSTOMER NAME: ENVIRONMENTAL & CHEMICAL SERVICES LIMITED INSTRUMENT TYPE: AEROQUAL SULPHUR DIOXIDE SENSOR HEAD SERIAL NUMBER: 0305182-002 MODEL: SULPHUR DIOXIDE 0-100 ppm

ENVIRONMENTAL CONDITIONS

Temperature: 27.9 degree centigrade. Relative Humidity: 67.5%RH

This sensor was calibrated against This sensor was calibrated against a certified UV fluorescence analyser after Zero calibration using Aeroqual R42 Calibration kit with calibrations traceable to primary standards ..

Measurements		0.01	0.000	0.000
	0.000	0.01	0.000	0.000
Calibration Standard/PPM		0.02	0.000	0.000
Sensor(Mean)/PPM	0.000	0.02	0.000	0.000
Sensor(Wearr)/11 W				

The calibration is traceable to the National Standards which realize the units of measurement according to the International System of Units (S.I) ISO 10012-1 and ANSI/NCSL Z540.3-2006.

The User is obliged to have the instrument re-calibrated at appropriate interval

CALIBRATED BY:

NAME: ADENIYI OLAWALE TITLE: SUPPORT ENGINEER SIGNATURE: -----DATE OF CALIBRATION: 19/03/2021 DATE OF NEXT CALIBRATION: 20/03/2022

Technology for the Future

SAMMI MACHINERY

Eliozu Road, by Eneka Junctio MOBILE: 0803312264 L: waldenoiltechservices@yal Website: www.wa	1, 08180181350,0 hoo.com, info@w	aldenoiltec		
CERTIFIC CALIBRATION CERTIFICA	CATE OF CA			
CUSTOMER NAME: INDORA INSTRUMENT TYPE: AEROQ SERIAL NUMBER: 1707182-00 MODEL: NH3 0-100 PPM	MA ELEME FERT UAL AMMONIA S	ILIZERS & (CHEMICA	LS LTD
ENVIRONMENTAL CONDITI Temperature: 28.5 degree centigra Relative Humidity: 70.5%RH	ade			
This sensor was Zero calibrated u against a certified mixture of Am flow controller with calibration tr	nmonia in synthetic			
Measurements Calibration Standard/PPM	0.0	23.2	0.0	0.0
Sensor(Mean)/PPM The mean and standard deviation	0.0	24.8	0.0	0.0
TITLE: SU SIGNATU DATE OF	m of Units (S.I) ISO ument re-calibrated at DENIYI OLAWALI JPPORT ENGINEE	10012-1 and A appropriate in E R 3/12/2021	NSI/NCSL nterval	
			SAMMI	Amarinth

FMAII : waldenoiltechservices	nction, Procana comp 22641, 08180181350,08	lex, 2nd Flo 035088792 aldenoiltech	oor, Port H	larcourt	W O S L
CERTIF	FICATE OF CAL	IBRATI	ON		
CALIBRATION CERTIFI	CATE NO: WOSL/IEF	CLAQPID2	021		
CUSTOMER NAME: INDO INSTRUMENT TYPE: AER SERIAL NUMBER: 210918 MODEL: VOC 0-20PPM ENVIRONMENTAL COND Temperature: 27.9 degree cent	ROQUAL VOC (PID) SEN 1-004 DITIONS			S LTD	
Relative Humidity: 70.5%RH					
This sensor was Zero calibrate against a certified mixture of flow controllers with calibrati	isobutene in synthetic ai				
Measurements					
Calibration Standard/PPM	0.0	10.00	10.00	0.00	
Sensor(Mean)/PPM The mean and standard deviat					
TITLE	ystem of Units (S.I) ISO 100	012-1 and AN	SI/NCSL Z5		
	OF CALIBRATION: 03/1 OF NEXT CALIBRATIO	0N: 03/12/202	22 SAMMI MACHINERY AL	Oero	

WALDEN OILTECH SERVICES LIMITED

GU Ake- Eliozu Road, by Eneka Junction, Procana complex, 2nd Floor, Port Harcourt MOBILE: 08033122641, 08180181350,08035088792 EMAIL: waldenoiltechservices@yahoo.com, info@waldenoiltechservices.com Website: www.waldenoiltechservices.com

CERTIFICATE OF CALIBRATION

O

oeroqual®

CALIBRATION CERTIFICATE NO: WOSL/IEFCPM2021

CUSTOMER NAME: INDORAMA ELEME FERTILIZERS & CHEMICALS LTD INSTRUMENT TYPE: PM SENSOR SERIAL NUMBER: 5001-FD54-001 MODEL: AEROQUAL PM 2.5 PM 10

ENVIRONMENTAL CONDITIONS

Temperature: 27.7 degree centigrade Relative Humidity: 67.8%RH

This sensor was calibrated using Metone optical particle counter model 9772-1 with calibrations traceable to primary standards.

Measurements

	PM2.5 mg/m3	PM10 mg/m3
Reference Zero	0.000	0.000
AQL Sensor zero	0.000	0.000
Reference Span	0.015	0.023
AQL Sensor Span	0.016	0.024

The calibration is traceable to the National Standards which realize the units of measurement according to the International System of Units (S.I) ISO 10012-1 and ANSI/NCSL Z540.3-2006. The User is obliged to have the instrument re-calibrated at appropriate interval

CALIBRATED BY:

NAME: ADENIYI OLAWALE TITLE: SUPPORT ENGINEER

SIGNATURE: -----DATE OF CALIBRATION: 03/12/2021 DATE OF NEXT CALIBRATION: 03/12/2022

	CERTIFI						
			OF CAL				
	CALIBRATION CERTIFIC						
	CUSTOMER NAME: INDOR, INSTRUMENT TYPE: AERO SERIAL NUMBER: 0609181-0 MODEL: CO 0-20PPM	QUAL CA					
	ENVIRONMENTAL CONDIT						
	Temperature: 28.8 degree centig Relative Humidity: 70.6%RH	rade					
	This sensor was Zero calibrated	using A a	oqual P42 cal	libration V	t and furt	or colibrated	
	against a certified mixture of car	rbon mone	oxide in synth	etic air dilu			
	mass flow controllers with calibration	rations tra	ceable to NIS	Г.			
,	Measurements						
	Calibration Standard/PPM Sensor(Mean)/PPM		0.0	2.10	2.10	0.00	
1	The mean and standard deviation	n are calci				0.00	
	The calibration is traceable to the according to the International System The User is obliged to have the inst	em of Units	s (S.I) ISO 100	12-1 and AN	ISI/NCSL Z	easurement 2540.3-2006.	
	CALIBRATED BY:						
			OLAWALE				
	TITLE: S	UPPORT	ENGINEER				
	SIGNATU	JRE:	VV)				
			ATION: 03/12				
	DATE OF	NEXT C	ALIBRATION	N: 03/12/20	22		
			the second se	The second s			-