VIETNAM INFRASTRUCTURE DEVELOPMENT AND FINANCE INVESTMENT JOINT STOCK COMPANY

REPORT ON ENVIRONMENTAL MONITORING

THE EXPRESSWAY HA NOI - HAI PHONG PROJECT The 6th monitoring of locations of packages EX-2. EX-3. EX-4. EX-5. EX-6. EX-8. EX-10

Address: 8th-9th-10th floors, LILAMA 10 Building, Le Van Luong street Me Tri Commune, Tu Lien, Ha Noi

Owner finance investment joint stock company

Consultancy Vietnam Infrastructure development and Institute of Environmental Technology r. VIÊN TRƯỞNG

VIEN

CÔNG NGHÊ MÔI TRƯỜNG

Nguyễn Thị Huệ

VIÊN TRƯỚNG

VIEN SEN TRUĞNG CONG NGHĘ (1001 TRUGNG)

DATE OF STREET WAS INCOME. OF SHEET

INTRODUCTION

The Hanoi – Hai Phong Expressway project was issued by Transportation Ministry. The highway is built according to international standards. The route starts at the FIFTH ring road of Hanoi . which runs across Hung Yen. Hai Duong Province and ends at Hai Phong Province.

Starting point: at the FIFTH ring road. surrounding Hanoi City. 1'025m from the Northern abutment of Thanh Tri bridge. in Thuong Hoi hamlet. Thach Ban commune. Gia Lam District. Hanoi Capital.

- Ending point: Dinh Vu dam. Hai An District. Hai Phong city.

Scale of research on the Ha Noi – Hai Phong expressway run across some hamlet, commune. District as below:

Starting at Thuong Hoi hamlet. Thach Ban commune. Long Bien District. the route runs across Dao Xuyen hamlet. Da Ton commune. Kieu Ky commune. Gia Lam District. Ha Noi capital. Starting point: the FIFTH ring road (km 0 to km 6.1).

The communes Cuu Cao. Long Hung. Tan Tien belong to Van Giang District and Yen Phu. Viet Cuong. Minh Chau. Thuong Kiet. Tan Viet commune belong to Yen My District and Van Du commune is in An Thi District. Hung Yen province (km 6.1 to km 25).

Binh Giang District includes Thai Duong. Thai Hoa. Thai Hoc. Co Bi communes while Gia Loc District includes Yet Kieu. Phuong Hung. Gia Khanh. Gia Xuyen communes. Gia Loc town. Ngoc Ky. Dong Ky. Tu Xuyen communes are in Tu Ky District while Thanh Hong. Thanh Cuong. Vinh Lap communes are in Thanh Ha District. Hai Duong province (km 25 – km 82).

Quang Trung. Quoc Tuan. My Duc. An Thai communes are in An Lao District. while Huu Bang. Hoa Nghia communes are in Kien Thuy District. Trang Cat precinct – Hai An District – Hai Phong City (km 82 to ending point at km 105+500).

Implementing environmental monitoring programmers which were undertook at chapter 6 of the Environmental impact assessment report "The Ha Noi – Hai Phong expressway project" is approved by Transportation Ministry. The owner cooperated

with advisory monitoring groups and environmental quality supervision according to just progress of the project.

Based on the second monitoring outline approved by the owner of project from 3 to July 13. 2012. Institute of Environmental Technology carried out monitoring and analytical sampling of environmental parameters as follow: select determining location. position. time and frequency sampling per day of water. soil and air following windward.

I. GENERAL INFORMATION

1.1. Contact information

Owner: Vietnam Infrastructure development and finance investment joint stock company

Address: 8th-9th-10th Floor. LILAMA tower. Me Tri commune. Tu Liem. Hanoi

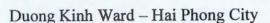
Tel: (84-4) 37711 668-22209 668. Fax: (84-4) 666 22 209

The Groups of construction:

The Hanoi - Hai Phong expressway project has major 10 groups join. In which, there are 8 groups supervised and monitored environmental quality by the Institute of Environmental technology and at present only 03 groups under construction. 02 groups by group of construction observation and monitoring have in the course of construction. There are 10 tender packages for major construction of the route there were 05 construction packages also 05 packages remaining in the bidding process.

- The packages were monitored and supervised by Institute of Environmental Technology
 - 1. Package EX-2: Namkwang Engineering and Construction Co.. Ltd
- Address: 199 road Me Thuong Hamlet. Yen Phu Commune. Yen My District. Hung Yen Province.
 - Tel: 03213.968.888

Fax: 03213.968.999


- 2. Package EX-3: General construction company China road
- Address: No. 8 Luc Dien Roac Minh Chau Commune Yen My District Hung Yen Province.
 - Tel: 03213.975.837

Fax: 03213.975.836

The group of expressway construction.

- 3. Package EX-4: Keangnam Co.. Ltd
- Address: Thai Hoc Commune Binh Giang District Hai Duong Province
- 4. Package EX-5:
- Address: Gia Loc Commune Gia Loc Distric: Hai Duong Province
- 6. Package EX-6:
- Address: Thanh Cuong Commune Thanh Ha District Hai Duong Province
 - 3. Package EX-8:
 - Address: 1st floor PLACO building. Km 5 Pham Van Dong Road -

- Tel: + 84.31.3581 562

* Fax: +84.31.3581 565

4. Package EX-10: Namkwang Engineering and Construction Co.. Ltd

- Address: 3rd floor - Sao Do building - Km 1+400 - Pham Van Dong road - Anh Dung ward - Duong Kinh District - Hai Phong City.

- Tel: 0313.632.486

Fax: 0313.632.528

Supervisory Consultancy: Institute of Environmental Technology

- Address: A30 building. No. 18 Hoang Quoc Viet. Cau Giay. Ha Noi
- Tel: 043 7569 136; 043 7911 654; 043 7916 512; Fax: 043 7911 203

1.2. Location of implementing the package

Location of the implementation of package EX-2 section from km 6+200 to km 19+000 of the Ha Noi – Hai Phong expressway project.

Location of the implementation of package EX-3 section from km 19+000 to km 33+000 of the Ha Noi – Hai Phong expressway project.

Location of the implementation of package EX-4 section from km 33+000 to km 48+000 of the Ha Noi – Hai Phong expressway project.

Location of the implementation of package EX-5 section from km 48+000 to km 63+300 of the Ha Noi – Hai Phong expressway project.

Location of the implementation of package EX-6 section from km 63+300 to km 72+000 of the Ha Noi – Hai Phong expressway project.

Location of the implementation of package EX-8 section from km 91+300 to km 91+300 of the Ha Noi – Hai Phong expressway project.

Location of the implementation of package EX-10 section from km 96+300 to km 105+500 of the Ha Noi – Hai Phong expressway project.

II. SOURCES OF ENVIRONMENT IMPACT

2.1. Sources of pollutants arising from the activities of Companies

At the time of the fifth monitoring (APRIL 2012)(from 3 to July 13. 2012). the packages of EX-2. EX-3. EX-10. (EX 4. EX 5. EX 6 the FIFTH monitoring). (EX-8 the fourth monitoring) were implementing embankment construction thus sources of pollution affecting the ambient environment include:

- Sources of air pollution include:

4

- + Dust. NO₂. SO₂. CO: arising from the embankment construction etc.
- + Dust. NO₂. SO₂. CO: arising from the operation of vehicles transporting raw materials (mainly sand).
 - Waste water:
- + The embankment construction stage has not production sewage. only rain water runoffs.
- + Household's wastewater is almost negligible due to the little presence of workers on site. Moreover, workers do not eat or sleep in site huts.
 - Sources of solid wastes and hazardous wastes almost zero.
 - Sources of noise and vibration:
 - + Noise. vibration etc arising from the embankment construction. transportation. etc.
 - + Noise generated by the operation of the transportation of materials.

To assess the negative impacts on the environment of air. land and water. The owner has cooperated with Institute of Environmental Technology due to implementing of environmental monitoring annually during the construction.

III. RESULTS OF MONITORING. PERIODICALLY SAMPLING ANALYSIS OF ENVIRONMENTAL PARAMETERS

A. RESULTS OF MONITORING IS SUPERVISED BY INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

1. The basis of sampling and environmental analysis

- General regulations

Law on Environmental Protection of Socialist Republic of Vietnam 9/11/2005.

Decision 1940/QD-BTNMT dated 30/11/2007 on the approval of environmental assessment impact report on the Ha Noi-Hai Phong Expressway Project.

Based on the contents of the report on environmental impact assessment of Ha Noi-Hai Phong Expressway Project.

Detailed planning drawing of Ha Noi-Hai Phong Expressway Project.

Based on the demands and abilities of the two parties.

- For air environment

- + QCVN 05:2009/BTNMT National technical regulations on ambient air quality (substituted for TCVN 5937-2005 "Quality of air and ambient air").
- + QCVN 06:2009/BTNMT National technical regulations on some poison in ambient air

- For noise and vibration

- + QCVN 26:2010/BTNMT National technical regulations on noise (substituted for TCVN 5949-1998: "The maximum permitted noise for public and residential areas").
- + QCVN 27:2010/BTNMT National technical regulations on vibration (substituted for TCVN 6962-2001: "Vibration and shock Vibration emitted by construction activities and industrial production The maximum allowed on the environment of public places and residential areas").

- For water environment

- + QCVN 08:2008/BTNMT National technical regulations on quality of surface water source (substituted for TCVN 5942-1995: Quality regulation of surface water)
- + QCVN 09:2008/BTNMT National technical regulations on quality of underground water.

- Monitoring locations

Table 1.1. Positions and air sampling time

No.	Content	Sign	Package No.	Monitoring locations	Sampling date
1	Air	K 2	2	Intersection with the 179 road. Cuu Cao commune. Van Giang District. Hung Yen Province.	July 3 rd -4 th . 2012
2		К3	3	Intersection with the 39 road. (Luc Dien Ward. Minh Chau commune. Yen My District. Hung Yen Province)	July 4 th -5 th . 2012
	Logical	K 4	4	Intersection with the 38 road. (Tan Phuc commune. Yen My District. Hung Yen Province)	July 5 th -6 th . 2012

	K 5	5	Intersection with the 20 road. (Nhan Quyen commune. Yen My District. Hung Yen Province)	July 6 th -7 th . 2012
	К 6	5	Gia Loc High School (Gia Loc town commune. Gia Loc District. Hung Yen Province)	July 9 th -10 th . 2012
	К7	6	Intersection with the 190 road. (Thanh Cuong commune. Yen My District. Hung Yen Province)	July 10 th -11 th . 2012
3	K 10	8	Three - way crossroads Quan Re. My Duc Commune. An Lao District. Hai Phong City	July 11 th -12 th . 2012
4	K 12	10	Residential area in Tan Vu. Trang Cat. Hai An. Hai Phong	July 12 th -13 th . 2012

Table 1.2. Position and surface water sampling time

No.	Sign	Package No.	Monitoring locations	Sampling date
1	NM 1	2	Bac Hung Hai river – Van Giang District (Cau Chua – Chu Xa. Kieu Ky. Gia Lam. Ha Noi)	July 3 rd -4 th . 2012
2	NM 2	4	O Xuyen river, Gia Loc District, Hai Duong Province	July 6 th -7 th . 2012
3	NM 4	8	Da Do river- My Duc Commune. An Lao District. Hai Phong City	July 11 th -12 th . 2012
4	NM 5	10	Lach Tray river. Hai Phong	July 12 th -13 th . 2012

Table 1.3. Positions and ground water sampling time

No.	Content	Sign	Package No.	Sampling location	Sampling date
-----	---------	------	----------------	-------------------	---------------

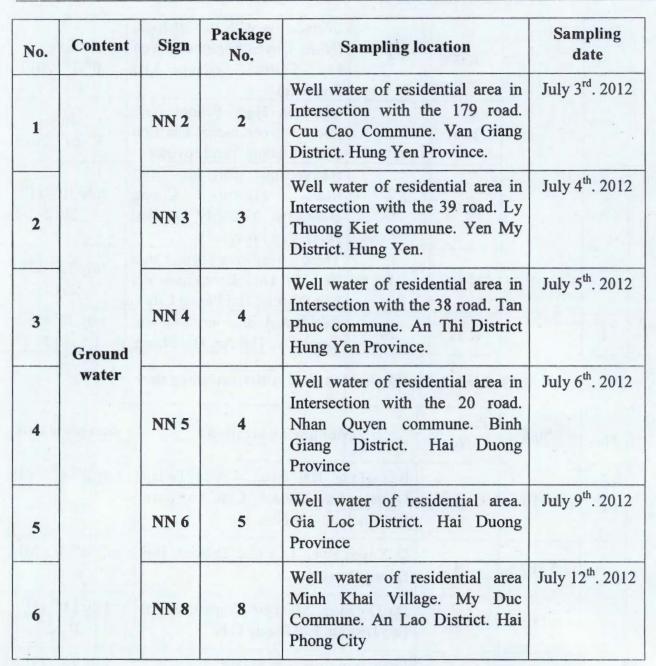


Table 1.4. Positions and soil sampling time

No.	Content	Sign	Package No.	Sampling location	Sampling date
1	Soil	D 2	2	Farmland taken in Intersection with the 179 road. Van Giang area.	July 3 rd . 2012
2		D3	3	Farmland taken in Intersection with the 39 road. Luc Dien Ward. Yen My District. Hung Yen.	July 4 th . 2012

8

3	D 4	4	Farmland taken in Intersection with the 38B road. Gia Loc District, Hai Duong Province area.	July 5 th . 2012
4	D 5	4	Farmland taken in Intersection with the 20 road. Hai Duong area.	July 6 th . 2012
5	D 6	5	Farmland taken in Intersection with the 38B road. Gia Loc District, Hai Duong Province area.	July 9 th . 2012
6	D 7	6	Farmland taken in Intersection with the 190 road.	July 10 th . 2012
7	D 10	10	Soil sample taken near shrimp hatchery area. Hai Phong City.	July 12 th . 2012

- Monitoring equipments

Table 1.5. List of Monitoring equipments

No.	List of equipments	Origin
1	Sampling equipment (CO. SO ₂ . NO ₂ . H ₂ S)	Multiwarn II SEP 8314060. Drager. Germany
2	Dust equipment	Sibata SL20/30. Japan
3	Gas Absorbent	Kimoto HS-7. Japan
4	Noise	ORION NL-21. Japan
5	Vibration	VM-1220E - Japan
6	Water sampling	EW-05488-10 Horizontal Alpha Water Sampler - USA
7	Quick measurement (Temperature. pH. Dissolved oxygen)	YSI - Japan

- The parameters. method and analysis equipment in laboratory

Table 1.6. The parameters and analysis method for air environment

No.	Parameters	Analysis method	Analysis equipment	
-----	------------	-----------------	--------------------	--

1	Vibration frequency	TCVN 5409:1991	VM-1220E- Japan
2	Vibration acceleration	TCVN 5409:1991	VM-1220E- Japan
3	Noise	TCVN 5949-1998	ORION NL-21. Japan
4	VOCs	JISK. Japan	GC-MS QP 2010. Shimadzu. Japan GC-MS GC 2010. Shimadzu. Japan
5	Dust	TCVN-5067:1995	Sibata CL20/30. Japan
7	SO ₂	TCVN 5971–1995	UV-VIS 2450- Shimadzu- Japan
8	NO ₂	TCVN 6137–2009	UV-VIS 2450- Shimadzu- Japan
9	СО	TCVN 5972–1995	UV-VIS 2450- Shimadzu- Japan

Table 1.7. The parameters and analysis method for surface water environment

No.	Parameter	Analysis method	Analysis equipment
1	pН	TCVN 6492 – 1999	pH – YSI 63 -USA
2	DO	TCVN 7325 – 2004	YSI 55- USA
3	COD	KMnO ₄ method	THE CONTRACTOR OF SITE AND ADDRESS.
4	BOD ₅	TCVN 6001 – 2008	YSI-52- USA – BOD ₅ Oven. Lovibond- France
5	TSS	SMEWW 2540 D - 2005	DR/2010. Hach -USA
6	Total phosphorus	TCVN 6202 - 2008	UV-VIS 2450 – Shimadzu - Japan
7	Total nitrogen	TCVN 5987-1995	TOC-V _{CPH} TNM1- Shimadzu - Japan
8	Total pesticide	TCVN 7876 : 2008	GCMS QP 2010. Shimadzu. Japan
9	Oil & Grease	SMEWW 5520 B – 2005	OCMA-350 – HORIBA - Japan
10	Coliform	TCVN 6187-1:1996	Filter 0.45mm; Oven Binder. Germany

Table 1.8. The parameters and analysis method for ground water

No.	Parameter	Analysis method	Analysis equipment
1	Temperature	TCVN 4457-1988	YSI 63-USA
2	pH	TCVN 6492 - 1999	YSI 63-USA
3	COD	KMnO ₄ method	
4	BOD ₅	TCVN 6001 – 2008	YSI-52 - USA - Oven BOD ₅ . Lovibond - France

No.	Parameter	Analysis method	Analysis equipment
5	TSS	SMEWW 2540D - 2005	TSS - DR/2010. Hach - USA
6	Total phosphorus	TCVN 6202 – 2008	UV-VIS 2450 – Shimadzu - Japan
7	Total nitrogen	TCVN 5987-1995	TOC-V _{CPH} TNM1 – Shimadzu - Japan
8	Fecal Coli	TCVN 6187 – 1 – 1996	Filter 0.45mm. Oven Binder. Germany
9	Coliform	TCVN 6187 – 1 – 1996	Filter 0.45mm. Oven Binder. Germany

Table 1.9. The parameters and analysis method for soil sample

No.	Parameter	Analysis method	Analysis equipment
1	Dry pH	TCVN 5979-2007	pH – YSI 63-USA
2	Wet pH	TCVN 5979-2007	pH - YSI 63-USA
3	Electrical Conductivity	TCVN 6650-2000	Horiba. Japan
4	Total nitrogen	TCVN 6498-1999	TOC-V _{CPH} TNM1 – Shimadzu - Japan
5	Total phosphorus	EPA 3051 – 1996 & TCVN 6202 -2008	UV-VIS 2450 - Shimadzu-Japan
6	Fe	EPA 3051 – 1996	ICP MS ELAN 9000 PerKin Elmer. USA
7	Al ³⁺	% SMEWW 3125 – 2005	ICP MS ELAN 9000 PerKin Elmer. USA

- Results of analysis

a) Results of monitoring of construction packages EX-2

The monitoring areas of air environment. noise and ground vibration are located at the intersection between the Phu Thuy – Xuan Quan route where is operating with the Ha Noi – Hai Phong expressway (5B). Measurement points located in the residential area is the closest location with the 5B expressway.

The height of between the measurement points with the Phu Thuy – Xuan Quan road pavement as well as the Ha Noi – Hai Phong expressway (currently embankment)

A VALUE OF THE OWNER OWNE

is negligible. However, between the measurement points and expressway, it's surface cleaved by Bac Hung Hai river.

Geological background at the measurement position of the Phu Thuy – Xuan Quan route are ancient clay which is durability and stable while the expressway pavement is soft ground and has been constructing for treatment

During the testing process. the vehicle occurred mainly on the Phu Thuy – Xuan Quan route. At the time of measurement, appear container trucks common at the time from 9:00 PM - 3:00 AM with the speed 40 to 60 km/h. However, main traffic density on the times: 7:00 AM - 9:00 AM and 2:00 PM - 6:00 PM. On the expressway, the vehicles over 15 tons appeared a few time.

+ Results of air environment monitoring:

Sampling according to supervision consultancy contracts - No. 74/VIDIFI-VNCMT/2010.

Sampling locations: Intersection with the 179 road. Cuu Cao commune. Van Giang District. Hung Yen province on the EX-2 package; Coordinates: N 20° 57'730 - E 105° 57' 265;

Testing time: 9:00 AM on July 3rd. 2012 – 7:00 AM on July 4th. 2012.

Air sampling method: take 04 samples. a sample per 6 hours during 24 hours with parameters: Volatile organic compounds (VOCs). Total dust. Carbon oxide (CO). Nitrogen dioxide (NO₂). Sulfur dioxide (SO₂). The results are shown in table 1.

The result table showed that the parameters are within the allowable limit of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For VOCs. the measurement result showed minimum value to be $122 \mu g/m^3$ at 21:00 PM on July 3^{rd} . 2012 and maximum value is $195 \mu g/m^3$ at 9:00 AM on July 3^{rd} . 2012.

The total dust is 83; 112; 92 and 78 $\mu g/m^3$ which are at 9:00 am. 3:00 pm. 9:00 pm (in July 3rd 2012) and 3:00 am (in July 4th 2012). respectively. That is under 300 $\mu g/m^3$ lower than National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

The results of SO_2 are 86; 95; 90 and 81 μ g/m³ which are at 9:00 am. 3:00 pm. 9:00 pm (in July 3rd 2012) and 3:00 am (in July 4th 2012). respectively. That is under 350μ g/m³ lower than National technical regulation on ambient air quality (QCVN

12

05:2009/BTNMT).

The results of NO_2 are 63; 27; 27 and 30 $\mu g/m^3$ which are at 9:00 am. 3:00 pm. 9:00 pm (in July 3rd 2012) and 3:00 am (in July 4th 2012). respectively. That is under $200\mu g/m^3$ lower than National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For CO. the measurement results are: 1073; 3018; 1460 and 2048 $\mu g/m^3$ corresponding sampling times are 9:00 am. 3:00 pm. 9:00 pm (in July 3rd 2012) and 3:00 am (in July 4th 2012). respectively; these results are lower than 30000 $\mu g/m^3$. National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

+ Results of noise:

Sampling location: Intersection with the 179 road. Cuu Cao commune. Van Giang District. Hung Yen province on the EX-2 package; Coordinates: N 20° 57'730- E 105° 57' 265;

Testing time: 9:00 AM on July 3^{rd} . 2012 - 7:00 AM on July 4^{th} . 2012.

Noise are measured 12 points within 24 hours. a point per 2 hours. Using the noise meter equipment NL-21 ORION of Japan. we measured continuously for 15 minutes each sampling. record of Leq values (average value); L₅₀ (average value of test 50 times); L₉₀ (average value of test 90 times); L_{max} (maximum value) and L_{min} (minimum value). According to *National Technical Regulation on Noise* (QCVN 26:2010/BTNMT) for normal areas. According to equivalent acoustic level (Leq) is 70dB of about 6:00 AM to 9:00 PM and 55dB from 9:00 PM to 6:00 AM daily. Results are shown in table 2.

The result table showed that Leq value at 11:00 PM 3rd July 2012 and Leq value at 3:00 AM 4th July 2012 is 58.6 dB and 55.7 dB which is higher than the allowable limit is 55 dB according to National Technical Regulation on Noise (QCVN 26:2010/BTNMT). Other noise values are equal and lower than the allowable limit is 70dB.

The values of L_{50} . L_{90} haven't comparative regulation. respectively of about 53.5 to 61.8 dB from 6:00 AM to 9:00 PM and 50.8 to 53.0 dB from 10:00 PM to 4:00 AM for L_{50} . The values of L_{90} are respectively of about 49.5- 57.2 dB from 6:00 AM to 9:00 PM and 45.7 to 49.6 dB from 10:00 PM to 4:00 AM..

 L_{max} value is 89.9 dB at 3:00 PM on July 3rd. 2012 and L_{min} value is 42.5 dB at 10:30 AM on April 3rd. 2012.

Owner: Vietnam Infrastructure development and finance investment joint stock company

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street. Me Tri commune. Tu Liem. Hanoi

Tel: (84-4) 37711668 - 22209668; Fax: (84-4) 22209666

TABLE 1. THE SIXTH RESULTS OF AIR SAMPLES OF THE PACKAGE EX2-(July 2012)

Sign	Parameter	Unit	K 2.6.1	K 2.6.2	K 2.6.3	K 2.6.4	QCVN 05:2009/BTNMT
	Time		9:00 am July. 03 rd .2012	15:00 pm July. 03 rd . 2012	21:00 pm July. 03 rd . 2012	3:00 am July. 04 th . 2012	
	VOCs		195	160	122	154	
	Dust		83	112	92	78	300
EX 2 - K2.6	SO ₂	$\mu g/m^3$	86	95	90	81	350
	NO ₂		63	27	27	30	
	СО		1073	3018	1460	2048	30000

TABLE 2. THE SIXTH RESULTS OF NOISE OF THE PACKAGE EX2 (July 2012)

Nama	of comple	Naisa		From 9 am July 03 rd to 7 am July 04 th , 2012										
Name	of sample	Noise	9am	11am	13pm	15pm	17pm	19pm	21pm	23pm	01am	03am	05am	07am
	Leq		66.9	62.8	63.4	65.8	65.4	63.7	59.1	57.7	54.7	55.7	60.5	64.8
	Lmax		86.3	82.3	89.5	89.9	86.0	83.0	81.2	76.9	72.1	71.6	85.0	83.1
EX 2- K2.6	Lmin	(dB)	49.8	49.3	43.9	51.4	51.9	46.7	49.9	44.1	42.5	46.7	43.9	50.5
12.0	L50	-	61.8	59.5	55.6	60.6	61.9	60.5	53.5	52.1	52.1	53.0	50.8	61.6
	L90	3 4	56.1	54.3	49.5	55.5	57.2	54.5	51.1	45.7	46.5	49.6	45.7	55.7
-	26:2010/B mal area -					70					5	55		70

+ Results of vibration

Sampling location: Intersection with the 179 road. Cuu Cao commune. Van Giang District. Hung Yen province on the package EX-2; Coordinates: N 20° 57'730 - E 105° 57'265;

Testing time: 9:00 AM on July 3^{rd} . 2012 - 7:00 AM on July 4^{th} . 2012.

Equipment and test principles:

- Using of VM 1220E equipment (Japan) measures environmental vibration in the factory. construction and roads of traffic. It allows to measure vibration acceleration, vibration intensity according to vertical plane Z and horizontal plane with two perpendicular way X. Y. The measures is updated with speed 63 ms once time then automatically calculation according to JIS C1510 standard. Results are displayed on the screen is dB value.
- The measurements are carried out including vibration acceleration. vibration intensity according to X. Y. Z direction with about measure time is continuously 30 minutes.

Impact assessment according to vibration acceleration (Lva) or vibration intensity (Lv) follow formula:

$$L = \sqrt{L^2 x + L^2 y + L^2 z}$$

X	Y	Z	TB
Measurement m/s ²	Measurement m/s ²	Measurement m/s ²	Measurement m/s ²
Lx	Ly	Lz	L

In there. L is Lva or corresponding Lv.

 L_x . L_y . L_z are acceleration value and vibration intensity according to X. Y. Z direction.

$$L = \log \sqrt{10^{2*Lx} + 10^{2*Ly} + 10^{2*Lz}}$$

X	Y	Z	TB
Measurement	Measurement	Measurement	Measurement
dB	dB	dB	dB
Lx	Ly	Lz	L

In there. L is Lva or corresponding Lv.

L_x. L_y. L_z are acceleration value and vibration intensity according to X. Y. Z direction.

Geological background at the measurement position of the Phu Thuy – Xuan Quan route are ancient clay which durability and stable while the expressway pavement is soft ground and has been constructing for treatment.

- Azimuth of the axes x. y

X-axis set follow the North - South direction.

Y-axis set follow the East - West direction.

Impacts of vibratory sources to the measurement result.

During the testing process. the vehicle occurred mainly on the Phu Thuy – Xuan Quan route. At the time of measurement, appear container trucks common at the time from 9:00 PM - 3:00 AM with the speed 40 to 60 km/h. However, main traffic density on the times: 7:00 AM - 9:00 AM and 2:00 PM - 6:00 PM. On the expressway, the vehicles over 15 tons appeared a few time.

To set measurement range for equipment is 30 – 90 dB

From L_{max} and Leq values showed that: Most of testing time. vibration acceleration is lower than 60dB. However, appearance of measurement values are higher than 60dB in each measurement range, sometimes appearance of measurement range is higher than 75dB.

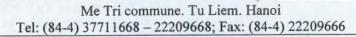
The values of L_{10} . L_{50} . L_{90} have decreasing rule that the larger values only occurring in short time of each measurement range.

The results in table 3 showed that two values of vibration acceleration exceed the allowable limit (75dB) according to National Technical Regulation on Vibration (QCVN 27:2010/BTNMT): the results of Lva(eq) max is 83.2 dB at the time from 5:00 PM to 5:30 PM on July 4th. 2012 and Lva(min) is 31.3 dB from 1:00 AM to 1:30 AM on July 4th. 2012.

Average Lva value in the range from 31.3 dB to 59.6 dB.

TABLE 3. THE SIXTH RESULTS OF VIBRATION OF THE PACKAGE EX2 (JULY 2012)

Time			From 9:00 am to 9:30 am on July 03 rd , 2012								
Danamatan	T I .: 4	-tu	on Leve	l (Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
Leq		35.9	31.8	33.8	35.9	58.8	51.8	50.9	58.8		
L _{max}		47.7	38.4	41.7	47.7	80.5	67.2	69.7	80.5		
L_{min}	dB	29.2	24.8	25.3	29.2	47.3	42.5	43.5	47.3		
L_{10}	ub	33.3	34.2	36.3	36.3	59.4	54.2	53.1	59.4		
L ₅₀		34.4	31	33	34.4	53.6	48.5	47.6	53.6		
L ₉₀		32.1	28.2	29.9	32.1	50	46	45.5	50		


Time	9		From 11:00 am to 11:30 am on July 03 rd , 2012									
Dansmatan	Unit		Vibrati	on Leve	l (Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq		31.2	32.8	36	36	57.5	51.4	48.5	57.5			
L _{max}		45.8	52.1	56.5	56.5	73.3	67.1	62.1	73.3			
L _{min}	dB	22.3	22.9	23.2	23.2	44	37.7	35.7	44			
L ₁₀	UD.	34.1	35.3	38	38	61	54	51.1	61			
L ₅₀		29.2	31.7	34.2	34.2	53.2	46.9	44.8	53.2			
L90		26.6	28.4	30.7	30.7	48.5	42.9	41	48.5			

Time			From 13:00 pm to 13:30 pm on July 03 rd , 2012									
Donomatan	Unit		Vibrati	on Leve	1 (Lv)	Vibration Acceleration (Lva)						
Parameter		Z	Y	X	Average	Z	Y	X	Average			
Leq		31.8	33.2	34.8	34.8	55.8	52.9	49.4	55.8			
L _{max}		46	40.4	43.8	46	80.8	75.1	70.7	80.8			
L_{min}	dB	22.4	23.8	25.1	25.1	38.2	35.4	32.5	38.2			
L ₁₀	ub.	34.1	35.9	37.5	37.5	58.3	55.8	52.5	58.3			
L ₅₀		28.8	32.4	34	34	48.3	45.6	44.1	48.3			
L ₉₀		26.3	28.9	30.6	30.6	42.5	39.6	37.9	42.5			

Time	9		From 15:00 pm to 15:30 pm on July 03 rd , 2012								
D	Unit		Vibrati	on Leve	1 (Lv)	Vibration Acceleration (Lva)					
Parameter		Z	Y	X	Average	Z	Y	X	Average		
Leq		37.9	32.4	34.5	37.9	58.2	55.5	49.6	58.2		
L _{max}		46.7	41.1	45.2	46.7	78.1	71	65.5	78.1		
L _{min}	dB	30.2	23.1	26.5	30.2	44	40.6	37.8	44		
L ₁₀	ub	40.3	35	37	40.3	61.3	59.2	52.8	61.3		
L ₅₀		37	31.5	33.7	37	53.1	51	45.6	53.1		
L90		34.5	28.5	30.7	34.5	47.6	45.6	42	47.6		

Time			From 17:00 pm to 17:30 pm on July 03 rd , 2012								
D	T.T:4	TYLE I	Vibrati	on Leve	1 (Lv)	Vibration Acceleration (Lva)					
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
Leq		34.2	30.9	32.7	34.2	59.6	55.2	52	59.6		
L _{max}		45.2	37.6	39.7	45.2	83.2	79.9	76.8	83.2		
L _{min}	dB	23.9	23.4	23.3	23.9	45.6	40.2	37.5	45.6		
L ₁₀	ав	37.3	33.4	35.3	37.3	60.2	55.4	51.8	60.2		
L ₅₀		32.3	30.3	31.9	32.3	53.6	48.8	45.3	53.6		
L ₉₀	216	27.3	27.3	28.7	28.7	50	44.6	40.9	50		

Time	9		From 19:00 pm to 19:30 pm on July 03 rd , 2012								
D	TT-14		on Leve	l (Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
Leq		29.5	30.3	31.8	31.8	56.7	54.5	49.4	56.7		
L _{max}		40.4	37.8	40.3	40.4	80	78.5	70.2	80		
L _{min}	dB	22.6	21.8	23.1	23.1	38	35.7	32	38		
L ₁₀	uВ	31.3	32.8	34.3	34.3	57.5	54.9	49.4	57.5		
L50		28.7	29.7	31	31	48.1	45.7	40.9	48.1		
L ₉₀		26.7	26.1	27.8	27.8	42.8	40.3	35.9	42.8		

Time	9		From 21:00 pm to 21:30 pm on July 03 rd , 2012								
D	TT-:4		on Leve	l (Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
Leq	<u> </u>	35.3	30.5	32	35.3	56.7	46.3	45.1	56.9		
L _{max}		46.7	40	38.8	46.7	70.3	62.2	61.5	70.3		
Lmin	dB	31.9	21.6	23.4	31.9	53.8	43.2	41.1	53.8		
L ₁₀	uБ	36.8	33.1	34.6	36.8	58.2	47.5	46.6	58.2		
L ₅₀		33.7	29.7	31.3	33.7	55.4	44.8	43.5	55.4		
L ₉₀		33	26.5	27.9	33	54.7	43.9	42.3	54.7		

Time				From 23	:00 pm to 23:	30 pm	on July	03 rd , 201	2		
Danamatan	Unit		Vibrat	ion Leve	el (Lv)	V	Vibration Acceleration (Lva)				
Parameter	Omt	Z	Y	X	Average	Z	Y	X	Average		
Leq		28.8	30.1	31.6	31.6	42.6	40.9	41.8	42.6		
Lmax		44.7	37.8	38.2	44.7	57.2	56.8	56.8	57.2		
L _{min}	dB	20.2	21.2	22.6	22.6	33.3	29.6	29.7	33.3		
L ₁₀	ub	28.8	22.7	34.2	34.2	45.2	43	44.4	45.2		
L ₅₀		25.2	29.4	31	31	36.4	33.5	35.2	36.4		
L90		22.9	26.2	27.5	27.5	34.6	31.2	32.6	34.6		

Time			From 1:00 am to 1:30 am on July 04 th , 2012									
Danamatan	Unit	1730	Vibrat	ion Lev	el (Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq		30.2	30	32.5	32.5	36.1	36.3	33.5	36.3			
L_{max}		45.9	37.1	40.7	45.9	53.2	59.4	43.6	59.4			
L_{min}	dB	20	22.6	23.9	23.9	31.3	28.8	28.5	31.3			
L ₁₀	ub	30.9	32.6	35.2	35.2	37.3	35.4	35.7	37.3			
L_{50}		25.1	29.3	31.7	31.7	34.5	32.3	32.5	34.5			
L90		22.7	25.9	28.1	28.1	33	30.8	30.4	33			

Time				From 3	:00 am to 3:30	am on	July 04	th, 2012	
Danamatan	T Tools		ion Leve	el (Lv)	Vibration Acceleration (Lva)				
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		29.9	30.5	32.2	32.2	43.9	40.7	40.5	43.9
L _{max}		46.1	38.6	38.8	46.1	60.3	55.4	57	60.3
L _{min}	dB	20.2	20.5	23.1	23.1	36.8	32.4	32.3	36.8
L ₁₀	ub	30.4	33.1	34.8	34.8	46.5	43.8	43.5	46.5
L ₅₀		27.7	29.8	31.4	31.4	38.9	35.5	35.7	38.9
L ₉₀		23.8	26.4	27.9	27.9	37.5	33.7	33.8	37.5

Time	e muli	State a	From 5:00 am to 5:30 am on July 04 th , 2012									
Danamatan	Unit	Vibration Level (Lv)					Vibration Acceleration (Lva)					
Parameter	Oint	Z	Y	X	Average	Z	Y	X	Average			
L_{eq}		29.8	30.2	31.8	31.8	46.7	44.9	47.3	47.3			
L _{max}		44.6	37.2	38.9	44.6	67.2	66.5	66.8	67.2			
L _{min}	dB	20.9	21.2	21.7	21.7	33.5	31	33.4	33.5			
L ₁₀	uБ	31.5	32.9	34.4	34.4	48.7	46.6	50.1	50.1			
L ₅₀		20.2	29.4	31	31	41.5	39.6	42.1	42.1			
L ₉₀		23.8	25.9	27.7	27.7	36.5	34.1	37.7	37.7			

Time			From 7:00 am to 7:30 am on July 04 th , 2012									
D	T Tools		on Leve	1 (Lv)	Vibration Acceleration (Lva)							
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq		31.7	30.3	32.1	32.1	52.8	51	45.8	52.8			
L _{max}		46.8	37.5	40.3	46.8	69.8	63.5	60.2	69.8			
L _{min}	dB	22.8	20.5	22.7	22.8	39.1	37	33.4	39.1			
L ₁₀	иБ	34.5	32.8	34.9	34.9	55.9	54.2	48.2	55.9			
L ₅₀		29.1	29.5	31.3	31.3	49.9	48.6	42.6	49.9			
L90		26.1	26.5	27.8	27.8	44.3	42.1	38	44.3			

QCV	N 27:2010/BTNMT:	National Technical Reg	gulation on Vibration
No.	Location	Testing time per day	Vibration acceleration level. dB Average level. Leq
,	1 0 11 1	6:00 AM – 6:00 PM	75
1	Special location	6:00 PM - 6:00 AM	Background level
2	Name I I and a	6:00 AM – 9:00 PM	75
2	Normal location	9:00 PM - 6:00 AM	Background level

+/ Results of surface water sample:

Surface water sample (coded NM 1.6) was monitored and sampled at Bac Hung Hai river – Van Giang District near intersection with the 179 road. Cuu Cao commune. coordinates of sampling location: N 20° 57.730 - E 105° 57. 265.

Sampling time: From July 3rd. 2012 to July 4th. 2012.

Sample was taken 3 times at the times. a sample per 8 hours in 24 hours with 01 blank sample. pH and DO parameters are tested on location. The samples were refrigerated and fixed after sampling and transported to the laboratory in the shortest time. Results of sample analysis are shown in table 4 as below.

The result table showed that oil & grease parameters are 0.11 mg/L higher than the column B1 (0.1 mg/L). lower than the limit value is 0.3 mg/L in column B2 according to National technical regulation on surface water quality (QCVN 08:2008/BTNMT).

COD; TSS and BOD₅ concentration of 03 samples are lower than both B1 and B2 column at the different times according to QCVN 08:2008/BTNMT. In B1 column compared with TSS (Total suspended solids) of QCVN 08:2008/BTNMT. The value of DO (Dissolved Oxygen) in MN 1.6.2 and MN 1.6.3 are 3.90 and 2.70 mg/L. respectively lower than QCVN 08:2008/BTNMT at B1 (≥ 4mg/L).

As for pesticides of organic chlorine group have quantitative limit of analysis method is 0.05 μ g/L (the most of environmental laboratories only determine this quantitative limit). However, according to National technical regulation on surface water quality (QCVN 08:2008/BTNMT), comparative value about 0.004 – 0.01 μ g/L (Aldrin - Dieldrin); 0.014 – 0.01 μ g/L (Endrin) etc.

On the other hand, comparison of National technical regulation on surface water quality (QCVN 08:2008) and Surface water quality standard (TCVN 5942:1995). DDT is 0.01 mg/L corresponding to 10 μ g/L in standard. Vietnam standard (TCVN) by Ministry of science and technology promulgate while Vietnam regulation by Ministry of natural resources and environment promulgate that regulation for parameters of surface water but different to 2500 times.

In this case. TCVN 5942:1995 more consistent with the international standard. Thus, results of minimum quantitative limit also exceed the QCVN 08: 2008/BTNMT.

+ Results of groundwater sample

Groundwater sample (coded NN2.6) is well water of private house of Van Giang area. intersection with the 179 road. householder is Mr. Nguyen Van Than. Nguyen village. Cuu Cao commune. Van Giang District - the well was drilled in 1996 with the depth of 45m. coordinates of sampling location: N 20° 57.730 - E 105° 57. 265;

Sampling time: 10:30 AM on July 3rd. 2012.

Results of sample analysis are shown in table 5 as below.

From the table 5 showed that the all of parameters are lower than QCVN 09:2008/BTNMT (National technical regulation on underground water quality) except coliform parameter.

Owner: Vietnam Infrastructure development and finance investment joint stock company

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street. Me Tri commune. Tu Liem. Hanoi

Tel: (84-4) 37711668 - 22209668; Fax: (84-4) 22209666

TABLE 4. THE SIXTH RESULTS OF SURFACE WATER NM1 OF THE PACKAGE EX2 (APRIL 2012)

No	Parameter	Unit		Resi	ult			CVN /BTNMT
			NM 1.6.1	NM 1.6.2	NM 1.6.3	MT	Column B1	Column B2
1	pH		7.63	7.71	7.33	7.1	5.5 -9	5.5 -9
2	DO	mg/L	4.65	3.90	2.70	7.0	≥4	≥2
3	COD	mgO ₂ /L	12.8	8.8	15.2	< 1.0	30	50
4	BOD ₅	mg/L	6.3	4.9	7.1	< 1.0	15	25
5	TSS	mg/L	9	8	8	< 3.0	50	100
6	Total P	mg/L	0.67	0.73	0.74	< 0.01	- 1	
7	Total N	mg/L	11.8	12.0	12.7	< 0.10	1 7 1 1	-
8	* Pesticides	mg/L	<0.5	<0.5	<0.5	<0.5	- 1	
9	Aldrin+Dieldrin		<0.05	<0.05	<0.05	<0.05	0.008	0.01
10	Endrin		<0.05	<0.05	<0.05	<0.05	0.014	0.01
11	ВНС		<0.05	<0.05	<0.05	<0.05	0.13	0.015
12	DDT		<0.05	<0.05	<0.05	<0.05	0.004	0.005
13	DDD	μg/L	<0.05	<0.05	<0.05	<0.05	-	-
14	Endosunfan (Thiodan)		<0.05	<0.05	<0.05	<0.05	0.01	0.02
15	Lindan	V-	< 0.05	<0.05	<0.05	<0.05	0.38	0.4
16	Chlordane		< 0.05	<0.05	<0.05	<0.05	0.02	0.03
17	Heptachlor		< 0.05	<0.05	<0.05	<0.05	0.02	0.05
18	Oil	mg/L	0.10	0.10	0.11	<0.05	0.1	0.3
19	*Coliform	MPN/100 mL	2300	2100	2800	ND	7500	10000

Note: - QCVN 08:2008/BTNMT: National technical regulation on surface water quality

B1- For the usage of irrigation or other purpose having the similar quality requirement like B2 level

B2 – For the usage of water navigation and other purpose with less water quality NM 1.6.1: Sampling at 3:0 PM. On July 3^{rd} 2012; NM 1.6.2: Sampling at 11:00 PM on July 3^{rd} 2012; NM 1.6.3: Sampling at 7:00 AM on July 4^{th} 2012; MT: Blank sample.

KPHD: Undetectable

TABLE 5. THE SIXTH RESULTS OF GROUND WATER SAMPLE NN2.6 OF THE PACKAGE EX2 (JULY 2012)

No	Downstan	TTm:4	Re	sult	QCVN	
	Parameter	Unit	NN 2.6	MT	09:2008/BTNMT	
1.	Temperature	°C	27.8	27.0	24.4	
2.	pН		7.71	7.10	7.23	
3.	COD	mgO ₂ /L	2.2	< 1.0	2.88	
4.	BOD ₅	mg/L	<1.0	< 1.0	1.4	
5.	TSS	mg/L	5	< 3.0	4	
6.	Total P	mg/L	0.07	< 0.01	0.10	
7.	Total N	mg/L	4.5	< 0.10	2.00	
8.	*Coliform	MPN/	5	KPHT	15	
9.	*E. Coli	100mL	KPHT	KPHT	ND	

Note:

- QCVN 09:2008/BTNMT: National technical regulation on underground water quality
- ND: None detected

b) Results of monitoring of construction packages EX-3

The monitoring areas of air environment. noise environment and ground vibration are located in Tu Duong hamlet - Ly Thuong Kiet commune - Yen My. Hung Yen. intersection with the 39 road and the expressway.

- General description of the status quo of terrain and geology

The monitoring area of ground vibration is a place where is constructing the expressway.

Measurement point in the courtyard area of a house are far from the expressway about 5m and the 39 road - Hung Yen - Pho Noi about 150m.

The height of between the measurement point with the 39 road pavement of Hung Yen - Pho Noi as well as the pavement of Hanoi - Hai Phong expressway (being covered with sand) is approximately 1.5m. The measurement point and the 39 road pavement are divided by local irrigation canal.

- Impacts of vibratory sources to the measurement result.

During the testing process. the vehicle transported mainly on the 39 route. Pho Noi. Hung Yen; appear container trucks with the speed from 40 to 60 km/h and higher. While construction machines and container trucks transporting at 8:00 - 11:00 AM and 2:00 - 8:00 PM on the expressway.

+ Results of air monitoring:

Sampling according to supervision consultancy contracts - No. 74/VIDIFI-VCNMT/2010. Coordinates of sampling location: N 20° 51.603 - E 106° 01. 488. At the each location take 04 samples. a sample per 6 hours during 24 hours with parameters: Volatile organic compounds (VOCs). Total dust. Carbon oxide (CO). Nitrogen dioxide (NO₂). Sulfur dioxide (SO₂). The results are shown in table 7. From the results table showed that the measured parameters are within the allowable limits of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For VOCs. the measurement result showed minimum value is $105 \mu g/m^3$ at 3:00 pm on July 4th. 2012 and maximum value is $165 \mu g/m^3$ at 9:00 am on July 4th. 2012.

For total dust, the measurement results are: 276; 324; 218 and 182 $\mu g/m^3$ corresponding sampling times are 9:00 AM; 3:00 PM; 9:00 PM on July 4th, 2012 and 3:00 AM on July 5th, 2012; these results are lower than 300 $\mu g/m^3$ according to National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For SO_2 . the measurement results are: 103; 120; 109 and 97 $\mu g/m^3$ corresponding sampling times are 9:00 AM; 3:00 PM; 9:00 PM on July 4th. 2012 and 3:00 AM on July 5th. 2012; these results are under 350 $\mu g/m^3$ comparative of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For NO_2 . the measurement results are: 29; 27; 35 and 27 μ g/m³ corresponding sampling times are 9:00 AM; 3:00 PM; 9:00 PM on July 4th. 2012 and 3:00 AM on July 5th. 2012; these results are lower than 200 μ g/m³ comparative of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For CO. the measurement results are: 2683; 4812; 2465 and 1163 $\mu g/m^3$ corresponding sampling times are 9:00 AM; 3:00 PM; 9:00 PM on July 4th. 2012 and 3:00 AM on July 5th. 2012; these results are under 30000 $\mu g/m^3$ comparative of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

+ Results of noise:

Noise level is measured 12 samples within 24 hours (a point per 2 hours) from 9:00 am July 4th. 2012 to 7:00 am July 5th. 2012. Using the noise meter equipment NL-21 ORION of Japan. we measured continuously for 15 minutes each sampling. record of Leq values (average value); L₅₀ (average value of test 50 times); L₉₀ (average value of test 90 times); L_{max} (maximum value) and L_{min} (minimum value). According to National Technical Regulation on Noise (QCVN 26:2010/BTNMT) for normal areas. According to equivalent acoustic level (Leq) is 70dB of about 6:00 AM to 8:00 PM and 55dB from 9:00 PM to 6:00 AM daily. Results are shown in table 7.

The table results showed that 12 Leq values for 24 hours are lower than the allowable limit 55 dB and 70 dB according to National Technical Regulation on Noise (QCVN 26:2010/BTNMT). The values of L_{50} . L_{90} haven't comparative regulation. respectively of about 43.4 to 56.1 dB from 7:00 AM to 21:00 PM and 45.3 to 57.3 dB from 23:00 PM to 5:00 AM for L_{50} . The values of L_{90} are respectively of about 42.9 to 56.9 dB from 6:30 AM to 8:30 PM and 41.2 to 50.1 dB from 10:30 PM to 4:30 AM.

 L_{max} value is 90.1 dB at 13:00 PM on July 4th. 2012 and L_{min} value is 36.9 dB at 1:00 PM on July 4th, 2012.

Owner: Vietnam Infrastructure development and finance investment joint stock company

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street. Me Tri commune. Tu Liem. Hanoi

Tel: (84-4) 37711668 - 22209668; Fax: (84-4) 22209666

TABLE 6: THE SIXTH RESULTS OF AIR SAMPLE OF EX3 (JULY 2012)

Name of sample	Parameter	Unit	K 3.6.1	K 3.6.2	K 3.6.3	K 3.6.4	QCVN 05:2009/BTNMT
	Time		9:00 am July. 4 th . 2012	15:00 pm July. 4 th . 2012	21:00 pm July. 4 th . 2012	3:00 am July. 5 th . 2012	
	VOCs		165	154	110	105	
EX 3 -	Dust	μg/m ³	267	324	218	182	300
K 3.6	SO ₂	PB	103	120	109	97	350
	NO ₂		30	28	23	22	-
	СО		2683	4812	2465	1163	30000

Note: QCVN 05:2009/ BTNMT: National technical regulation on ambient air quality

TABLE 7: THE SIXTH RESULTS OF NOISE SAMPLES OF THE PACKAGE EX3 (JULY 2012)

Nama	of samula	Noise		From 9:00 am July 04 th to 7:00 am July 05 th , 2012											
Name	Name of sample		9am	11am	13pm	15pm	17pm	19pm	21pm	23pm	01am	03am	05am	07am	
	Leq		67.2	64.4	61.7	64.3	62.5	51.7	55.0	57.1	48.0	53.4	55.5	61.8	
	Lmax		88.0	85.5	90.1	85.6	80.1	72.6	65.5	73.4	58.7	78.4	81.5	85.1	
EX 3- K3.6	Lmin	(dB)	42.5	41.7	36.9	44.4	47.4	41.4	51.8	48.7	45.5	46.7	39.3	42.3	
125.0	L50		51.1	50.4	48.9	51.2	55.9	46.3	54.3	57.1	47.7	51.4	45.3	50.2	
	L90		46.1	45.7	43.4	47.1	51.6	43.5	53.5	56.1	47.0	49.1	42.2	45.7	
	N 26:2010/B rmal area -	and the second s				70					5	5		70	

Note: QCVN 26:2010/BTNMT: - National Technical Regulation on Noise

Consultancy: Institute of Environmental Technology

Address: No.18 Hoang Quoc Viet – Cau Giay – Ha Noi Tel: 043 7569 136; 043 7911 654 * Fax: 043 7911 203

+ Results of vibration

- Starting time: 9:00 AM on July 4th. 2012; Ending time: 7:00 AM on July 5th. 2012.
 - Azimuth of the axes x. y

X-axis set follow the North – South direction.

Y-axis set follow the East – West direction.

Impacts of vibratory sources to the measurement result.

To set measurement range for equipment is 30 - 90 dB.

From L_{max} and Leq values showed that: Most of testing time. vibration acceleration is lower than 60dB. However, some measurement values are higher than 60dB and lower than 75dB..

The values of L_{10} , L_{50} , L_{90} have decreasing rule that the larger values only occurring in short time of the each measurement range.

The results in table 8 showed that value of vibration acceleration level (Lva) exceed the allowable limit (75dB) of National Technical Regulation on Vibration (QCVN 27:2010/BTNMT).

Average Lv value in the range from 36.3 to 59.1 dB.

The value of Lva_{max} is 85.7 dB which is highest at the time from 9:00 PM to 21:30 PM on July 4th, 2012.

The value of Lva_{min} is 25.6 dB which is lowest at the time from 8:30 to 9:00 PM on July 4th, 2012.

TABLE 8. THE SIXTH RESULTS OF VIBRATION OF THE PACKAGE EX 3 (JULY 2012)

Time			From 8:00 am to 9:30am on July 04 th , 2012									
D.	Unit		Vibra	tion Leve	el (Lv)	Vibration Acceleration (Lva)						
Parameter	Omt	Z	Y	X	Average	Z	Y	X	Average			
Leq		32.1	33	33.7	33.7	57.9	50.7	50.4	57.9			
L _{max}		43.9	40.3	41.7	43.9	72.7	67.9	67.7	72.7			
L _{min}	dB	24.5	27.5	24.9	27.5	36.5	31.7	33.2	36.5			
L ₁₀		35.6	35.1	36.5	36.5	62.6	56.1	55.9	62.6			
L ₅₀		29.9	32.5	32.8	32.8	45.7	43.7	42.7	45.7			
L90		27.4	30.3	29.7	30.3	39.2	35.6	36.3	39.2			

27

Time	•		F	From 11	:00 am to 11	:30 am	on July	04 th , 20	12		
D	TT-:4	Vibration Level (Lv)					Vibration Acceleration (Lva)				
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
Leq		44.1	44.5	51.6	51.6	54.6	51.1	46.2	54.6		
L _{max}		63.4	70.2	77.4	77.4	76.1	73.3	68.8	76.1		
L _{min}	dB	23	26.7	26.8	26.8	33.8	32.5	31.2	33.8		
L ₁₀		48.1	40	39.6	48.1	53.4	51.4	47.4	53.4		
L ₅₀		32.2	34.1	35.3	35.3	39.9	38.1	37.3	39.9		
L ₉₀		28.2	31	31.8	31.8	36.3	34.8	33.9	36.3		

Time	Time		From 13:00 am to 13:30 pm on July 04 th , 2012								
Darameter	TT:4	Vibration Level (Lv)				Vibration Acceleration (Lva)					
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
Leq		47.2	46.8	56.8	56.8	50.5	45.9	48.6	50.5		
L _{max}		65.6	72	81.4	81.4	69.8	63.9	69.7	69.8		
L _{min}	dB	24.1	27.2	28.1	28.1	32.7	31	31.5	32.7		
L ₁₀		45.5	38.7	41.1	45.5	52.2	47.2	48.6	52.2		
L ₅₀		33.2	34.7	37.2	37.2	38.5	36.5	38.7	38.7		
L ₉₀		28.3	31.5	33.5	33.5	35.3	33.6	35.1	35.3		

Т	Time		From 15:00 pm to 15:30 pm on July 04 th , 2012								
Damanatan	Unit		ion Leve	el (Lv)	Vibration Acceleration (Lva)						
Parameter	Onit	Z	Y	X	Average	Z	Y	X	Average		
Leq		47.3	36	36.7	47.3	52.3	48.6	44	52.3		
L _{max}	The same	66.7	48	45.8	66.7	68.9	59.5	56.1	68.9		
L _{min}	dB	26.3	26.8	28.1	28.1	44.5	42.6	38.1	44.5		
L ₁₀	cześ	43.7	38.2	39.2	43.7	55.6	51.5	46.8	55.6		
L ₅₀		34.2	34.5	36	36	48.1	46.2	42.2	48.1		
L ₉₀		29.7	31.3	32.8	32.8	45.8	44.4	39.7	45.8		

Time	Time		From 17:00 pm to 17:30 pm on July 04 th , 2012								
Danamatan	Unit	Vibration Level (Lv)				Vil	Vibration Acceleration (Lva)				
Parameter Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq		52.3	38.4	37.7	52.3	57.7	54.6	56.5	57.7		
L _{max}	dB	72.1	57.2	49.3	72.1	79.7	75.3	76.2	79.7		
L _{min}		25.6	26.5	26.8	26.8	37.1	35.8	36.6	37.1		
L ₁₀		49.9	40.6	40	49.9	60.5	57.3	59.2	60.5		
L ₅₀		34.9	34.1	35.9	35.9	48.7	46.3	48.1	48.7		
L ₉₀		29.3	30.5	32.4	32.4	41.6	40.2	41.6	41.6		

28

Time	9	Mule	From 19:00 pm to 19:30 pm on July 04 th . 2012									
Donomoton	Unit	Para di N	Vibratio	n Level	(Lv)	Vibration Acceleration (Lva)						
Parameter	Omt	Z	Y	X	Average	Z	Y	X	Average			
Leq		29.5	31.8	33.7	33.7	57.1	50.5	45.5	57.1			
L_{max}		44.2	38.2	41.3	44.2	76.8	67.5	64.6	76.8			
L_{min}	dB	22.2	23.9	24.7	24.7	35.1	32.3	29.6	35.1			
L ₁₀		31.2	34.1	36.3	36.3	60.3	54.2	48.3	60.3			
L ₅₀		27.8	31.3	32.9	32.9	45.4	40.3	37.1	45.4			
L ₉₀		25.6	28.8	29.5	29.5	37.7	34.6	33.5	37.7			

Time			From 21:00 pm to 21:30 pm on July 04 th . 2012								
Parameter	TT-:4	THE P	Vibratio	n Level	(Lv)	Vibration Acceleration (Lva)					
	Unit	Z	Y	X	Average	Z	Y	X			
L_{eq}		28.2	32.2	34.7	34.7	59.1	57.2	57.6	59.1		
L _{max}		49.7	51.5	52.3	52.3	85.7	82.9	83.8	85.7		
L _{min}	dB	20.1	23.5	24.9	24.9	34.5	32.7	31.8	34.5		
L ₁₀		29.3	33.9	36.6	36.6	54.9	50.8	48.1	54.9		
L ₅₀		26.2	31	33.3	33.3	40.3	37.8	36.3	40.3		
L90		23.9	28.6	30.1	30.1	37.3	35.4	33.9	37.3		

Time			From 23:00 pm to 23:30 pm on July 04 th , 2012								
Donomoton	Unit	Vibration Level (Lv)				Vibration Acceleration (Lva)					
Parameter	Unit	Z	Y	X	Average	Z	Y		Average		
$L_{\sf eq}$		27	31	34.1	34.1	38.3	35.2	36.6	38.3		
L _{max}	dB	37	37	41.6	41.6	57.3	52.7	54	57.3		
L _{min}		19.7	22.6	25.6	25.6	34.3	31.5	31.9	34.3		
L ₁₀		29.3	33.3	36.9	36.9	38.9	36.3	38.3	38.9		
L ₅₀		25.8	30.4	23.1	30.4	36.7	33.8	35.1	36.7		
L ₉₀		23.2	27.5	29.5	29.5	35.8	32.6	33.5	35.8		

Time	Time		From 1:00 am to 1:30 am on July 05 th . 2012									
D	I Init		Vibratio	n Level	(Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq		28.1	30.8	33.8	33.8	36.3	33.4	35.2	36.3			
L_{max}		43.7	37.6	41.7	43.7	45.5	43.1	45.2	45.5			
L _{min}	dB	20.4	22.4	24.5	24.5	32.5	30	30.7	32.5			
L ₁₀		29.8	33.5	36.6	36.6	38.1	35.2	37.5	38.1			
L ₅₀		25.8	30.1	32.8	32.8	35.6	32.7	34.4	35.6			
L ₉₀		23.1	26.7	28.9	28.9	34	31.1	32	34			

Time			From 3:00 am to 3:30 am on July 05 th . 2012								
D	T I!4	Vibration Level (Lv)				Vibration Acceleration (Lva)					
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
Leq		26.8	30.7	33.4	33.4	57.6	52.5	49.9	57.6		
L _{max}	dB	38.1	39.3	40.7	40.7	82	74.6	71.7	82		
L _{min}		19.6	22.6	22.5	22.6	43.7	38.4	37.1	43.7		
L ₁₀		29.1	33.2	36.1	36.1	50.3	46.9	45.2	50.3		
L ₅₀		25.6	29.8	32.5	32.5	45.3	39.8	38.8	45.3		
L ₉₀		23.1	26.7	29.2	29.2	44.4	39	37.8	44.4		

Time		75 360	From 5:00 am to 5:30 am on July 05 th . 2012								
Damanatan	T I ia	Vibration Level (Lv)				Vibration Acceleration (Lva)					
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
Leq		42.2	31.5	32.8	42.2	51.2	48.3	50.5	51.2		
L _{max}		64.1	45	42	64.1	70.4	68.9	70.6	70.6		
L _{min}	dB	20.5	20.5	23.3	23.3	32.4	32.2	31.5	32.4		
L ₁₀		34.9	33.9	35.5	35.5	52.9	50	52.2	52.9		
L ₅₀		26.8	30.2	31.8	31.8	40.5	39.5	39.3	40.5		
L ₉₀		24	27	28.5	28.5	35.6.	34.8	34.9	35.6		

Time	Time		From 7:00 am to 7:30 am on July 05 th . 2012								
Donomoton	Unit	Vibration Level (Lv)				Vibration Acceleration (Lva)					
Parameter	Omt	Z.	Y	X	Average	Z	Y	X	Average		
Leq		43.9	35.1	34	43.9	57.9	57	54.9	57.9		
L _{max}		60.8	50.8	45.3	60.8	80.3	81.8	80.3	81.8		
L _{min}	dB	22.1	24.8	23.5	24.8	33.7	30.8	29.4	33.7		
L ₁₀		45.1	37.8	36.6	45.1	57.3	51.6	49.3	57.3		
L ₅₀		31.6	32.2	32.4	32.4	41.4	38.1	36.8	41.4		
L ₉₀		27.1	29	29	29	35.9	33.6	33	35.9		

QCVN 27:2010/J	BTNMT: National Tecl	hnical Regulation on Vibration
Location	Testing time per day	Allowable vibration acceleration level. dB Average level. Leq
0 :11 ::	6:00 AM - 6:00 PM	75
Special location	6:00 PM – 6:00 AM	Background level
Named In add	6:00 AM – 9:00 PM	75
Normal location	9:00 PM - 6:00 AM	Background level

30

+ Results of groundwater sample NN 3.6

Groundwater sample (coded NN 3.6) is well water of house in intersection with the 39 road. householder is Mrs. Le Van Hoa. Tu Duong hamlet. Ly Thuong Kiet commune. Yen My. Hung Yen. The well was drilled in 2002 with depth of 18 m.

Results of sample analysis are shown in table 9 as below.

Table 9 showed that the all of parameters are lower than QCVN 09:2008/BTNMT (National technical regulation on underground water quality) except coliform sample exceeding allowable limit. The value of Blank sample is very low so it does not effect on test samples.

TABLE 9. THE SIXTH RESULTS OF GROUNDWATER OF THE PACKAGE EX3 (JULY 2012)

NT	D	77.3	Res	sult	QCVN
No.	Parameter	Unit	NN 3.6	MT	09:2008/BTNMT
1.	Temperature	°C	27.8	27.0	William Built
2.	pН	900/22-1-1	7.70	7.10	5.5 – 8.5
3.	COD	mgO ₂ /L	3.2	< 1.0	4
4.	BOD ₅	mg/L	1.5	< 1.0	
5.	TSS	mg/L	5	< 3.0	Solid etenin 121
6.	Total P	mg/L	0.06	< 0.01	
7.	Total N	mg/L	0.5	< 0.10	- Lag 2 - Age 50
8.	*Coliform		9	ND	3
9.	*E. Coli	MPN/100mL	ND	ND	ND

c) Results of monitoring of construction packages EX-4

The monitoring areas of air environment, noise environment and ground vibration are located in Tan Phuc commune – An Thi District. Hung Yen province, intersection with the 20 road and the expressway.

- General description of the status quo of terrain and geology

The monitoring area of ground vibration is a place where is constructing the expressway.

Measurement point in the courtyard area of a house are far from the expressway about 10m

The height of between the measurement point with the 20 road pavement of Hung Yen - Pho Noi as well as the pavement of Hanoi - Hai Phong expressway (being covered with sand) is approximately 1.5m. The measurement point and the 20 road pavement are divided by local irrigation canal.

- Impacts of vibratory sources to the measurement result.

During the testing process. the vehicle transported mainly on the 39 route. Pho Noi. Hung Yen; appear container trucks with the speed from 40 to 60 km/h and higher. While construction machines and container trucks transporting at 8:00 - 11:00 AM and 2:00 - 8:00 PM on the expressway.

+ Results of air monitoring:

Sampling according to supervision consultancy contracts - No. 74/VIDIFI-VCNMT/2010. Coordinates of sampling location: N 20° 51.603 - E 106° 01. 488. At the each location take 04 samples. a sample per 6 hours during 24 hours with parameters: Volatile organic compounds (VOCs). Total dust. Carbon oxide (CO). Nitrogen dioxide (NO₂). Sulfur dioxide (SO₂). The results are shown in table 12. From the results table showed that the measured parameters are within the allowable limits of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For VOCs. the measurement result showed minimum value is $78 \mu g/m^3$ at 3:00 pm on July 5^{th} . 2012 and maximum value is $142 \mu g/m^3$ at 9:00 am on July 5^{th} . 2012.

For total dust, the measurement results are: 79; 89; 85 and 73 $\mu g/m^3$ corresponding sampling times are 9:00 AM; 3:00 PM; 9:00 PM on July 5th. 2012 and 3:00 AM on July 6th. 2012; these results are lower than 300 $\mu g/m^3$ according to National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For SO_2 . the measurement results are: 79; 89; 85 and 73 μ g/m³ corresponding sampling times are 9:00 AM; 3:00 PM; 9:00 PM on July 5th. 2012 and 3:00 AM on July 6th. 2012; these results are under 350 μ g/m³ comparative of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For NO_2 the measurement results are: 18; 25; 22 and 25 μ g/m³ corresponding sampling times are 9:00 AM; 3:00 PM; 9:00 PM on July 5th. 2012 and 3:00 AM on July 6th. 2012; these results are lower than 200 μ g/m³ comparative of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For CO. the measurement results are: 1860; 1601; 991 and 1441 µg/m³ corresponding sampling times are 9:00 AM; 3:00 PM; 9:00 PM on July 5th. 2012

and 3:00 AM on July 6th. 2012 these results are under 30000 µg/m³ comparative of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

+ Results of noise:

Noise level is measured 12 samples within 24 hours (a point per 2 hours) from 9:00 am July 5th. 2012 to 7:00 am July 6th. 2012. Using the noise meter equipment NL-21 ORION of Japan. we measured continuously for 15 minutes each sampling. record of Leq values (average value); L₅₀ (average value of test 50 times); L₉₀ (average value of test 90 times); L_{max} (maximum value) and L_{min} (minimum value). According to National Technical Regulation on Noise (QCVN 26:2010/BTNMT) for normal areas. According to equivalent acoustic level (Leq) is 70dB of about 6:00 AM to 8:00 PM and 55dB from 9:00 PM to 6:00 AM daily. Results are shown in table 11.

The table results showed that 12 Leq values for 24 hours are lower than the allowable limit according to National Technical Regulation on Noise (QCVN 26:2010/BTNMT) (55 dB and 70 dB).

The values of L_{50} . L_{90} haven't comparative regulation. respectively of about 50.7 to 62.2 dB from 7:00 AM to 9:00 PM and 44.8 to 54.2 dB from 11:00 PM to 5:00 AM for L_{50} . The values of L_{90} are respectively of about 43.0 to 66.8 dB from 7:00 AM to 9:00 PM and 42.1 to 48.6 dB from 11:00 PM to 5:00 AM. all these values are lower than both Leq and L_{50} .

 L_{max} value is 87.8 dB at 7:00 AM on July 6th. 2012 and L_{min} value is 40.4 dB at 5:00 AM on July 6th, 2012.

Owner: Vietnam Infrastructure development and finance investment joint stock company

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street. Me Tri commune. Tu Liem. Hanoi

Tel: (84-4) 37711668 - 22209668; Fax: (84-4) 22209666

TABLE 10: THE FOURTH RESULTS OF AIR SAMPLE OF EX4 (JULY 2012)

Name of sample	Parameter	Unit	K 4.3.1	K 4.3.2	K 4.3.3	K 4.3.4	QCVN 05:2009/BTNMT	
	Time		9:00 am July 05 th , 2012	15:00 pm July 05 th , 2012	21:00 pm July 05 th , 2012	3:00 am July 06 th , 2012		
EX 4 – K 4.4	VOCs	μg/m³	142	142 136 86 78		78	1 1 - 1 -	
	Dust		94	158	124	88	300 350	
	SO ₂		79	89	85	73		
	NO ₂		18	25	22	25		
	СО		1860	1601	991	1441	30000	

Note: QCVN 05:2009/ BTNMT: National technical regulation on ambient air quality

TABLE 11: THE FOURTH RESULTS OF NOISE SAMPLES OF THE PACKAGE EX4 (JULY 2012)

Name of sample		Noise	From 9 am July 05 th to 7 am July 06 th , 2012											
			9am	11am	13pm	15pm	17pm	19pm	21pm	23pm	01am	03am	05am	07am
EX 4- K4.4	Leq	(dB)	62.2	59.4	55.7	56.1	59.3	54.4	54.8	57.6	48.1	47.8	55.3	68.7
	Lmax		83.0	78.3	71.3	76.0	77.9	79.2	75.1	72.3	67.9	56.8	73.4	87.8
	Lmin		44.7	41.5	43.5	44.5	48.4	42.3	50.2	44.4	44.2	44.5	40.4	50.6
	L50		53.4	55.9	50.9	50.7	58.0	50.9	53.5	54.2	47.1	46.9	44.8	62.2
	L90		48.9	49.2	45.7	47.0	55.1	46.5	52.2	48.6	45.5	45.7	42.1	62.1
QCVN 26:2010/BTNMT (Normal area - Leq)					70					4	55		70	

Note: QCVN 26:2010/BTNMT: - National Technical Regulation on Noise

+ Results of vibration

- Starting time: 9:00 AM on July 5th. 2012; Ending time: 7:00 AM on July 6th. 2012.
 - Azimuth of the axes x. y

X-axis set follow the North – South direction.

Y-axis set follow the East - West direction.

Impacts of vibratory sources to the measurement result.

To set measurement range for equipment is 30 - 90 dB.

From L_{max} and Leq values showed that: Most of testing time. vibration acceleration is lower than 60dB. However, some measurement values are higher than 60dB and lower than 75dB..

The values of L_{10} , L_{50} , L_{90} have decreasing rule that the larger values only occurring in short time of the each measurement range.

The results in table 12 showed that value of vibration acceleration level (Lva) exceed the allowable limit (75dB) of National Technical Regulation on Vibration (QCVN 27:2010/BTNMT).

Average Lv value in the range from 39.3 to 67.7 dB.

The value of Lva_{max} is 90.1 dB which is highest at the time from 1:00 PM to 1:30 PM on July 5th, 2012.

The value of Lva_{min} is 30.8 dB which is lowest at the time from 5:00 to 5:30 AM on July 6th, 2012.

TABLE 12. THE FOURTH RESUXLTS OF VIBRATION OF THE PACKAGE EX 4 (JULY 2012)

Time	9		From 9:00 am to 9:30 am on July 05 th , 2012									
Donomoton	I Inia		Vibrati	on Leve	l (Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq		44.1	37.2	36.9	44.1	60.9	63.7	64.1	64.1			
L_{max}		60.9	50.1	49.8	60.9	88.8	88.9	90	90			
Lmin	dB	22.6	24.5	25.5	25.5	35.9	36.3	36.3	36.3			
L_{10}	uБ	47.4	40.5	39.9	47.4	53.1	63.7	61.8	63.7			
L ₅₀		35.5	35.2	35.6	35.6	50.8	62.2	60.4	62.2			
L ₉₀		28.8	30.6	31.2	31.2	40.6	40	40.2	40.6			

Time			From 11:00 am to 11:30 am on July 05 th . 2012									
	***	T. Alle	Vibrati	on Leve	l (Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq		45.2	35.3	35.7	45.2	60.00	57.8	61.1	61.1			
L _{max}		63.2	48.8	49.3	63.2	76.4	74.8	77.8	77.8			
Lmin	dr.	23.2	21.2	23.5	23.5	33.9	30.7	33.4	33.9			
L ₁₀	dB	45.5	37.8	38.2	45.5	61.9	60	62.7	62.7			
L ₅₀		33.8	32.5	33.5	33.8	41.7	39.2	41.5	41.7			
L ₉₀		27.4	28.2	29.6	29.6	37.9	35.4	37	37.9			

Time		From 13:00 am to 13:30 pm on July 05 th . 2012									
D	TT-:4	FERT	Vibrati	on Leve	el (Lv)	Vibration Acceleration (Lva)					
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
Leq		31	32.9	31.2	32.9	67.4	67.7	66.4	67.7		
L _{max}		44	39.7	41.1	44	90.1	90.1	89.8	90.1		
L _{min}	dB	20.7	23.3	25.3	25.3	35.7	35.6	36.1	36.1		
L ₁₀	db	34.1	35.6	36.8	36.8	50.6	52.1	53.4	53.4		
L ₅₀		28.8	32.2	33.4	33.4	41.3	40.1	40.8	41.3		
L ₉₀		25.2	28.7	29.8	29.8	38.3	37.5	38.3	38.3		

Time	9		F	rom 15	:00 pm to 15:	30 pm o	n July 0	5 th . 2012	2	
D	TT-14		Vibrati	on Leve	l (Lv)	Vibration Acceleration (Lva)				
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average	
Leq		34.9	33.1	35.5	35.5	47.9	46	46.5	47.9	
L _{max}		53.7	40.3	52.8	53.7	63	61.1	63.2	63.2	
L _{min}	dB	25	25.1	26.3	26.3	41.6	40.7	40.4	41.6	
L ₁₀	ав	37.9	35.5	37.5	37.9	49.8	48	48.4	49.8	
L ₅₀		31.7	32.4	33.9	33.9	44.8	44.3	44.5	44.8	
L ₉₀		28.5	29.2	30.7	30.7	43.1	42	41.9	43.1	

Time	9		F	From 17:	00 pm to 17:	30 pm or	n July 0	5 th . 2012	2	
D	T I : 4		Vibrati	on Leve	1 (Lv)	Vibration Acceleration (Lva)				
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average	
Leq		45.5	44.8	44.2	45.5	47.9	52.5	51.4	52.5	
L _{max}		62.7	61	61.4	62.7	73.6	79.8	78.1	79.8	
L _{min}	dB	36.6	35.7	35.7	36.6	36.9	36.9	38.6	38.6	
L ₁₀	uБ	47.5	45.8	45.4	47.5	45	46.3	47.4	47.4	
L ₅₀		41.4	43	42.9	43	41.9	42.7	43.1	43.1	
L90		39.7	40.8	40.9	40.9	39.1	40.6	40.8	40.8	

36

Time		From 19:00 pm to 19:30 pm on July 05 th . 2012									
D	TT-:4		Vibrati	on Leve	1 (Lv)	Vibration Acceleration (Lva)					
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
Leq		39.3	34.2	38	39.3	38.7	38.3	39.3	39.3		
L _{max}		56.4	50.8	57.3	57.3	54.8	51.1	34.1	54.8		
L_{min}	dB	20.8	21.9	24.4	24.4	32.5	30.9	30.3	32.5		
L_{10}	ub	42.6	36.2	37.5	42.6	40.5	40.5	41.7	41.7		
L ₅₀		29.1	31.8	33.2	33.2	37.8	37.5	38.3	38.3		
L ₉₀		25	28.2	29.8	29.8	35.3	34.2	35.1	35.3		

Time		Jagan La	From 21:00 pm to 21:30 pm on July 05 th . 2012									
Damanadan	TToda		Vibrati	on Leve	l (Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
L_{eq}		32.5	34.9	37.6	37.6	50.7	51.4	51.4	51.4			
L _{max}		72.2	72.7	73.7	73.7	75.8	76	75.6	76			
L _{min}	dB	21.2	22.4	23.5	23.5	38	37.6	38.4	38.4			
L ₁₀	uБ	35.2	35.4	36.5	36.5	50.5	52.9	52.4	52.9			
L ₅₀		28.8	32	32.7	32.7	43.9	44.9	45.4	45.4			
L ₉₀		25.1	28.5	29.4	29.4	39.9	40.3	40.9	40.9			

Time	,		From 23:00 pm to 23:30 pm on July 05 th . 2012									
D	TT-:4		Vibrat	ion Leve	l (Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq		36.1	34.1	36.4	36.4	42	41.4	40.8	42			
L _{max}		53.8	50.7	54.7	54.7	55.1	56.3	55.4	56.3			
L _{min}	dB	22.8	22.3	24.7	24.7	32.2	31.3	31.4	32.2			
L_{10}	ub	39.6	35.3	36.5	39.6	45.8	44.8	44.1	45.8			
L ₅₀		31.3	31.9	33	33	39.6	38.1	38.3	39.6			
L90		26.3	28.6	29.7	29.7	35.3	34.6	34.6	35.3			

Time			From 1:00 am to 1:30 am on July 06 th . 2012									
D	T T-:4	1 511	Vibrat	ion Leve	el (Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
L_{eq}		40	38.2	36.7	40	44	42.8	41.5	44			
L _{max}	. 15	53.7	54	51.5	54	61.2	60.3	58	61.2			
L _{min}	dB	37.2	35.3	33.6	37.2	37.7	35.9	33.9	37.7			
L ₁₀	uБ	40.9	38.7	37.3	40.9	45.3	43.3	41.8	45.3			
L ₅₀		39.2	37	35.2	39.2	39.6	38	30.5	39.6			
L ₉₀		38.4	36.3	34.3	38.4	38.4	30.5	34.9	38.4			

37

Time				From	3:00 am to 3:3	0 am on	July 06	5 th . 2012	ini) =	
D	TT		Vibrat	ion Leve	el (Lv)	Vibration Acceleration (Lva)				
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average	
Leq		46.4	41.9	39.6	46.4	47.7	48.4	42.4	48.4	
L _{max}	(HA)	68.2	62.7	57	68.2	73.8	71.3	71.1	73.8	
L _{min}	dB	32.5	31.4	31.5	32.5	38.4	36.1	34.4	38.4	
L_{10}	ub.	44.1	42.2	41.3	44.1	48.7	45.5	42.4	48.7	
L ₅₀		37.9	36.2	36.2	37.9	43	40	38.5	43	
L ₉₀		35.4	33.6	33.9	35.4	40	37.6	36.2	40	

Time		RELEGIE	H THE	From	5:00 am to 5:3	30 am on	July 0	5 th . 2012	
D	T In:		Vibrat	ion Leve	el (Lv)	V	ibration	Acceler	ation (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		30.4	38	38.8	38.8	56.2	53.7	56.7	56.7
L_{max}		45.4	55.1	55.8	55.8	90.1	89.9	89.8	90.1
Lmin	dB	21.2	22	23.4	23.4	30.8	29.2	28.5	30.8
L ₁₀	ub.	32.4	34.9	36.4	36.4	45.3	42.8	42.3	45.3
L ₅₀		26.3	30.2	31.4	31.4	35.6	33.4	34	35.6
L90		24	26.8	28.1	28.1	33	31	31.1	33

Time			From 7:00 am to 7:30 am on July 06 th . 2012									
Danamatan	Timia	49-11	Vibrat	ion Leve	1 (Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	·Z	Y	X	Average	Z	Y	X	Average			
L_{eq}		32.8	32.6	31.8	32.8	66.7	67.2	66.9	67.2			
L _{max}		48.6	41.5	33.2	48.6	75	76.1	74.2	76.1			
Lmin	dB	26.1	24.1	29.8	29.8	41.7	43.2	42.8	43.2			
L ₁₀	uБ	35.2	34.8	37	37	70.2	70.4	70.5	70.5			
L ₅₀		31	31.4	35.9	35.9	65.8	66.8	65.4	66.8			
L ₉₀		28.8	28.6	28.9	28.9	59.3	58.7	59	59.3			

QCVN 27:2010/BTNMT: National Technical Regulation on Vibration										
Location	Testing time per day	Allowable vibration acceleration level dB Average level. Leq								
C	6:00 AM – 6:00 PM	75								
Special location	6:00 PM - 6:00 AM	Background level								
Normal leastion	6:00 AM – 9:00 PM	75								
Normal location	9:00 PM - 6:00 AM	Background level								

+ Results of groundwater sample NN 4.4

Groundwater sample (coded NM 4.4) is well water of house in intersection. householder is Mrs. Nam. Tan Phuc commune. An Thi District. Hung Yen Province. Results of sample analysis are shown in table 13 as below.

Table 13 showed that the all of parameters are lower than QCVN 09:2008/BTMMT (National technical regulation on underground water quality) except coliform sample exceeding allowable limit. The value of Blank sample is very low so it does not effect on test samples.

TABLE 13. THE FOURTH RESULTS OF GROUNDWATER OF THE

бсли	ault	Res	7:-11	Description	214
TMNTB\8002:90	TM	4.4 NN	tinU	Рагатетег	.oV
mame 7 mail ma	0.82	8.62	J₀	Temperature	.I
2.8 – 2.2	01.7	29.9		Hq	2.
Þ	0.1 >	6.1	J\sQm	COD	3.
	0.1 >	0.1>	J\gm	BOD ²	.4.
Jen Jensen	0.£>	6	J/gm	TSS	.2
y Tituakeu	10.0>	₽0.0	J\gm	4 lstoT	.9
	01.0 >	5.2	J\gm	V latoT	.T
3	ND	S	/NdW	mroliloO*	.8
αN	MD	dΝ	Jm001	*E. Coli	.6

Results monitoring of Intersection with the 20 road in Nhan Quyen Commune. Binh Giang District, Hai Duong Province

+ Results of air monitoring:

Sampling according to supervision consultancy contracts - No. 74/VIDIFIL-VCNMT/2010. Coordinates of sampling location: N 20° 51.204" - E 106° 12. 14.9. At the each location take 04 samples. a sample per 6 hours during 24 hours with parameters: Volatile organic compounds (VOCs). Total dust. Carbon oxide (CO). Nitrogen dioxide (NO₂). Sulfur dioxide (SO₂). The results are shown in table 14. From the results table showed that the measured parameters are within the allowable limits of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For VOCs. the measurement result showed minimum value is 120 µg/m³ at

68

3:00 am on April 7^{th} . 2012 and maximum value is 150 μ g/m³ at 3:00 p m on April 6^{th} . 2012.

For total dust, the measurement results are: 456; 589; 284 and 352 $\mu g/m^3$ corresponding sampling times are 9:00 AM; 3:00 PM; 9:00 PM on April 6th, 2012 and 3:00 AM on April 7th, 2012; these results are higher lower than 300 $\mu g/m^3$ according to National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For SO_2 . the measurement results are: 93; 119; 117 and 105 μ g/m³ corresponding sampling times are 9:00 AM; 3:00 PM; 9:00 PM on April 6th. 2012 and 3:00 AM on April 7th. 2012; these results are under 350 μ g/m³ comparative of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For NO_2 . the measurement results are: 33; 20; 20 and 22 μ g/m³ corresponding sampling times are 9:00 AM; 3:00 PM; 9:00 PM on April 6th. 2012 and 3:00 AM on April 7th. 2012; these results are lower than 200 μ g/m³ comparative of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For CO. the measurement results are: 945; 1346; 1020 and 1696 $\mu g/m^3$ corresponding sampling times are 9:00 AM; 3:00 PM; 9:00 PM on April 6th. 2012 and 3:00 AM on April 7th. 2012 these results are under 30000 $\mu g/m^3$ comparative of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

+ Results of noise:

Noise level is measured 12 samples within 24 hours (a point per 2 hours) from 9:00 am April 6th. 2012 to 7:00 am April 7th. 2012. Using the noise meter equipment NL-21 ORION of Japan. we measured continuously for 15 minutes each sampling. record of Leq values (average value); L₅₀ (average value of test 50 times); L₉₀ (average value of test 90 times); L_{max} (maximum value) and L_{min} (minimum value). According to National Technical Regulation on Noise (QCVN 26:2010/BTNMT) for normal areas. According to equivalent acoustic level (Leq) is 70dB of about 6:00 AM to 8:00 PM and 55dB from 9:00 PM to 6:00 AM daily. Results are shown in table 15.

The table results showed that 12 Leq values for 24 hours. There is one result at 9:00 AM on April 6th 2012 is 71.1 dB are higher 70 dB and all results at night from 11:00 PM on April 6th 2012 to 5:00 AM on April 7th 2012 are 56.3; 55.8; 59.0 and 68.5 dB are higher 55 dB than the allowable limit according to National Technical Regulation on Noise (QCVN 26:2010/BTNMT). Other noise values are lower than the allowable limit is 70dB.

The values of L_{50} . L_{90} haven't comparative regulation. respectively of about 59.1 to 67.9 dB from 7:00 AM to 9:00 PM and 48.1 to 57.7 dB from 11:00 PM to 5:00 AM for L_{50} . The values of L_{90} are respectively of about 53.3 to 62.3 dB from 7:00 AM to 9:00 PM and 45.0 to 53.0 dB from 11:00 PM to 5:00 AM.

 L_{max} value is 101.4 dB at 11:00 AM on April 6th. 2012 and L_{min} value is 41.1 dB at 1:00 AM on April 7th, 2012.

Owner: Vietnam Infrastructure development and finance investment joint stock company

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street. Me Tri commune. Tu Liem. Hanoi

Tel: (84-4) 37711668 - 22209668; Fax: (84-4) 22209666

TABLE 14: THE FOURTH RESULTS OF AIR SAMPLE OF EX4 (JULY 2012)

Name of sample	Parameter	Unit	K 5.4.1	K 5.4.2	K 5.4.3	K 5.4.4	QCVN	
	Time		9 am July 6 th , 2012	15:00 pm July 6 th , 2012	21:00 pm July 6 th , 2012	3:00 am July 7 th , 2012	05:2009/BTNMT	
	VOCs		130	150	130	120	-	
	Dust			456	589	284	352	300
EX 4 – K 5.3	SO ₂	$\mu g/m^3$	93	119	117	105	350	
K 3.3	NO ₂		33	20	20	22	-	
	СО		945	1346	1020	1696	30000	

Note: QCVN 05:2009/BTNMT: National technical regulation on ambient air quality

TABLE 15: THE FOURTH RESULTS OF NOISE SAMPLES OF THE PACKAGE EX4 (JULY 2012)

Mama	of somels	Maine		From 9 am July 06 th to 7 am July 07 th , 2012										
Name	of sample	Noise	9am	11am	13pm	15pm	17pm	19pm	21pm	23pm	01am	03am	05am	07am
	Leq		72.3	72.7	69.5	68.1	68.2	68.0	66.0	57.9	55.0	66.2	69.2	70.4
	Lmax		90.8	101.4	99.6	87.7	87.1	94.3	91.8	89.6	86.2	84.7	90.1	90.1
EX 4- K5.3	Lmin	(dB)	54.1	47.9	48.9	50.5	51.3	46.5	48.0	43.3	41.1	47.0	46.9	51.2
K3.3	L50		67.9	64.1	60.1	63.1	63.6	61.6	59.1	50.1	48.1	57.0	57.7	65.3
	L90		62.3	56.5	53.4	55.3	57.8	54.2	53.3	47.7	45.0	53.0	51.5	58.0
_	V 26:2010/I rmal area -					70					5	55		70

Note: QCVN 26:2010/BTNMT: - National Technical Regulation on Noise

+ Results of vibration

- Starting time: 9:00 AM on July 6th. 2012; Ending time: 7:00 AM on July 7th. 2012.
 - Azimuth of the axes x. y

X-axis set follow the North – South direction.

Y-axis set follow the East – West direction.

Impacts of vibratory sources to the measurement result.

To set measurement range for equipment is 30 - 90 dB.

From L_{max} and Leq values showed that: Most of testing time. vibration acceleration is lower than 60dB. However, some measurement values are higher than 60dB and lower than 75dB.

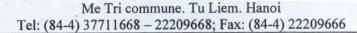
The values of L_{10} , L_{50} , L_{90} have decreasing rule that the larger values only occurring in short time of the each measurement range.

The results in table 16 showed that value of vibration acceleration level (Lva) exceed the allowable limit (75dB) of National Technical Regulation on Vibration (QCVN 27:2010/BTNMT).

Average Lv value in the range from 53.3 to 69.9 dB.

The value of Lva_{max} is 90.1 dB which is highest at the time from 1:00 AM to 1:30 AM on July 7^{th} , 2012.

The value of Lva_{min} is 31.8 dB which is lowest at the time from 23:00 to 23:30 AM on July 6^{th} , 2012.


TABLE 16. THE FOURTH RESULTS OF VIBRATION OF THE PACKAGE EX 4 (JULY 2012)

Time			F	rom 9:0	0 am to 9:30	am on .	July 06 ^t	h, 2012	
D	TT-:4		Vibratio	on Level	(Lv)	Vibration Acceleration (Lva)			
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		50.6	37.1	38.1	50.6	66.9	69.9	64.5	69.9
L _{max}		68.3	50.8	57.4	68.3	79.2	78.4	74.2	79.2
L_{min}	dB	32.8	29.8	29.3	32.8	60.5	60.9	55.6	60.9
L ₁₀	uD	53.6	39.3	39.8	53.6	67.2	71.5	65.9	71.5
L ₅₀		47	35.9	36.9	47	66.4	69.4	64.2	69.4
L ₉₀		43.4	. 33	33.5	43.4	66	67.2	62.1	67.2

43

1.5

Time			Fr	om 11:0	0 am to 11:3	0 am on	July 06	5 th . 2012	2
D	TT-14		Vibratio	n Level	(Lv)	Vibration Acceleration (Lva)			
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		48.8	35.8	36.8	48.8	61.5	59.2	60.1	61.5
L _{max}		64.3	49.9	45.5	64.3	84.6	81.1	85.6	85.6
Lmin	dB	27	25.9	26.3	27	44	39.2	39.7	44
L ₁₀	uБ	52.9	38.5	39.4	52.9	61.5	59.6	58.9	61.5
L ₅₀		42.2	34.6	36	42.2	54	51.1	50.6	54
L ₉₀		32.9	31.3	32.6	32.9	49	45.6	45.7	49

Time		1	Fr	om 13:0	00 pm to 13:3	30 pm or	n July 0	6 th . 201:	2
D	TT-:A		Vibratio	n Level	(Lv)	Vibration Acceleration (Lva)			
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		43.7	34.9	36.5	43.7	56.7	56.9	55.1	56.9
L _{max}		59.5	43.4	47.1	59.5	76.3	74.9	76.4	76.4
L _{min}	dB	26.6	26.2	26.1	26.6	38	35.5	34.5	38
L ₁₀	db	47.3	37.7	38.9	47.3	61.1	60.8	58.1	61.1
L ₅₀		38.7	33.9	35.7	38.7	49.7	48.3	46.1	49.7
L ₉₀		31.7	30.8	32.1	32.1	43	41.2	39.6	43

Time			F	rom 15:0	00 pm to 15:	30 pm o	n July 0	6 th . 201:	2	
Parameter	T In:		Vibratio	n Level	(Lv)	Vibration Acceleration (Lva)				
	Unit	Z	Y	X	Average	Z	Y	X	Average	
$L_{\sf eq}$		48.1	37.4	38.5	48.1	54.4	55.2	53.2	55.2	
L_{max}		59.8	46	46.1	59.8	72.6	71.6	70.4	72.6	
L _{min}	dB	29.6	28.5	27.8	29.6	42.6	44.7	42.9	44.7	
L ₁₀	ub	51.9	40	41.1	51.9	50.6	57.9	55.5	57.9	
L ₅₀		44.7	36.5	37.7	44.7	48.9	50.7	47.9	50.7	
L90		37.4	35.2	34.4	37.4	44.9	47	44.7	47	

Time			From 17:00 pm to 17:30 pm on July 06 th . 2012									
Daramatar	Unit		on Level	(Lv)	Vibration Acceleration (Lva)							
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq	10	46.1	34.8	35.3	46.1	55.6	52.3	50.6	55.6			
L_{max}		60.2	42.6	42.6	60.2	69.2	67.7	65.4	69.2			
Lmin	dB	26.8	26.7	23.9	26.8	40.9	36.6	36.4	40.9			
L ₁₀	ub	50.2	37	37.8	50.2	59.4	55.5	54.3	59.4			
L ₅₀		42	34	34.7	42	50	46.4	45.5	50			
L ₉₀		33.9	31.1	31.6	33.9	44.6	40.8	40.2	44.6			

44

Time		Janagi	F	rom 19:	00 pm to 19:	30 pm o	n July 0	6 th . 2012	2
D	T.T'A		Vibratio	n Level	(Lv)	Vibration Acceleration (Lva)			
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		40	32.7	33.9	40	54.9	54.3	53.5	54.9
L _{max}		59.8	40	43.9	59.8	68.9	69.1	67.3	69.1
L _{min}	dB	22.6	24.3	24.3	24.3	36.5	35.1	35.2	36.5
L_{10}	ub	38.4	35.5	36.5	38.4	58.8	58.1	57.5	58.8
L ₅₀		30.7	31.7	33.1	33.1	49.4	48.7	48.5	49.4
L ₉₀		27.1	28.4	29.5	29.5	42.1	40.9	40.4	42.1

Time			F	rom 21:0	00 pm to 21:3	30 pm or	July 1)6 th . 201	2		
Dansanatan	Timia		Vibratio	n Level	(Lv)	Vi	Vibration Acceleration (Lva)				
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
Leq		40.8	32.2	33.3	40.8	53.5	53.7	51.7	53.7		
L _{max}		60.8	42.2	42.7	60.8	71.7	72.7	70.4	72.7		
L _{min}	dB	22.5	22.7	23.7	23.7	45.9	46.9	43.7	46.9		
L ₁₀	uБ	40.7	34.8	35.9	40.7	55	54.3	53	55		
L ₅₀		29.5	31.2	32.4	32.4	51.6	51	48	51.6		
L ₉₀		26.1	27.9	28.9	28.9	47	49.1	46.5	49.1		

Time		THE P.	I	From 23:	00 pm to 23:	30 pm o	n July 0	5 th . 2012			
Dansanatan	T T- :4		Vibration Level (Lv)				Vibration Acceleration (Lva)				
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
Leq		32.7	31.7	34.3	34.3	51.5	53.3	47.3	53.3		
L _{max}	1180	57.5	51.2	56.2	57.5	73.5	79	71.6	79		
Lmin	dB	20.8	21.3	24.6	24.6	31.8	29.7	30.1	31.8		
L ₁₀	ub	29.3	33.8	35.7	35.7	53	50.6	47.2	53		
L ₅₀		25.6	30.3	32.1	32.1	43.1	40.9	38.2	43.1		
L ₉₀		23.3	27	28.9	28.9	35.1	33	33.5	35.1		

Time	;		From 1:00 am to 1:30 am on July 07th . 2012									
D	TT.:4	Vibration Level (Lv)					Vibration Acceleration (Lva)					
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq		39.5	31.2	33.1	39.5	63.6	61.8	61.5	63.6			
L _{max}		58.9	42.8	44.7	58.9	90.1	90.1	90	90.1			
L _{min}	dB	21.5	21.9	23.4	23.4	35.5	36	34.6	36			
L ₁₀	db	38.5	33.8	35.7	38.5	60.4	56.6	54.5	60.4			
L ₅₀		29.2	30.3	32.1	32.1	46.8	44.6	42.8	46.8			
L90		25.3	27	28.9	28.9	38.4	38.3	37.7	38.4			

Time		The last	From 3:00 am to 3:30 am on July 07th . 2012									
Dawanatan	T Tools	Vibration Level (Lv)					Vibration Acceleration (Lva)					
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
$L_{\sf eq}$		41	30.5	32.4	41	55.3	51.3	49.3	55.3			
L_{max}		59.9	39	43.3	59.9	72.5	68.9	65.2	72.5			
L _{min}	dB	20.6	21.3	24.3	24.3	36.2	36.4	37	37			
L ₁₀	ub	39.6	33.1	35.1	39.6	58.6	54.4	52.7	58.6			
L ₅₀		27.3	29.6	31.2	31.2	45	42.5	42.6	45			
L ₉₀		24.1	26.2	27.8	27.8	37.7	37.7	39.1	39.1			

Time		Lagger	From 5:00 am to 5:30 am on July 07th . 2012									
Danamatan	Unit	Vibration Level (Lv)				Vi	Vibration Acceleration (Lva)					
Parameter	Omt	Z	Y	X	Average	Z	Y	X	Average			
$L_{\sf eq}$		36.5	30.3	31.5	36.5	58.2	54.7	51.6	58.2			
L_{max}		58.8	38.4	41.4	58.8	83.7	79.1	73.3	83.7			
Lmin	dB	21.4	22.3	23.3	23.3	34.4	30.5	31.3	34.4			
L ₁₀	ub	34.1	32.8	34	34.1	58.9	56.8	53.9	58.9			
L ₅₀		27.8	29.6	30.8	30.8	48.4	45.8	44	48.4			
L ₉₀		24.6	26.3	27.7	27.7	39.2	37.4	35.9	39.2			

Time			From 7:00 am to 7:30 am on July 07th . 2012								
Doromotor	Unit	Vibration Level (Lv)				Vibration Acceleration (Lva)					
Parameter		Z	Y	X	Average	Z	Y	X	Average		
Leq		45.1	33.6	34.9	45.1	61.7	59.2	56	61.7		
L _{max}		65.3	65.3	66.2	66.2	82.1	83.2	76.5	83.2		
L _{min}	dB	24.5	22.6	23.5	24.5	39.9	37	36.2	39.9		
L ₁₀	ub	48.9	30.6	30.5	48.9	64.3	61	59	64.3		
L ₅₀		39.7	32	32.5	39.7	52.6	49.9	48.8	52.6		
L90		31	28.2	29	31	44.2	41.9	39.9	44.2		

CVN 27:2010/BTN	MT: National Technical	Regulation on Vibration
Location	Testing time per day	Allowable vibration acceleration level dB Average level. Leq
Special location	6:00 AM – 6:00 PM	75
Special location	6:00 PM - 6:00 AM	Background level
Normal langtion	6:00 AM – 9:00 PM	75
Normal location	9:00 PM - 6:00 AM	Background level

+ Results of surface water sample:

Surface water sample (coded NM 2.4) was monitored and sampled at Bac Hung Hai river – Van Giang District near intersection with the 179 road. Cuu Cao commune. coordinates of sampling location: N 20° 57.730 - E 105° 57. 265.

Sampling time: From July 6rd. 2012 to July 7th. 2012.

Sample was taken 3 times at the times. a sample per 8 hours in 24 hours with 01 blank sample. pH and DO parameters are tested on location. The samples were refrigerated and fixed after sampling and transported to the laboratory in the shortest time. Results of sample analysis are shown in table 17 as below.

The result table showed that oil & grease parameters are 0.12; 0.13; 0.15 mg/L higher than the column B1 (0.1 mg/L). lower than the limit value is 0.3 mg/L in column B2 according to National technical regulation on surface water quality (QCVN 08:2008/BTNMT).

COD; TSS and BOD₅ concentration of 03 samples are lower than both B1 and B2 column at the different times according to QCVN 08:2008/BTNMT. In B1 column compared with TSS (Total suspended solids) of QCVN 08:2008/BTNMT. The value of DO (Dissolved Oxygen) in NM 2.4.1; NM 2.4.2 and NM 2.4.3 are 2.60; 2.45 and 2.70 mg/L. respectively lower than QCVN 08:2008/BTNMT at B1 (≥ 4mg/L).

As for pesticides of organic chlorine group have quantitative limit of analysis method is 0.05 μ g/L (the most of environmental laboratories only determine this quantitative limit). However, according to National technical regulation on surface water quality (QCVN 08:2008/BTNMT), comparative value about 0.004 – 0.01 μ g/L (Aldrin - Dieldrin); 0.014 – 0.01 μ g/L (Endrin) etc.

On the other hand, comparison of National technical regulation on surface water quality (QCVN 08:2008) and Surface water quality standard (TCVN 5942:1995). DDT is 0.01 mg/L corresponding to 10 μ g/L in standard. Vietnam standard (TCVN) by Ministry of science and technology promulgate while Vietnam regulation by Ministry of natural resources and environment promulgate that regulation for parameters of surface water but different to 2500 times.

In this case. TCVN 5942:1995 more consistent with the international standard. Thus, results of minimum quantitative limit also exceed the QCVN 08: 2008/BTNMT.

Owner: Vietnam Infrastructure development and finance investment joint stock company

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street. Me Tri commune. Tu Liem. Hanoi

Tel: (84-4) 37711668 - 22209668; Fax: (84-4) 22209666

TABLE 17. THE FOURTH RESULTS OF SURFACE WATER NM1 OF THE PACKAGE EX2 (JULY 2012)

No	Parameter	Unit		Res	ult		QCVN 08:2008/BTNMT	
			NM 2.4.1	NM 2.4.2	NM 2.4.3	MT	Column B1	Column B2
1	pН	-	7.11	7.45	7.36	7.20	5.5 -9	5.5 -9
2	DO	mg/L	2.60	2.45	2.37	7.38	≥4	≥2
3	COD	mgO ₂ /L	9.6	10.4	26.2	<1.0	30	50
4	BOD ₅	mg/L	5.2	5.8	13.9	<1.0	15	25
5	TSS	mg/L	5	7	8	<3.0	50	100
6	Total P	mg/L	0.21	0.15	0.25	0.01		-
7	Total N	mg/L	6.6	3.8	3.8	<0.10	1 2 - 6	- 1
8	*Pesticides	mg/L	<0.5	<0.5	<0.5	<0.5		-
9	Aldrin+Dieldrin		< 0.05	< 0.05	< 0.05	< 0.05	0.008	0.01
10	Endrin		< 0.05	< 0.05	< 0.05	< 0.05	0.014	0.01
11	ВНС		< 0.05	< 0.05	< 0.05	< 0.05	0.13	0.015
12	DDT		< 0.05	< 0.05	< 0.05	< 0.05	0.004	0.005
13	DDD	μg/L	< 0.05	< 0.05	< 0.05	< 0.05	F-10-2	-
14	Endosunfan (Thiodan)		< 0.05	< 0.05	< 0.05	< 0.05	0.01	0.02
15	Lindan		< 0.05	< 0.05	< 0.05	< 0.05	0.38	0.4
16	Chlordane		< 0.05	< 0.05	< 0.05	< 0.05	0.02	0.03
17	Heptachlor		< 0.05	< 0.05	< 0.05	< 0.05	0.02	0.05
18	Oil	mg/L	0.12	0.13	0.15	< 0.05	0.1	0.3
19	*Coliform	MPN/100 mL	38	96	200	ND	7500	10000

Note: - QCVN 08:2008/BTNMT: National technical regulation on surface water quality

B1-For the usage of irrigation or other purpose having the similar quality requirement like B2 level

B2 – For the usage of water navigation and other purpose with less water quality

NM 2.4.1: Sampling at 14:00pm on July 6th. 2012; NM 2.4.2: Sampling at 22:00 pm on July 6th. 2012; NM 2.4.3: Sampling at 6:00 am on July 7th. 2012; MT: Blank sample; ND: non detect

+ Results of groundwater sample NN 5.4

Groundwater sample (coded NN 5.4) is well water of house in intersection. householder is Mrs. Vu Van Hoi. Nhan Quyen commune. Binh Giang District. Hai Durong Province. Results of sample analysis are shown in table 20 as below.

Table 18 showed that the all of parameters are lower than QCVN 09:2008/BTNMT (National technical regulation on underground water quality) except coliform sample exceeding allowable limit. The value of Blank sample is very low so it does not effect on test samples.

TABLE 18. THE FOURTH RESULTS OF GROUNDWATER OF THE PACKAGE EX4-N 5.4 (JULY 2012)

	P	TT. 14	Re	QCVN	
No.	Parameter	Unit	NN 5.4	MT	09:2008/BTNMT
1.	Temperature	°C	27.5	28.0	- 2
2.	pH	-	7.01	7.10	5.5 – 8.5
3.	COD	mgO ₂ /L	10.6	< 1.0	4
4.	BOD ₅	mg/L	3.6	< 1.0	-
5.	TSS	mg/L	31	< 3.0	The state of the s
6.	Total P	mg/L	0.15	< 0.01	-
7.	Total N	mg/L	28.8	< 0.10	-
8.	*Coliform	MPN/	21	ND	3
9.	*E. Coli	100mL	ND	ND	ND

d) Results of monitoring of construction packages EX-5

+ Results of air monitoring:

Sampling according to supervision consultancy contracts - No. 74/VIDIFI-VCNMT/2010. Coordinates of sampling location: N 20° 51.341 - E 106° 18. 131. At the each location take 04 samples. a sample per 6 hours during 24 hours with parameters: Volatile organic compounds (VOCs). Total dust. Carbon oxide (CO). Nitrogen dioxide (NO₂). Sulfur dioxide (SO₂). The results are shown in table 22. From the results table showed that the measured parameters are within the allowable limits of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For VOCs. the measurement result showed minimum value is $105 \mu g/m^3$ at 3:00 am on July 10^{th} . 2012 and maximum value is $145 \mu g/m^3$ at 9:00am on July 9^{th} . 2012.

For total dust, the measurement results are: 128; 112; 96 and 88 $\mu g/m^3$ corresponding sampling times are 9:00 AM; 3:00 PM; 9:00 PM on July 9th. 2012 and 3:00 AM on July 10th. 2012; these results are lower than 300 $\mu g/m^3$ according to National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For SO_2 . the measurement results are: 79; 95; 87 and 74 μ g/m³ corresponding sampling times are 9:00 AM; 3:00 PM; 9:00 PM on July 9th. 2012 and 3:00 AM on July 10th. 2012; these results are under 350 μ g/m³ comparative of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For NO₂. the measurement results are: 22; 23; 18 and 18 μg/m³ corresponding sampling times are 9:00 AM; 3:00 PM; 9:00 PM on July 9th. 2012 and 3:00 AM on July 10th. 2012; these results are lower than 200 μg/m³ comparative of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For CO. the measurement results are: 1175; 1866; 1219 and 1385 $\mu g/m^3$ corresponding sampling times are 9:00 AM; 3:00 PM; 9:00 PM on July 9th. 2012 and 3:00 AM on July 10th. 2012 these results are under 30000 $\mu g/m^3$ comparative of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

+ Results of noise:

Noise level is measured 12 samples within 24 hours (a point per 2 hours) from 9:00 am July 9th. 2012 to 7:00 am July 10th. 2012. Using the noise meter equipment NL-21 ORION of Japan. we measured continuously for 15 minutes each sampling. record of Leq values (average value); L_{50} (average value of test 50 times); L_{90} (average value of test 90 times); L_{max} (maximum value) and L_{min} (minimum value). According to National Technical Regulation on Noise (QCVN 26:2010/BTNMT) for normal

areas. According to equivalent acoustic level (Leq) is 70dB of about 6:00 AM to 8:00 PM and 55dB from 9:00 PM to 6:00 AM daily. Results are shown in table 20.

The table results showed that 12 Leq values for 24 hours are lowered 55 dB and 70 dB than the allowable limit according to National Technical Regulation on Noise (QCVN 26:2010/BTNMT).

The values of L_{50} . L_{90} haven't comparative regulation. respectively of about 53.2 to 61.6 dB from 7:00 AM to 9:00 PM and 46.6 to 55.9 dB from 11:00 PM to 5:00 AM for L_{50} . The values of L_{90} are respectively of about 48.0 to 59.3 dB from 7:00 AM to 9:00 PM and 44.4 to 55.4 dB from 11:00 PM to 5:00 AM. all these values are lower than both Leq and L_{50} .

 L_{max} value is 89.1 dB at 7:00 AM on July 9th. 2012 and L_{min} value is 44.4 dB at 13:00 PM on July 10th, 2012.

Owner: Vietnam Infrastructure development and finance investment joint stock company

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street. Me Tri commune. Tu Liem. Hanoi

Tel: (84-4) 37711668 - 22209668; Fax: (84-4) 22209666

TABLE 19: THE FOURTH RESULTS OF AIR SAMPLE OF EX5-K6.4 (JULY 2012)

Name of sample	Parameter	Unit	K 6.4.1	K 6.4.2	K 6.4.3	K 6.4.4	QCVN 05:2009/BTNMT
	Time		9 am July 9 th , 2012	15:00 pm July 9 th , 2012	21:00 pm July 9 th , 2012	3:00 am July 10 th , 2012	
	VOCs		145	130	110	105	-
	Dust		128	112	96	88	300
EX 5 – K 6.3	SO ₂	$\mu g/m^3$	79	95	87	74	350
K 0.3	NO ₂		22	23	18	18	
	СО		1175	1866	1219	1385	30000

Note: QCVN 05:2009/ BTNMT: National technical regulation on ambient air quality

TABLE 20: THE FOURTH RESULTS OF NOISE SAMPLES OF THE PACKAGE EX5-K6.4 (JULY 2012)

Name	of some la	Maine		From 9am July 09 th to 7 am July 10 th , 2012										
Name	of sample	Noise	9am	11am	13pm	15pm	17pm	19pm	21pm	23pm	01am	03am	05am	07am
	Leq		62.0	60.3	59.3	62.7	60.9	59.8	59.5	50.6	57.1	55.8	54.9	66.5
	Lmax		80.6	77.4	76.8	86.1	82.8	74.2	74.5	77.5	74.1	72.1	79.9	89.1
EX 5- K6.3	Lmin	(dB)	50.8	47.3	44.4	53.7	50.5	47.8	50.8	45.3	52.9	47.2	42.7	56.3
K0.5	L50		58.8	56.5	53.2	59.5	58.5	58.4	56.4	47.4	55.9	53.7	46.6	61.6
	L90		55.3	51.4	48.0	57.0	55.1	54.0	53.6	46.4	55.4	51.4	44.4	59.3
	N 26:2010/I rmal area -					70					4	55		70

Note: QCVN 26:2010/BTNMT: - National Technical Regulation on Noise

+ Results of vibration

- Starting time: 9:00 AM on July 9th. 2012; Ending time: 7:00 AM on July 10th. 2012.
 - Azimuth of the axes x. y

X-axis set follow the North - South direction.

Y-axis set follow the East - West direction.

Impacts of vibratory sources to the measurement result.

To set measurement range for equipment is 30 - 90 dB.

From L_{max} and Leq values showed that: Most of testing time, vibration acceleration is lower than 60dB. However, some measurement values are higher than 60dB and lower than 75dB..

The values of L_{10} , L_{50} , L_{90} have decreasing rule that the larger values only occurring in short time of the each measurement range.

The results in table 21 showed that value of vibration acceleration level (Lva) not exceed the allowable limit (75dB) of National Technical Regulation on Vibration (QCVN 27:2010/BTNMT).

Average Lva value in the range from 37.4 to 56.1 dB.

The value of Lva_{max} is 81.1 dB which is highest at the time from 11:00 AM to 11:30 AM on July 9^{th} , 2012.

The value of Lva_{min} is 31.1 dB which is lowest at the time from 5:00 to 5:30 AM on July 10th, 2012.

TABLE 21. THE FOURTH RESULTS OF VIBRATION OF THE PACKAGE
EX 5-K6.4 (JULY 2012)

Time			From 9:00 am to 9:30 am on July 09 th , 2012									
D	TT '4	Liva.	Vibrati	on Leve	l (Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq		40.3	32.7	34.4	40.3	54.70	50.3	49.7	54.7			
L _{max}		53.8	41.2	42.9	53.8	79	73.8	72.6	79			
L _{min}	dB	23.2	24.1	25.5	25.5	39.5	35.7	35.6	39.5			
L ₁₀	ub	45.2	35.2	37	45.2	56.1	52.1	51.7	56.1			
L ₅₀		34.3	31.9	33.7	34.3	47.2	43	42.7	47.2			
L ₉₀	-77	28.7	28.8	30.4	30.4	42.1	38.9	38.7	42.1			

Time	9		From 11:00 am to 11:30 am on July 09 th . 2012									
D	TT. 14		on Leve	l (Lv)	Vibration Acceleration (Lva)							
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq		34.6	32.7	34.9	34.9	56.1	50.2	48.2	56.1			
L _{max}		49.8	42	43.8	49.8	81.1	73.8	69.5	81.1			
L _{min}	dB	24	23.4	26.6	26.6	38.8	35.3	35.8	38.8			
L ₁₀	aв	38	35.3	37.3	38	57.4	52.3	50.9	57.4			
L ₅₀		31.9	31.9	34	34	48.9	43.8	43.3	48.9			
L ₉₀		28.2	28.8	30.8	30.8	43.3	39.2	39.4	43.3			

Time	9	1	From 13:00 pm to 13:30 pm on July 09 th . 2012									
D	T7-:4	Vibration Level (Lv)					Vibration Acceleration (Lva)					
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq		33.7	32.6	34.1	34.1	49.2	46.2	43.8	49.2			
L _{max}		47.8	39.8	40.6	47.8	63.4	62.7	61.9	63.4			
L _{min}	dB	22.9	23.6	25.8	25.8	38.1	36.2	32.9	38.1			
L ₁₀	uБ	37.6	35.1	36.6	37.6	52.5	49.1	46	52.5			
L ₅₀		29.7	31.9	33.4	33.4	44.7	41.5	39.1	44.7			
L ₉₀		26.8	28.4	30.2	30.2	40.7	38	35.8	40.7			

Time		1	From 15:00 pm to 15:30 pm on July 09 th . 2012									
Domonoston	Unit	Vibration Level (Lv)				Vil	oration .	Accelera	eration (Lva)			
Parameter		Z	Y	X	Average	Z	Y	X	Average			
Leq		40.1	33.6	34.7	40.1	51.9	52.6	52.9	52.9			
L_{max}		53.2	40.6	41.4	53.2	74.8	77.1	78.3	78.3			
L _{min}	dB	28	24.4	25	28	41.3	38.7	38.7	41.3			
L ₁₀	ub	43.6	36.2	37.3	43.6	51.3	48.9	48.5	51.3			
L ₅₀		36.4	32.8	34	36.4	46.9	44.1	43.9	46.9			
L ₉₀		32.7	29.8	30.8	32.7	43.6	40.8	40.9	43.6			

Time	9	From 17:00 pm to 17:30 pm on July 09 th . 2012								
Donomoton	Unit	11/2	on Leve	l (Lv)	Vil	oration .	n Acceleration (Lva)			
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average	
Leq		37.5	31.5	33	37.5	46.4	49.4	46.2	49.4	
L _{max}		51.6	38.5	40.3	51.6	64.6	75.3	76.1	76.1	
L _{min}	dB	23.3	22.7	23.9	23.9	37	34.5	34.2	37	
L ₁₀	ub	41.5	34	35.7	41.5	49	46.4	45.3	49	
L ₅₀		31.8	30.9	32.2	32.2	42.6	40.3	39.3	42.6	
L90		28.8	27.7	28.9	28.9	40.2	37.5	36.8	40.2	

54

Time		L DUG	From 19:00 pm to 19:30 pm on July 09 th . 2012									
Donomotor	Unit		Vibrati	on Leve	l (Lv)	Vil	oration.	Accelera	ration (Lva)			
Parameter		Z	Y	X	Average	Z	Y	X	Average			
L_{eq}		37.4	31.3	32.8	37.4	49	44.5	40.8	49			
L _{max}		51.5	40.1	41.9	51.5	65.7	62.3	53.5	65.7			
L_{min}	dB	23	21.9	22.5	23	38.1	36	33.5	38.1			
L_{10}	ub	41.6	33.8	35.6	41.6	50.6	45.7	42.6	50.6			
L ₅₀		31.7	30.5	31.6	31.7	43.5	40.8	38.9	43.5			
L90		28.3	23.7	28.4	28.4	40.7	38.4	36.4	40.7			

Time	e	From 21:00 pm to 21:30 pm on July 09 th . 2012									
Donomaton	I Init	Vibration Level (Lv)				Vil	oration	Accelera	ation (Lva)		
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
Leq		30.4	30	32.4	32.4	46.9	43.8	40.5	46.9		
L _{max}		48.4	39.4	40.6	48.4	62.4	59.7	58.7	62.4		
L _{min}	dB	21.4	21.3	23.2	23.2	39.3	36.4	34.3	39.3		
L ₁₀	ub	31	33	35.1	35.1	48.1	45.3	42.1	48.1		
L ₅₀		26.9	29.9	31.5	31.5	44.4	42.8	39.1	44.4		
L ₉₀		24.8	26.7	28.1	28.1	42.1	39.4	37	42.1		

Time			F	rom 23:	00 pm to 23:	30 pm o	n July 0	9 th . 2012	2
Danamatan	T Tmia	Vibration Level (Lv)				Vil	oration	Accelera	tion (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		26	30.8	32.4	32.4	42.8	38.3	40.7	42.8
L _{max}		69.9	58.6	54.6	69.9	62.1	52.2	61.5	62.1
L _{min}	dB	19.4	21.4	22.9	22.9	31.9	28.9	30	31.9
L_{10}	ub	27.7	33	35.1	35.1	46.4	40.5	43.4	46.4
L ₅₀		25.3	29.60	31.4	31.4	36.2	33.2	34.2	36.2
L ₉₀		23.1	26.1	27.7	27.7	34.2	31.2	32.1	34.2

Time	;		From 1:00 am to 1:30 am on July 10 th . 2012									
Damanastan	I Inia	Vibration Level (Lv)				Vil	oration	Accelera	eleration (Lva)			
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq		26.3	30.6	31.5	31.5	37.4	33.9	34.1	37.4			
L _{max}		35.8	38.4	37.9	38.4	60.9	54.1	53.3	60.9			
L _{min}	dB	19.7	22.1	21	22.1	32.4	29.6	29.7	32.4			
L ₁₀	ub.	28.2	33.2	34.3	34.3	37.5	34.6	35.4	37.5			
L ₅₀		25.9	29.8	30.7	30.7	34.8	32.3	32.8	34.8			
L ₉₀		23.5	26.4	27.4	27.4	33.5	31	31.1	33.5			

Time		From 3:00 am to 3:30 am on July 10 th . 2012									
D	T.T. :4		Vibrat	ion Leve	el (Lv)	V	ibration	Acceler	ation (Lva)		
Parameter Un	Unit	Z	Y	X	Average	Z	Y	X	Average		
L_{eq}		25.8	30.4	31.3	31.3	45.5	45.1	46.6	46.6		
L _{max}		31.9	38.7	39.3	39.3	68.6	71.8	73.8	73.8		
L _{min}	dB	19.5	20.8	22.8	22.8	34.6	30.5	32.3	34.6		
L ₁₀	uБ	27.7	33	33.9	33.9	44.6	41.1	41.9	44.6		
L ₅₀		25.3	29.6	30.7	30.7	37.9	34.6	35.3	37.9		
L ₉₀		23.3	26.4	27.2	27.2	36.1	32.4	33.6	36.1		

Time			From 5:00 am to 5:30 am on July 10 th . 2012									
D	TT-:4	Vibration Level (Lv)				V	bration	Accelera	ation (Lva)			
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
$L_{\sf eq}$		33.2	30.8	31.8	33.2	41.6	35.8	35.7	41.6			
L_{max}		50.4	46.9	50.4	50.4	56.6	44.8	46.4	56.6			
L _{min}	dB	20.2	21.9	21.4	21.9	31.1	29.9	28.9	31.1			
L ₁₀	uD	35.1	33.1	34.5	35.1	43.8	38.5	38.3	43.8			
L ₅₀		26.4	29.6	31	31	36.4	34.3	34.1	36.4			
L ₉₀		23.4	26.3	27.6	27.6	33.4	31.8	31.4	33.4			

Time			From 7:00 am to 7:30 am on July 10 th . 2012									
Downworton	T Init	10	Vibrati	on Leve	1 (Lv)	V	ibration	Accelera	ation (Lva)			
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq		40.3	31.2	32.6	40.3	50.8	47.6	44.5	50.8			
L _{max}		53.9	42	39.1	53.9	63.5	63.6	57.8	63.6			
L _{min}	dB	26.9	22.3	22.3	26.9	3.7	35	34.4	37			
L ₁₀	ub	45.1	33.5	35	45.1	37	35	34.4	37			
L ₅₀		34.3	30.4	32	34.3	54.2	49.9	46.1	54.2			
L ₉₀		30.8	27.3	28.7	30.8	45	41.8	40.2	45			

QCVN 27:2010/BT	NMT: National Technica	al Regulation on Vibration
Location	Testing time per day	Allowable vibration acceleration level dB Average level. Leq
Consist Is setion	6:00 AM - 6:00 PM	75
Special location	6:00 PM - 6:00 AM	Background level
Name al la cation	6:00 AM - 9:00 PM	75
Normal location	9:00 PM - 6:00 AM	Background level

56

+ Results of groundwater sample NN 6.4

Groundwater sample (coded NN 6.4) is well water of house in intersection. householder is Mrs. Nam. Tan Phuc commune. An Thi District. Hung Yen Province. Results of sample analysis are shown in table 22 as below.

Table 22 showed that the all of parameters are lower than QCVN 09:2008/BTNMT (National technical regulation on underground water quality) except coliform sample exceeding allowable limit. The value of Blank sample is very low so it does not effect on test samples.

TABLE 22. THE FOURTH RESULTS OF GROUNDWATER OF THE PACKAGE EX5-NN 6.4 (JULY 2012)

NI-	Dawaratan	TT	Res	sult	QCVN
No.	Parameter	Unit	Unit NN 6. 4 MT		09:2008/BTNMT
1.	Temperature	°C	28.8	28.0	
2.	pH	-	7.30	7.10	5.5 - 8.5
3.	COD	mgO ₂ /L	9.8	< 1.0	4
4.	BOD ₅	mg/L	5.4	< 1.0	
5.	TSS	mg/L	10	< 3.0	<u> </u>
6.	Total P	mg/L	0.55	< 0.01	
7.	Total N	mg/L	29	< 0.10	
8.	*Coliform	MPN/	7	ND	3
9.	*E. Coli	100mL	ND	ND	ND

e) Results of monitoring of construction packages EX-6

+ Results of air monitoring:

Sampling according to supervision consultancy contracts - No. 74/VIDIFI-VCNMT/2010. Coordinates of sampling location: N 20° 49.181 - E 106° 28. 490. At the each location take 04 samples. a sample per 6 hours during 24 hours with parameters: Volatile organic compounds (VOCs). Total dust. Carbon oxide (CO). Nitrogen dioxide (NO₂). Sulfur dioxide (SO₂). The results are shown in table 23. From the results table showed that the measured parameters are within the allowable limits of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For VOCs. the measurement result showed minimum value is $90 \mu g/m^3$ at 9:00

pm and 9:00 pm on July 10^{th} . 2012 and maximum value is 130 μ g/m³ at 3:00 pm on July 10^{th} . 2012.

For total dust, the measurement results are: 105; 95; 86 and 90 $\mu g/m^3$ corresponding sampling times are 9:00 AM; 3:0 PM; 9:00 PM on July 10^{th} . 2012 and 3:00 AM on July 11^{th} . 2012; these results are lower than 300 $\mu g/m^3$ according to National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For SO_2 . the measurement results are: 86; 93; 78 and 72 μ g/m³ corresponding sampling times are 9:00 AM; 3:0 PM; 9:00 PM on July 10^{th} . 2012 and 3:00 AM on July 11^{th} . 2012; these results are under 350 μ g/m³ comparative of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For NO_2 . the measurement results are: 33; 18; 20 and 18 $\mu g/m^3$ corresponding sampling times are 9:00 AM; 3:0 PM; 9:00 PM on July 10^{th} . 2012 and 3:00 AM on July 11^{th} . 2012; these results are lower than 200 $\mu g/m^3$ comparative of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For CO the measurement results are: 1259; 3223; 984 and 969 $\mu g/m^3$ corresponding sampling times are 9:00 AM; 3:0 PM; 9:00 PM on July 10^{th} . 2012 and 3:00 AM on July 11^{th} . 2012 these results are under 30000 $\mu g/m^3$ comparative of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

+ Results of noise:

Noise level is measured 12 samples within 24 hours (a point per 2 hours) from 9:00 am July 10th. 2012 to 7:00 am July 11th. 2012. Using the noise meter equipment NL-21 ORION of Japan. we measured continuously for 15 minutes each sampling. record of Leq values (average value); L₅₀ (average value of test 50 times); L₉₀ (average value of test 90 times); L_{max} (maximum value) and L_{min} (minimum value). According to National Technical Regulation on Noise (QCVN 26:2010/BTNMT) for normal areas. According to equivalent acoustic level (Leq) is 70dB of about 6:00 AM to 8:00 PM and 55dB from 9:00 PM to 6:00 AM daily. Results are shown in table 24.

The table results showed that 12 Leq values for 24 hours. There are values lower than the allowable limit of QCVN 26:2010/BTNMT.

The values of L_{50} . L_{90} haven't comparative regulation. respectively of about 47.7 to 53.3 dB from 7:00 AM to 9:00 PM and 41.8 to 47.4 dB from 11:00 PM to 5:00 AM for L_{50} . The values of L_{90} are respectively of about 44.3 to 49.1 dB from 7:00 AM to 9:00 PM and 41.2 to 45.6 dB from 11:00 PM to 5:00 AM.

 L_{max} value is 86.8 dB at 5:00 PM on July $10^{th}.\ 2012$ and L_{min} value is 38.8 dB at 5:00 AM on July $11^{th},\ 2012.$

Owner: Vietnam Infrastructure development and finance investment joint stock company

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street. Me Tri commune. Tu Liem, Hanoi

Tel: (84-4) 37711668 - 22209668; Fax: (84-4) 22209666

TABLE 23: THE FOURTH RESULTS OF AIR SAMPLE OF EX6-K7.4 (JULY 2012)

Name of sample	Parameter	Unit	K 7.4.1	K 7.4.2	K 7.4.3	K 7.4.4	QCVN 05:2009/BTNMT
	Time		9:00 am July 10 th , 2012	15:00 pm July 10 th , 2012	21:00 pm July 10 th , 2012	3:00 am July 11 th , 2012	
VOCs	VOCs		120	130	90	105	-
DV. (Dust		105	95	86	90	300
EX 6 – K 7.4	SO ₂	$\mu g/m^3$	86	93	78	72	350
12 / .7	NO ₂		33	18	20	18	-
CO	СО		1259	3223	984	969	30000

Note: QCVN 05:2009/ BTNMT: National technical regulation on ambient air quality

TABLE 24: THE FOURTH RESULTS OF VIBRATION SAMPLES OF THE PACKAGE EX6-K7.4 (JULY 2012)

Name	of sample	Noise					From 9am	July 10 th t	o 7 am July	11 th , 2012	2			
ranic	or sample	Noise	9am	11am	13pm	15pm	17pm	19pm	21pm	23pm	01am	03am	05am	07am
	Leq		58.2	59.5	51.8	55.6	60.6	57.8	54.0	48.3	48.6	42.0	55.1	57.8
EV	Lmax		78.1	84.1	71.6	77.6	86.8	778.3	85.2	68.9	70.9	52.4	70.3	81.5
EX 6- K7.4	Lmin	(dB)	42.6	42.7	40.8	46.2	41.5	40.0	45.2	44.6	43.1	40.6	38.8	40.2
127.4	L50		53.3	52.7	47.7	52.9	52.0	51.2	49.1	46.9	45.0	41.8	47.4	49.1
	L90		48.0	47.8	44.3	49.1	46.7	45.2	47.5	45.6	44.1	41.2	42.1	43.6
-	N 26:2010/E rmal area -					70					5	55		70

Note: QCVN 26:2010/BTNMT: - National Technical Regulation on Noise

Consultancy: Institute of Environmental Technology

Address: No.18 Hoang Quoc Viet - Cau Giay - Ha Noi Tel: 043 7569 136; 043 7911 654 * Fax: 043 7911 203

+ Results of vibration

- Starting time: 9:00 AM on July 10th. 2012; Ending time: 7:00 AM on July 11th. 2012.
 - Azimuth of the axes x. y

X-axis set follow the North - South direction.

Y-axis set follow the East - West direction.

Impacts of vibratory sources to the measurement result.

To set measurement range for equipment is 30 - 90 dB.

From L_{max} and Leq values showed that: Most of testing time. vibration acceleration is lower than 60dB. However, some measurement values are higher than 60dB and lower than 75dB..

The values of L_{10} , L_{50} , L_{90} have decreasing rule that the larger values only occurring in short time of the each measurement range.

The results in table 25 showed that value of vibration acceleration level (Lva) exceed the allowable limit (75dB) of National Technical Regulation on Vibration (QCVN 27:2010/BTNMT).

Average Lva value in the range from 44.9 to 66.9 dB.

The value of Lva_{max} is 89.4 dB which is highest at the time from 9:00 AM to 9:30 AM on July 10th, 2012.

The value of Lva $_{min}$ is 32.3 dB which is lowest at the time from 19:00 to 19:30 PM on July 10^{th} , 2012.

TABLE 25. THE FOURTH RESULTS OF VIBRATION OF THE PACKAGE EX 6-K7.4 (JULY 2012)

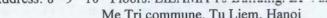
Time			From 9:00 am to 9:30 am on July 10 th , 2012									
Domanatan	11-24		Vibratio	n Level	(Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq	1. 6:11	39.9	35.1	34.8	39.9	66.9	63.9	62.3	66.9			
L _{max}		64.2	57.2	42.4	64.2	89.4	87.6	84.3	89.4			
L_{min}	dB	25.1	25.6	25.9	25.9	39.6	36.1	35.6	39.6			
L ₁₀	uБ	40.3	36	37.3	40.3	60.3	58	58	60.3			
L ₅₀		32.40	32.8	34	34	50.2	47.4	47	50.2			
L ₉₀		29.2	29.8	30.9	30.9	44.3	41.1	40.1	44.3			

Time	e	From 11:00 am to 11:30 am on July 10 th . 2012										
D	TT-:4	AY TH	Vibrati	on Leve	1 (Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq		38.3	33.6	34.8	38.3	52.4	50.8	52.4	52.4			
L _{max}		52.7	41.8	42.3	52.7	71.1	76.5	75.5	76.5			
L _{min}	dB	24	24.4	25.5	25.5	37.4	33.3	34.4	37.4			
L ₁₀	uБ	41.3	36.1	37.5	41.3	54.9	30.1	53.8	54.9			
L ₅₀		34	32.7	34	34	48.9	43.9	47.7	48.9			
L90		28.5	29.5	30.7	30.7	42.9	38.2	40.2	42.9			

Time			From 13:00 pm to 13:30 pm on July 10 th . 2012									
Donomoton	I I-i+		Vibrati	on Leve	l (Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leg		39.9	36.5	37.8	39.9	46.4	42.6	43.9	46.4			
L _{max}		54.5	48.5	49.2	54.5	60.3	57.3	55.7	60.3			
L_{min}	dB	23.6	24.4	28.8	28.8	34.2	30.3	32	34.2			
L ₁₀	ub.	43.7	39.2	40.6	43.7	49.9	45.8	47.5	49.9			
L ₅₀		36.5	35.4	36.8	36.8	44.1	40.5	41.9	44.1			
L ₉₀		28.3	31.5	33.4	33.4	38.5	35.7	36.5	38.5			

Time		From 15:00 pm to 15:30 pm on July 10 th . 2012									
Doromotor	I Imit		Vibrati	on Leve	1 (Lv)	Vibration Acceleration (Lva)					
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
Leq		34.5	34.3	35.9	35.9	56.3	55.8	56	56.3		
L _{max}		48.7	42.2	46.6	48.7	80.6	81.2	81.8	81.8		
L _{min}	dB	25.2	25.8	26.1	26.1	37.8	34.2	34.4	37.8		
L ₁₀	uБ	37.2	36.9	38.5	38.5	58.2	52.4	49	58.2		
L ₅₀		31.3	33.5	35	35	55.3	49.9	46.6	55.3		
L ₉₀		28.4	30.3	31.5	31.5	41.7	38.1	37.3	41.7		

Time		Mr. May.	From 17:00 pm to 17:30 pm on July 10 th . 2012										
Parameter	Unit	Fry 7	Vibrati	on Leve	el (Lv)	Vil	Vibration Acceleration (Lva)						
rarameter	Omt	Z	Y	X	Average	Z	Y	X	Average				
Leq		33.1	33.7	34.8	34.8	46.2	45.6	43.9	46.2				
L _{max}		47.5	41.5	42	47.5	61.7	64.1	61.6	64.1				
L _{min}	dB	24.2	24.9	25.8	25.8	36	34	32.8	36				
L ₁₀	ub	34.9	36.3	37.3	37.3	49	47.6	46.3	49				
L ₅₀		30.8	33	34.1	34.1	43.8	41.8	40.6	43.8				
L ₉₀		28.2	29.7	30.7	30.7	39.8	37.3	36.6	39.8				


Time		From 19:00 pm to 19:30 pm on July 10 th . 2012									
Domonoston	Unit		Vibrati	on Leve	l (Lv)	Vibration Acceleration (Lva)					
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
L_{eq}		30.7	31.9	33.2	33.2	51.6	51.7	48.5	51.7		
L_{max}		48	39.8	42.9	48	71.7	69.8	68.1	71.7		
L _{min}	dB	22.7	22	22.6	22.7	32.3	29.7	29.2	32.3		
L ₁₀	ub	31.7	34.5	36	36	54.4	55.2	51.2	55.2		
L ₅₀		28.3	31.1	32.3	32.3	45	43.4	40.9	45		
L ₉₀		26	27.8	28.9	28.9	38	35.2	34.5	38		

Time		III II	From 21:00 pm to 21:30 pm on July 10 th . 2012									
D	T In 14	Lavier	Vibrati	on Leve	l (Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq		32.7	31.4	32.6	32.7	51	47.5	48.4	51			
L _{max}		52.60	39.1	40.4	52.6	72.2	68.6	68.4	72.2			
L _{min}	dB	21.7	22.2	24.2	24.2	37.9	33.3	34	37.9			
L ₁₀	ub	34.2	34	35.1	35.1	49.9	46.5	48	49.9			
L ₅₀		28.2	30.6	31.8	31.8	40.7	37.2	37.3	40.7			
L ₉₀		25.2	27.6	28.7	28.7	39.3	35.2	35.3	39.3			

Time	SHE S	Ti bib		From 23	3:00 pm to 23	:30 pm	on July	10 th . 201	2	
D	TI-:4	04	Vibrati	on Leve	el (Lv)	Vibration Acceleration (Lva)				
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average	
Leq	120	26.6	31.2	32.1	32.1	49.5	50.6	43.2	50.6	
L _{max}		43.4	39.9	39.7	43.4	76.8	78.8	70	78.8	
L _{min}	dB	20.2	21.7	21.5	21.7	34.3	30.8	30.6	34.3	
L_{10}	ub	28	33.8	34.7	34.7	45.3	39	39.7	45.3	
L ₅₀		25.2	30.3	31.3	31.3	37.8	33.8	34	37.8	
L ₉₀		23	27	28	28	36	32.2	32	36	

Time		From 1:00 am to 1:30 am on July 11 th . 2012									
D	TT.:4		Vibrat	ion Leve	el (Lv)	Vibration Acceleration (Lva)					
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
L_{eq}		26.8	30.9	32.3	32.3	52.9	46.1	45.5	52.9		
L _{max}		39.4	38.9	39.1	39.4	77.1	66.2	68.4	77.1		
L _{min}	dB	20.1	22	22.4	22.4	34.3	30.3	30.3	34.3		
L ₁₀	ub.	29.5	33.5	35	35	51.9	46.4	46.2	51.9		
L ₅₀		25.4	30.1	31.5	31.5	38.9	35.1	35.3	38.9		
L90		23	26.8	28	28	35.9	32.1	32	35.9		

Time			From 3:00 am to 3:30 am on July 11 th . 2012										
D	TT-:4		Vibrat	ion Leve	el (Lv)	Vibration Acceleration (Lva)							
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average				
$L_{\sf eq}$		30.4	30.8	32.2	32.2	55.5	50.6	47.9	55.5				
L _{max}		48.7	40.3	39.8	48,7	80	75.7	72.9	80				
L _{min}	dB	20.9	19.8	22.4	22.4	45.7	38	35.2	45.7				
L ₁₀	ab	32.5	33.4	34.8	34.8	54.9	50.5	47.7	54.9				
L ₅₀		29	30	31.5	31.5	47.6	41.7	38.4	47.6				
L ₉₀	1-1-44	24.9	26.5	28	28	46.9	39.9	36.5	46.9				

Time		LEK SOFT	From 5:00 am to 5:30 am on July 11 th . 2012										
Danamatan	TI-:4	E Algue	Vibrat	ion Leve	el (Lv)	Vibration Acceleration (Lva)							
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average				
Leq		32.3	30.6	32	32.3	60.3	44.9	50.2	60.3				
L _{max}		47.5	38.6	38.7	47.5	85.8	67.2	75.2	85.8				
L _{min}	dB	22.6	22.8	23.2	23.2	33.7	29.5	29.6	33.7				
L ₁₀	uБ	35.4	33.2	34.8	35.4	49.7	42.2	40.8	49.7				
L ₅₀		29.6	29.7	31.1	31.1	40.8	35.8	35.9	40.8				
L ₉₀		25.8	26.6	27.8	27.8	37.2	32.4	32.8	37.2				

Time		From 7:00 am to 7:30 am on July 11th. 2012									
Donomoton	TImia	Vibration Level (Lv)					Vibration Acceleration (Lva)				
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
Leq		30.6	31.3	32.6	32.6	44.9	36.8	36.1	44.9		
L _{max}		44.2	39.9	40.5	44.2	65.8	56.3	52.1	65.8		
L _{min}	dB	21.7	21.2	23.9	23.9	34.2	28.3	29	34.2		
L ₁₀	uD	33.6	33.8	35.2	35.2	48.1	38.7	38.8	48.1		
L ₅₀		27.4	30.4	31.8	31.8	40.4	34.1	34.4	40.4		
L ₉₀		24.6	27.1	28.5	28.5	36.6	31.3	31.6	36.6		

QCVN 27:2010/BT	NMT: National Technic	al Regulation on Vibration
Location	Testing time per day	Allowable vibration acceleration level dB Average level. Leq
Canadal la sation	6:00 AM - 6:00 PM	75
Special location	6:00 PM – 6:00 AM	Background level
Name I I anting	6:00 AM - 9:00 PM	75
Normal location	9:00 PM - 6:00 AM	Background level

VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY INSTITUTE OF ENVIRONMENTAL TECHNOLOGY DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

Address: R.712, A30 Building 18 Hoang Quoc Viet Road –Cau Giay District – Hanoi - Vietnam Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

Time	2		From 23:00 pm to 23:30 pm on July 13 th . 2012								
Parameter	Unit	Vibration Level (Lv)				Vi	bration	Accel	eration (Lva)		
Tarameter Ont	Onit	Z	Y	X	Average	Z	Y	X	Average		
$L_{\rm eq}$		27.1	31.4	34.8	34.8	40.5	35.5	36	40.5		
L _{max}		40.2	39.5	41.7	41.7	63.6	55.9	53.2	63.6		
L_{\min}	dB	21.5	21.9	23.80	23.8	30.4	28.2	27.7	30.4		
L_{10}	ars	28.6	34.1	37.2	37.2	39.4	35.8	37.7	39.4		
L_{50}		26.1	30.7	33.8	33.8	35	32.2	38.9	38.9		
L ₉₀		24.2	27.3	30.3	30.3	32.9	30	30.9	32.9		

Time	9	From 1:00 am to 1:30 am on July 13 th . 2012								
Parameter Unit	¥ Insid		Vibra	tion L	evel (Lv)	Vi	bration	ı Accel	eration (Lva)	
	Z	Y	X	Average	Z	Y	X	Average		
L_{eq}		27.1	33.5	36.9	36.9	43.4	40.4	42.3	43.4	
$L_{ m max}$		75.4	72.9	74	75.4	61.6	69.5	63.8	69.5	
L_{min}	dB	21.6	21.6	22.8	22.8	34.9	31.2	32.7	32.7	
L_{10}	uD	28.4	34.7	26	34.7	44.2	40	44.1	44.2	
L ₅₀		20.1	30.8	32.2	32.2	40.4	35	37.6	40.4	
L ₉₀		24.1	27.2	28.7	28.7	37.1	32.9	35	37.1	

Time)		From 3:00 am to 3:30 am on July 13 th . 2012								
Parameter Unit	T Init	Vibration Level (Lv)				Vi	bration	Accele	eration (Lva)		
	Z	Y	X	Average	Z	Y	X	Average			
L_{eq}	ar o las languages e ar lle compete e la comp	26.2	31.8	33.1	33.1	45.5	43.7	41.6	45.5		
L_{max}		33.4	39.9	41.3	41.3	71.4	68.1	63.1	71.4		
L_{\min}	dB	19.7	22.1	24.2	24.2	36.5	36.5	35.9	36.5		
L_{10}	ub	28.8	34.2	35.9	35.9	42.6	42.3	42	42.6		
L ₅₀		25.6	30.9	32.1	32.1	39.1	38.9	38.8	39.1		
L ₉₀		23.4	27.6	28.5	28.5	37.8	37.7	37.2	37.8		

Time)	From 5:00 am to 5:30 am on July 13 th . 2012								
Parameter	Unit	Vibration Level (Lv)					bration	ı Accele	ration (Lva)	
rarameter Ont	Onit	Z	Y	X	Average	Z	Y	X	Average	
Leq		27	31.4	34.3	34.3	40.9	37.3	38.7	40.9	
L _{max}		36.6	38.3	41.9	41.9	58.9	55.5	59.4	59.4	
L _{min}	dB	20.7	21.2	22.9	22.9	32.7	30.1	30.6	32.7	
L_{10}	UD	29.4	34.1	37	37	42.3	38.5	39.8	42.3	
L_{50}		26.1	30.6	33.4	33.4	37.5	34.9	35.6	37.5	
L ₉₀		23.8	27.3	29.8	29.8	35.1	32.8	33	35.1	

¹ Test results are valid for test samples

² Only quoted a part of test report if receiving the agreement by terms of DEQA

³ Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY INSTITUTE OF ENVIRONMENTAL TECHNOLOGY DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

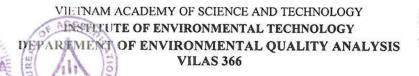
Address: R.712, A30 Building 18 Hoang Quoc Viet Road –Cau Giay District – Hanoi - Vietnam Tel: (84 - 4) 3791 1654

Fax: (84 - 4) 3791 1203

Time	2		From 15:00 pm to 15:30 pm on July 12 th . 2012								
Parameter	Unit	Vibration Level (Lv)				Vibration Acceleration (Lva)					
1 at affected		Z	Y	X	Average	Z	Y	X	Average		
L_{eq}		28	33.4	35.2	35.2	43.5	41.5	40.6	43.5		
L_{max}		36.7	43.9	44.1	44.1	55.8	52.6	51.3	55.8		
L_{min}	dB	22.7	23.4	25.8	25.8	40.2	38.5	36.3	40.2		
L_{10}	цD	29.8	36.1	37.9	37.9	44.8	42.6	42.2	44.8		
L_{50}		27.4	32.5	34.2	34.2	43	41.3	40.2	43		
L ₉₀		25.4	28.8	30.5	30.5	41.6	39.8	38.1	41.6		

Time	2		From 17:00 pm to 17:30 pm on July 12 th . 2012									
Parameter	Unit	Vibration Level (Lv)				V	ibration	Accele	eration (Lva)			
	- Cint	Z	Y	X	Average	Z	Y	X	Average			
L_{eq}		28.5	32.9	35.2	35.2	39	37.7	38.5	39			
L_{max}		42.3	42.6	43.7	43.7	52.4	58.9	56.8	58.9			
Lmin	dB	21.9	22.6	23.7	23.7	33.4	31.4	31.9	33.4			
L_{10}	uВ	29.80	35.5	37.9	37.9	40.5	38.4	40.1	40.5			
L_{50}		27.2	32.1	34.6	34.6	37.9	35.2	36.7	37.9			
L ₉₀		25.2	28.5	30.9	30.9	36.1	33.3	34.3	36.1			

Time	e			From	om 19:00 pm to 19:30 pm on July 12 th . 2012						
Parameter	Unit	Vibration Level (Lv)					Vibration Acceleration (Lva)				
1 arameter	Onit	Z	Y	X	Average	Z	Y	X	Average		
L_{eq}		27.9	33	36.1	36.1	45.5	44.5	42.80	45.5		
L _{max}		66	66.3	67.5	67.5	63.4	60.8	59.2	63.4		
L_{min}	dB	21.7	21.1	24.7	24.7	33.1	30.8	30.4	33.1		
L_{10}	uБ	29.1	35	37.5	37.5	47.8	46	49.9	49.9		
L ₅₀		26.6	31.4	33.4	33.4	38.7	37.1	36.6	38.7		
L_{90}	· · · · · · · · · · · · · · · · · · ·	24.7	28.2	29.7	29.7	36	34.1	33.5	36		


Time	2	From 21:00 pm to 21:30 pm on July 12 th . 2012									
Parameter	Unit	Vibration Level (Lv)							ration (Lva)		
1 arameter Omi	- Omit	Z	Y	X	Average	Z	Y	X	Average		
Leq		26.3	32.1	34.8	34.8	35.2	33	34.8	35.2		
L _{max}		36.1	40	43.2	43.2	48.1	42.1	48.1	48.1		
L_{\min}	dB	20.2	20.4	25.5	25.5	30.5	27.5	27.9	30.5		
L ₁₀	QI)	28.2	34.8	37.7	37.7	37.1	35.2	37.2	37.2		
L ₅₀		25.9	31.3	33.8	33.8	34.6	32.1	33.9	34.6		
L ₉₀		23.8	27.7	30.3	30.3	32.9	30.1	31	32.9		

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road -Cau Giay District - Hanoi - Vietnam Tel: (84 - 4) 3791 1654

Fax: (84 - 4) 3791 1203

VILAS 366

ANALYTICAL RESULT

No: A1207.EX10

Client

: Vietnam Infrastructure Development and Finance Investment Joint

Stock Company (VIDIFI., JSC)

Address

: 8th-9th-10th floors, LILAMA 10 Building, Le Van Luong street

Me Tri commune, Tu Liem, Ha Noi

Kind of sample

: Vibration (Contract : 74/VDIFI-VCNMT/2010)

Number of sample

: 12

Name of sample

: EX 10 - K 12.6

Testing place

: House of culture in Tan Vu Village, Trang Cat Commune, Hai An

District, Hai Phong City (Package EX10).

Co-ordinate

: N 20° 48'059" - E 106° 44' 839"

Testing time

: From 9:00 am on July12th to 7:00 am on July 13th, 2012

Time	e		From 9:00 am to 9:30 am on July 12th, 2012								
Parameter	Unit		tion Lev	el (Lv)	Vibration Acceleration (Lva)						
1 at affected C	Onit	Z	Y	X	Average	Z	Y	X	Average		
L_{eq}		33.5	32.5	33.6	33.6	56.3	55.8	48.4	56.3		
L_{max}		54.9	41	43.8	54.9	81.7	83.3	72.8	83.3		
L_{min}	dB	20.8	21.4	24.7	24.7	36.3	34.8	32.4	36.3		
L_{10}	uБ	33.2	35.1	36.4	36.4	56.7	54	50.1	56.7		
L ₅₀		28.1	31.7	32.7	32.7	44.2	42.8	39.9	44.2		
L ₉₀		25.4	28.3	29.1	29.1	39.5	38.2	35.7	39.5		

Time		From 11:00 am to 11:30 am on July 12th. 2012								
Parameter	Unit	Vibration Level (Lv)			Vil	Vibration Acceleration (Lva)				
1 at afficted	Onit	Z	Y	X	Average	Z	Y	X	Average	
L_{eq}		29.1	33.4	34.9	34.9	49.7	48	46	49.7	
L _{max}		49.2	41.6	42.6	49.2	75.5	72.9	69.8	75.5	
L_{min}	dB	22.4	21.7	24.9	24.9	32.2	30.4	30.2	32.2	
L_{10}	uis	30.7	36.1	37.7	37.7	47.7	46.7	45.6	47.7	
L_{50}		27.6	32.5	34	34	40.4	38.7	38.6	40.4	
L ₉₀		25.5	29	30.4	30.4	36	34.5	34.6	36	

Time	•			From 13	3:00 pm to 13:	30 pm o	n July	12 th . 201	2
Parameter	Unit		Vibra	tion Lev	vel (Lv)	Vil	ration	Acceler	ation (Lva)
1 al ameter	Onit	Z	Y	X	Average	Z	Y	X	Average
L_{eq}	71-0	28.2	34.7	36.8	36.8	39.8	36.6	37.3	39.8
L _{max}		36.3	44.3	45.1	45.1	49.3	44.4	45.6	49.3
L_{min}	dB	21.2	23	27.1	27.1	35.3	31.8	30.5	35.3
L_{10}	ub.	30.2	37.4	39.6	39.6	41.9	38.6	39.8	41.9
L ₅₀		27.6	33.6	35.9	35.9	38.8	35.9	36.2	38.8
L ₉₀		25.5	30.1	32.4	32.4	37	33.9	33.8	37 .

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Owner: Vietnam Infrastructure development and finance investment joint stock company

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street. Me Tri commune. Tu Liem. Hanoi

Tel: (84-4) 37711668 - 22209668; Fax: (84-4) 22209666

f) Results of monitoring of construction packages EX-8

The monitoring position of air. noise and vibration at house of culture. Three - way crossroads Quan Re, My Duc Commune, An Lao District, Hai Phong City.

Coordinates: N 20° 46.223 - E 106° 36. 572

+ Results of air monitoring

Monitoring according to the supervision consultancy contracts - No. 74/VIDIFI-VCNMT/2010. The each location takes 04 samples (a sample per 6 hours) during 24 hours with parameters: Volatile organic compounds (VOCs). Total dust. Carbon oxide (CO). Nitrogen dioxide (NO₂). Sulfur dioxide (SO₂). The results are shown in table 26. From the results table showed that the measured parameters are within the allowable limits of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For VOCs the measurement result showed minimum value is 218 μ g/m³ at 3:00 PM on July 11th. 2012 and maximum value is 285 μ g/m³ at 9:00 AM on July 11th, 2012.

Total dust the measurement results are: 706; 522; 328 and 372 $\mu g/m^3$ corresponding sampling times are 9:00 AM. 3:00 PM. 9:00 PM on July 11th. 2012 and 3:00 AM on July 12th. 2012; these results are higher than 300 $\mu g/m^3$ comparative of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For SO_2 . the measurement results are: 73; 89; 84 and 70 μ g/m³ corresponding sampling times are 9:00 AM. 3:00 PM. 9:00 PM on July 11^{th} . 2012 and 3:00 AM on July 12^{th} . 2012; these results are lower than 350 μ g/m³ comparative of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For NO_2 . the measurement results are: 25; 27; 18 and 17 μ g/m³ corresponding sampling times are 9:00 AM. 3:00 PM. 9:00 PM on July 11th. 2012 and 3:00 AM on July 12th. 2012; these results are lower than 200 μ g/m³ comparative of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For CO. the measurement results are: 1297; 1462; 1289 and 1709 $\mu g/m^3$ corresponding sampling times are 9:00 AM. 3:00 PM. 9:00 PM on July 11th. 2012 and 3:00 AM on July 12th. 2012; these results are lower than 30000 $\mu g/m^3$ comparative of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

+ Results of noise

Noise are measured 12 points within 24 hours. a point per 2 hours from 9:00 AM on July 11^{th} . 2012 to 7:00 AM on July 12^{th} . 2012. Using the noise meter equipment NL-21 ORION of Japan. we measured continuously for 15 minutes each sampling. record of Leq values (average value); L_{50} (average value of test 50 times); L_{90} (average value of test 90 times); L_{max} (maximum value) and L_{min} (minimum value). According to National Technical Regulation on Noise (QCVN 26:2010/BTNMT) for normal areas. According to equivalent acoustic level (Leq) is 70dB of about 6:00 AM to 8:00 PM and 55dB from 9:00 PM to 6:00 AM daily.

The table showed that in 12 Leq value for 24 hours, those from 11:00 PM on July 11th. 2012 to 5:00 AM on July 12th. 2012. All value is lower 55 dB than the65

Consultancy: Institute of Environmental Technology

Address: No.18 Hoang Quoc Viet - Cau Giay - Ha Noi Tel: 043 7569 136; 043 7911 654 * Fax: 043 7911 203

Owner: Vietnam Infrastructure development and finance investment joint stock company

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street.

Me Tri commune. Tu Liem. Hanoi

Tel: (84-4) 37711668 – 22209668; Fax: (84-4) 22209666

allowable limit according to National Technical Regulation on Noise (QCVN 26:2010/BTNMT). At the other time, noise values are lower 70dB than its the allowable limit At this measurement value.

The values of L_{50} . L_{90} haven't comparative regulation. respectively of about 50.3 to 62.1 dB from 7:00 AM to 9:00 PM and 45.1 to 53.6 dB from 11:00 PM to 5:00 AM for L_{50} . The values of L_{90} are respectively of about 45.6 to 60.2 dB from 7:00 AM to 9:00 PM and 32.2 - to 43.4 dB from 11:00 PM to 5:00 AM. all these values are lower than both Leq and L_{50} .

 L_{max} value is 92.6 dB at 9:00 AM on July 11th. 2012 and L_{min} value is 41.8 dB at 11:00 PM on July 11th, 2012.

Owner: Vietnam Infrastructure development and finance investment joint stock company
Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street.

Me Tri commune. Tu Liem. Hanoi

Tel: (84-4) 37711668 – 22209668; Fax: (84-4) 22209666

TABLE 26. THE FIFTH RESULTS OF AIR SAMPLE OF THE PACKAGE EX 8 (JULY 2012)

[·		Ţ			T-	
TOTAL	O5:2009/BTNMT			300	350	1	30000
	K 10.5.4	3:00 am July 12 th , 2012	234	372	70	17	1709
	K 10.5.3	21:00 pm July 11 th , 2012	218	328	84	18	1289
	K 10.5.2	15:00 pm July 11 th , 2012	245	522	68	27	1462
	K 10.5.1	9:00 am July 11 th , 2012	285	902	73	25	1297
	Unit				µg/m³		
,	Parameter	Time	VOCs	Dust	SO_2	NO_2	00
Name of	sample			0 70	EA 0 - K 10.5		

Note: QCVN 05:2009/ BTNMT: National technical regulation on ambient air quality

TABLE 27. THE FIFTH RESULTS OF NOISE, SAMPLE KID OF THE PACKAGE EV 8 (1111 V 2012)

						TIOTO TO	C OCCUPAL A	OF HOUSE SAMELE NIO OF THE FACINGE EX 8 (JULY 2012)	T TITE T	ACNAG	E EA O	OF X TO	(7)		
Name	Name of sample	Noise				Ľ,	rom 9 am J	From 9 am July 11th to 7 am July 12th, 2012	7 am July	12 th , 2012					_
	ordina i		9 am	11 am	13 pm	15 pm	17pm	19 pm	21 pm	23 pm	01 am	03 am	05 am	7 am	
	Led		9.79	65.3	53.5	67.0	62.0	62.6	9.09	57.8	57.6	53.7	48.7	8 69	
1 O O	Lmax		82.2	97.6	72.6	87.5	84.9	88.7	77.2	72.6	63.5	57.2	70.6	85.1	
EA 8- K10 5	Lmin	(dB)	48.9	46.2	41.2	55.1	47.2	49.2	50.4	49.3	50.5	52.5	41.8	51.2	
	L50		54.0	57.8	50.3	62.1	56.9	57.5	58.6	57.2	575	53.6	45.1	50.05	
	T60		51.2	50.9	46.3	59.8	52.4	53.4	52.7	562	7.75	53.1	1.64	56.5	
QCVN (Nor	OCVN 26:2010/BTNMT (Normal area - Leq)	BTNMT - Leq)				7.0					55	ļ	0.0	70	

Note: OCVN 26:2010/BTNMT: - National Technical Regulation on Noise

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street.

Me Tri commune. Tu Liem. Hanoi

Tel: (84-4) 37711668 – 22209668; Fax: (84-4) 22209666

+ Results of vibration

- Starting time: 9:00 AM on July 11th. 2012; Ending time: 7:30 AM on July 12th. 2012.
- Azimuth of the axes x. y

X-axis set follow the North – South direction.

Y-axis set follow the East – West direction.

Impacts of vibratory sources to the measurement result.

To set measurement range for equipment is 30-90 dB.

From L_{max} and Leq values showed that: Most of testing time. vibration acceleration is lower than 60dB. However, measurement values are higher than 60dB and lower than 75 dB in each measurement range The values of L_{10} , L_{50} , L_{90} have decreasing rule that the larger values only occurring in short time of the each measurement range.

The results in table 28 showed that there is not any value of vibration acceleration level (Lva) exceeding the allowable limit (75dB) of National Technical Regulation on Vibration (QCVN 27:2010/BTNMT).

Average Lva value in the range from 42.3 to 63.7 dB.

The value of Lva_{max} is 90.0 dB which is highest at the time from 11:00 AM to 11:30 AM on July 11^{th} . 2012.

The value of Lva_{min} is 35.2 dB which is lowest at the time from 5:00 to 5:30 AM on July 12^{th} . 2012.

TABLE 28. THE FIFTH RESULTS OF VIBRATION SAMPLE K10 OF THE PACKAGE EX 8 (JULY 2012)

Time			F	rom 9:	00 am to 9:30 a	ım on J	uly 11 ^t	^h , 2012	
D	T T:4		Vibrati	on Leve	el (Lv)	Vib	ration A	Accelera	ation (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
$L_{\sf eq}$		41.2	34.7	35.5	41.2	53.3	50.3	47.7	53.3
L_{max}		53.6	42.2	42.4	53.6	72.6	69.7	69.9	69.9
L_{min}	σь	31.7	26.4	27.5	31.7	41.2	39.3	33.7	41.2
L ₁₀	dB	43.6	36.9	38.1	43.6	53.8	51.8	45.8	53.8
L_{50}		39.5	34	34.7	39.5	47.4	45.4	41	47.4
L ₉₀		35.8	31.3	31.7	35.8	44.3	42.3	38.4	44.3

_68

A. 9.

Owner: Vietnam Infrastructure development and finance investment joint stock company Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street. Me Tri commune. Tu Liem. Hanoi

Tel: (84-4) 37711668 - 22209668; Fax: (84-4) 22209666

Time	e			From 1	1:00 am to 11:	30 am o	n July	11 th . 20	12
Parameter	Unit				el (Lv)	1			ration (Lva)
	O III t	Z	Y	Х	Average	Z	Y	X	Average
L_{eq}		48.8	40.4	38.5	48.8	63.7	63.6	60.4	63.7
L _{max}		58.7	52.8	46.3	58.7	90	89.6	86.5	90
L _{min}	dB	37.3	29	29.9	37.3	42.2	36.9	36.7	42.2
L ₁₀	u.D	52	42.8	41	52	54.5	48.9	48.6	54.5
L_{50}		47	38.6	37.8	47	48.6	42.7	42.7	48.6
L ₉₀		42.5	35.1	34.7	42.5	44.9	39.7	39.4	44.9

Tim]	From 13	3:00 pm to 13:3	30 pm c	n Iuly	11 th 20	10
Parameter	Unit		Vibration Level (Lv)						ration (Lva)
- urameter	Ome	Z	Y	X	Average	Z	Y	Х	Average
L_{eq}		37.4	33.3	34.1	37.4	50	46.6	44.9	50
L_{max}		49.8	41.5	41.7	49.8	74	71.4	69.3	74
L_{min}		26.6	24.1	24.3	26.6	38	33.8	33.8	38
L ₁₀		40.9	35.7	36.8	40.9	48.7	44	43.5	48.7
L_{50}		33.7	32.7	33.3	33.7	44	39.5	39.5	44.0
L ₉₀	dB	30	29.9	29.9	30	41.2	36.4	36.7	41.2

Time	е		I	From 15	5:00 pm to 15:3	:30 pm on July 11 th . 2012				
Parameter	Unit				el (Lv)	T			ration (Lva)	
	Oint	Z	Y	X	Average	Z	Y	X	Average	
Leq		63.9	69.3	71.4	71.4	54	50.4	48	54	
L _{max}		89.9	90	89.7	90	68.9	69.4	66.3	69.4	
L _{min}	dB	37.7	30.8	30	37.7	43.2	39.5	39	43.2	
L ₁₀		54.1	41.7	42.3	54.1	57.4	51.5	50	57.4	
L ₅₀		48.4	38.4	37.9	48.4	50.5	45.6	44.3	50.5	
L_{90}		43	35.6	34.7	43	46.7	42.3	41.3	46.7	

Time	e		1	From 1	7:00 pm to 17:	30 pm o	n Iuly 1	1 th 201	2
Parameter	Unit				el (Lv)	7			ation (Lva)
1 drameter	Omt	Z	Y	X	Average	Z	Y	Х	Average
Leq		44.7	36.5	36.1	44.7	54.6	49.1	49.1	54.6
L _{max}		53	43.2	43	53	76.7	68.6	67.6	76.7
L _{min}	dB	33.8	27.7	27.3	33.8	41.2	36.5	35.4	41.2
L ₁₀	uБ	47.9	39.1	38.5	47.9	57.3	51.1	50	57.3
L ₅₀		43.7	35.7	35.5	43.7	48.8	43.5	42.6	48.8
L ₉₀		38.3	32.2	32	38.3	43.8	38.6	38.4	43.8

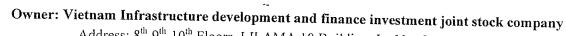
Consultancy: Institute of Environmental Technology

Address: No.18 Hoang Quoc Viet – Cau Giay – Ha Noi Tel: 043 7569 136; 043 7911 654 * Fax: 043 7911 203

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street.

Me Tri commune. Tu Liem. Hanoi Tel: (84-4) 37711668 – 22209668; Fax: (84-4) 22209666

Time	9		F	rom 19	0:00 pm to 19:3	0 pm o	n July 1	l 1 th . 20	12
D	T T:-4		Vibrati	on Lev	el (Lv)	Vibration Acceleration (Lva)			
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
L_{eq}		38.3	32.9	33.9	38.3	53.1	47.9	46.5	53.1
L _{max}		50.7	48.2	49.7	50.7	73.9	69.3	66.7	73.9
L_{min}	dB	28.9	24.1	25.3	28.9	38.5	34.2	34.4	38.5
L_{10}	d.b	41.6	35.2	36.3	41.6	55.2	49.1	48.2	55.2
L ₅₀		36.7	32.2	33	36.7	46.3	41.7	40.9	46.3
L ₉₀		32.6	29.2	30	32.6	41.6	38.2	37.5	41.6


Time	e		From 21:00 pm to 21:30 pm on July 11 th . 2012							
D	T T:4		Vibrati	on Lev	el (Lv)	Vibration Acceleration (Lva)				
Parameter	Unit	Z	Y	Х	Average	Z	Y	X	Average	
$L_{\sf eq}$		35.3	31.8	33.8	35.3	48.3	49.6	48.8	49.6	
L_{max}		51.1	48.5	51.8	51.8	67.5	72.1	71.2	72.1	
L_{min}	מנ	24	23.9	21.6	24	40.6	36	34.9	40.6	
L_{10}	dB	38.7	34.4	36.4	38.7	49.7	50.3	49.7	50.3	
L_{50}		32.3	31.2	32.8	32.8	44.4	41.8	41.2	44.4	
L ₉₀		28.5	28.1	29.3	29.3	42.5	38	37.8	42.5	

Time	9		F	From 23	:00 pm to 23:3	30 pm o	n July 1	11 th . 201	12	
D	Unit		Vibrati	on Lev	el (Lv)	Vibration Acceleration (Lva)				
Parameter	Onit	Z	Y	X	Average	Z	Y	X	Average	
L_{eq}		36.1	32	33.6	36.1	42.3	38.7	39.2	42.3	
L_{max}		50.9	38.5	43.1	50.9	54.7	60	57.5	60	
L_{min}	dB	23.3	22.4	23.2	23.3	38.9	33.4	34.4	38.9	
L ₁₀	dБ	39.5	34.7	36.2	39.5	43.3	39.4	40.3	43.3	
L ₅₀		29.8	31.3	32.7	32.7	41.8	36.3	37.7	41.8	
L_{90}		26.2	27.8	29.2	29.2	40.9	35.1	36.4	40.9	

Time	e			From 1	:00 am to 1:30	0 am on July 12 th . 2012				
Parameter	Unit		Vibrati	on Leve	el (Lv)	Vibration Acceleration (Lva)				
Parameter	Omt	Z	Y	X	Average	Z	Y	X	Average	
$L_{\sf eq}$		28.7	32.2	35	35	43.1	42.6	40.9	43.1	
L _{max}		59.4	58.6	59.5	59.5	59.7	67.9	64.9	67.9	
L_{min}	dB	23.1	21.7	23.5	23.5	38.4	32.4	33.1	38.4	
L_{10}	uБ	30.2	34.2	36.1	36.1	43.7	38.7	38.6	43.7	
L_{50}		26.7	30.8	32.4	32.4	42.3	35.9	35.8	42.3	
L ₉₀		25	27.5	28.8	28.8	41.1	34.2	34.5	41.1	

_70

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street.

Me Tri commune. Tu Liem. Hanoi

Tel: (84-4) 37711668 – 22209668; Fax: (84-4) 22209666

Time	e		From 3:00 am to 3:30 am on July 12 th . 2012							
Parameter	Unit		Vibrati		el (Lv)				ration (Lva)	
		Z	Y	X	Average	Z	Y	X	Average	
L_{eq}		30.6	30.7	32.5	32.5	43.1	39.7	40	43.1	
L _{max}		43.7	37.9	40.7	43.7	57.8	63.3	61.5	63.3	
Lmin	dB	22.9	22.1	22.2	22.9	39	36.3	36.8	39	
L ₁₀	4.2	33.3	33.2	35.1	35.1	44.3	38.9	39.9	44.3	
L_{50}		28.6	30.1	31.6	31.6	43.1	37.9	38.8	43.1	
L ₉₀		26.4	26.9	28.1	28.1	40.2	37.1	38.1	40.2	

Time	е			From	5:00 am to 5:3	30 am on July 12 th . 2012				
Parameter	Unit		Vibrati		el (Lv)	Vibration Acceleration (Lva)				
	Oint	Z	Y	X	Average	Z	Y	X	Average	
L_{eq}		35	33.3	36.3	36.3	45.1	42.7	43.3	45.1	
L _{max}		72.6	72.6	73.8	73.8	66,7	68	69.8	69.8	
L_{min}	dB	22.1	23.1	24.2	24.2	35.2	31.7	31.2	35.2	
L_{10}	uD.	38.1	34.5	35.7	38.1	46.2	40.4	40.9	43.1	
L_{50}		31.5	31	32.3	32.3	43.1	36	36.1	38.6	
L ₉₀		26.6	27.7	28.8	28.8	38.60	34.1	33.5	38.6	

Time	е			From	7:00 am to 7:3	0 am or	ı July 1	2 th . 201	2
Parameter	Unit		Vibrati		el (Lv)	T			ration (Lva)
		Z	Y	X	Average	Z	Y	X	Average
L_{eq}		41.5	34.3	34.2	41.5	49.4	48.3	47.5	49.4
L _{max}		51.8	41.3	39.7	51.8	68.3	71.1	69.5	71.1
L_{min}	dB	34.2	25.7	27	34.2	40.8	36.5	35.5	40.8
L_{10}		44.1	36.8	36.5	44.1	50.9	47.8	47.5	50.9
L ₅₀		40.2	33.5	33.7	40.2	46.7	42.2	41.3	46.7
L ₉₀		37.1	30.6	30.9	37.1	43.9	39.1	38.5	43.9

QCVN 27:2010/BT	NMT: National Technica	l Regulation on Vibration
Location	Testing time per day	Allowable vibration acceleration level. dB Average level. Leq
Special location	6:00 AM - 6:00 PM	75
Special location	6:00 PM – 6:00 AM	Background level
Normal location	6:00 AM – 9:00 PM	75
Normal location	9:00 PM – 6:00 AM	Background level

Consultancy: Institute of Environmental Technology

Address: No.18 Hoang Quoc Viet – Cau Giay – Ha Noi Tel: 043 7569 136; 043 7911 654 * Fax: 043 7911 203

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street.

Me Tri commune. Tu Liem. Hanoi

Tri (84.4) 27711668 222202668; Form (84.4) 22200666

Tel: (84-4) 37711668 - 22209668; Fax: (84-4) 22209666

+ Results of surface water sample:

Surface water sample (coded NM 4.5) was monitored and sampled at Nguyet Ang Bridge. Da Do river – An Lao District – Hai Phong

Coordinates of sampling location: N 20° 46.814 - E 105° 36. 858.

Sample was taken 3 times at the times. a sample per 8 hours in 24 hours with 01 blank sample. pH and DO parameters are tested on location. The samples were refrigerated and fixed after sampling and transported to the laboratory in the shortest time. NM 4.5.1: Sampling at 3 pm on July 11th. 2012; NM 4.5.2: Sampling at 9:30 pm July 11th. 2012; NM 4.5.3: Sampling at 5:30 am July 12th. 2012. Sampling time Results of sample analysis are shown in table 29 as below.

The result table showed that oil & grease parameters are 0.12; 0.12; 0.10 mg/L higher than the column B1 (0.1 mg/L). lower than the limit value is 0.3 mg/L in column B2 according to National technical regulation on surface water quality (QCVN 08:2008/BTNMT).

COD and BOD₅ parameters of all 03 samples are lower than both B1 and B2 column at the different times according to QCVN 08:2008/BTNMT. All parameters of TSS (Total suspended solids). total phosphorus and total nitrogen are lower than QCVN 08:2008/BTNMT.

As for pesticides of organic chlorine group have quantitative limit of analysis method is 0.05 μ g/L (the most of environmental laboratories only determine this quantitative limit). However, according to National technical regulation on surface water quality (QCVN 08:2008/BTNMT), comparative value about 0.004 – 0.01 μ g/L (Aldrin - Dieldrin); 0.014 – 0.01 μ g/L (Endrin) etc.

On the other hand, comparison of National technical regulation on surface water quality (QCVN 08:2008) and Surface water quality standard (TCVN 5942:1995). DDT is 0.01 mg/L corresponding to 10 μ g/L in standard. Vietnam standard (TCVN) by Ministry of science and technology promulgate while Vietnam regulation by Ministry of natural resources and environment promulgate that regulation for parameters of surface water but different to 2500 times.

In this case. TCVN 5942:1995 more consistent with the international standard. Thus, results of minimum quantitative limit also exceed the QCVN 08: 2008/BTNMT.

Address: 8"-9"-10" Floors. LILAMA 10 Building. Le Van Luong street.

Me Tri commune. Tu Liem. Hanoi Tel: (84-4) 37711668 – 22209668; Fax: (84-4) 22209666

TABLE 29. THE FIFTH RESULTS OF SURFACE WATER SAMPLE NM4.5 OF THE PACKAGE EX8 (JULY 2012)

					(2001 100)		0) 00777 7757	771 4014)
S _o	Parameter	Unit		Re	Result		QC 08:2008/	QCVN 08:2008/BTNMT
			NM 4.5.1	NM 4.5.2	NM 4.5.3	MT	Column B1	Column B2
급	pH	I	8.25	8.27	8.33	7.20	5 5 0	0 2 3
2.	D0	mg/L	6.45	6.50	5.20	7 3 8	C- C. U	4- C.C
3.	COD	mgO ₂ /L	15.5	16.1	12.1	0.70	1,4	77
4.	BODs	mg/L	7.7	8.3	6.5	0.15	30	36
5.	TSS	mg/L	10	15	10	3.0	61	100
6.	Total P	mg/L	0.59	0.11	0.13	0.01		100
7.	Total N	mg/L	5	9	5.5	<0.10	•	
8.	* Pesticides	mg/L	< 0.5	< 0.5	< 0.5	<0.5	1	
9.	Aldrine+Dieldrine		< 0.05	< 0.05	< 0.05	<0.05	0.008	0.01
10.	Endrine	-	< 0.05	< 0.05	< 0.05	<0.05	0.014	0.01
11.	BHC		< 0.05	< 0.05	< 0.05	<0.05	0.13	0.015
12.	DDT		< 0.05	< 0.05	< 0.05	<0.05	0.004	5000
13.	DDD	hg/L	< 0.05	< 0.05	< 0.05	<0.05		0.00
14.	Endosunfane		< 0.05	< 0.05	< 0.05	<0.05	0.01	000
15.	Lindane		< 0.05	< 0.05	< 0.05	20.0>	0.01	0.02
16.	Chlordane	1	< 0.05	< 0.05	50.0>	50.0>	0.30	0.4
17.	Heptachlor		< 0.05	< 0.05	50.0>	50.05	0.02	0.03
18.	Mineral oil	mg/L	0.12	0.12	0.10	50.05	0.02	0.02
19.	*Coliform	MPN/100 mL	380	490	460	CO.S.	7500	10000
					200	GM	000	10000

Note: QCVN 08:2008/BTNMT: National technical regulation on surface water quality

Consultancy: Institute of Environmental Technology

Address: No.18 Hoang Quoc Viet – Cau Giay – Ha Noi Tel: 043 7569 136; 043 7911 654 * Fax: 043 7911 203

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street. Me Tri commune. Tu Liem. Hanoi

Tel: (84-4) 37711668 - 22209668; Fax: (84-4) 22209666

B1-For the usage of irrigation or other purpose having the similar quality requirement like B2 level

B2 - For the usage of water navigation and other purpose with less water quality

+ Results of groundwater sample NN 8.5

Groundwater sample (coded NN 8.5). householder is Mrs. Tran Van Đoai. Minh Khai village. My Đuc commune. An Lao District.. Hung Yen Province. The depth of 18 m.

Sample time is 8:00 AM on July 11th 2012. This is Results of sample analysis are shown in table 30 as below.

Table 30 showed that the COD value is $6.56~mgO_2/L$ comparing 4mg/L and that of coliform is 15~MPN/100mL comparing with 3~MPN/100mL, which is higher than QCVN 09:2008/BTNMT

TABLE 30. THE FIFTH RESULTS OF GROUNDWATER SAMPLE NN 8.5 OF THE PACKAGE EX8 (JULY 2012)

3.7	70	TT *4	R	esult	QCVN		
No	Parameter	Unit	NN 8.5	MT	09:2008/BTNMT		
1.	Temperature	°C	31.0	28.0	-		
2.	pН	_	7.78	7.10	5.5 – 8.5		
3.	COD	mgO ₂ /L	10.3	< 1.0	4		
4.	BOD ₅	mg/L	5.9	< 1.0			
5.	TSS	mg/L	8	< 3.0	-		
6.	Total P	mg/L	0.27	< 0.01	-		
7.	Total N	mg/L	8.5	< 0.10	-		
8.	*Coliform	MPN/	12	ND	3		
9.	*E. Coli	100mL	ND	ND	ND		

g) Results of monitoring of construction bid packages EX-10

The monitoring position of air. noise and vibration at house of culture. Tan Vu hamlet. Trang Cat ward. Hai An District. Hai Phong City.

Coordinates: N 20° 48.059 - E 106° 44. 839

- General description of the status quo of terrain and geology

Monitoring area is residential area a place where is nearest with the expressway about 500m. Monitoring position located in tarmac at house of culture. Tan Vu hamlet. Trang Cat ward. Hai An District. Hai Phong City.

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street. Me Tri commune. Tu Liem. Hanoi

Tel: (84-4) 37711668 - 22209668; Fax: (84-4) 22209666

The height of between the measurement points with the Ha Noi – Hai Phong expressway pavement is negligible.

Geological background at the measurement position and the expressway are soft ground.

- Starting time: 10:30 AM on July 12th. 2012; Ending time: 8:30 PM on July 13th. 2012
- Impacts of vibratory sources to the measurement result.

During the testing process, the vehicle transported mainly on inter-village roads, only types of motorcycles and travelling cars with the speed from 30 to 40km/h and higher. While construction machines and container trucks transporting at 7:00 - 11:00 AM and 2:00 - 6:00 PM on the expressway.

+ Results of air monitoring

Monitoring according to the supervision consultancy contracts - No. 74/VIDIFI-VCNMT/2010. At the each location take 04 samples. a sample per 6 hours during 24 hours with parameters: Volatile organic compounds (VOCs), Total dust, Carbon oxide (CO), Nitrogen dioxide (NO₂),, Sulfur dioxide (SO₂). The results are shown in table 36. From the results table showed that the measured parameters are within the allowable limits of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For VOCs. the measurement result showed minimum value is $78~\mu g/m^3$ at 3:00 AM on July 13^{th} . 2012 and maximum value is $115~\mu g/m^3$ at 9:00 AM on July 12^{th} . 2012.

For total dust, the measurement results are: 48; 52; 46 and 42 $\mu g/m^3$ corresponding sampling times are 9:00 AM, 3:00 PM, 9:00 PM on July 12th, 2012 and 3:00 AM on July 13th, 2012; these results are lower than 350 $\mu g/m^3$ of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For SO_2 . the measurement results are: 65; 73; 68 and 60 μ g/m³ corresponding sampling times are 9:00 AM. 3:00 PM. 9:00 PM on July 12^{th} . 2012 and 3:00 AM on July 13^{th} . 2012; these results are lower than 350 μ g/m³ of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For NO_2 . the measurement results are: 23; 23; 25 and 23 $\mu g/m^3$ corresponding sampling times are 9:00 AM. 3:00 PM. 9:00 PM on July 12^{th} . 2012 and 3:00 AM on July 13^{th} . 2012; these results are lower than 200 $\mu g/m^3$ of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

For CO. the measurement results are: 811; 835; 718 and 523 $\mu g/m^3$ corresponding sampling times are 9:00 AM. 3:00 PM. 9:00 PM on July 12th. 2012 and 3:00 AM on July 13th. 2012; these results are lower than 30000 $\mu g/m^3$ of National technical regulation on ambient air quality (QCVN 05:2009/BTNMT).

+ Results of noise

Noise are measured 12 points within 24 hours. a point per 2 hours from 9:00 AM on July 12th. 2012 to 7:00 AM on July 13th. 2012. Using the noise meter equipment NL-21 ORION of Japan. we measured continuously for 15 minutes each sampling. record of Leq values (average value); L₅₀ (average value of test 50 times); L₉₀ (average

Consultancy: Institute of Environmental Technology

Address: No.18 Hoang Quoc Viet – Cau Giay – Ha Noi Tel: 043 7569 136; 043 7911 654 * Fax: 043 7911 203 75

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street.

Me Tri commune. Tu Liem. Hanoi

Tel: (84-4) 37711668 – 22209668; Fax: (84-4) 22209666

value of test 90 times); L_{max} (maximum value) and L_{min} (minimum value). According to *National Technical Regulation on Noise* (QCVN 26:2010/BTNMT) for normal areas. According to equivalent acoustic level (Leq) is 70dB of about 6:00 AM to 8:00 PM and 55dB from 9:00 PM to 6:00 AM daily. Results are shown in table 31.

From the table 31 showed that 12 Leq value for 24 hours, the values from 9:00 AM on July 12th, 2012 to 7:00 AM on July 13th, 2012 respectively, all these values are lower than the allowable limit is 55 dB and 70 dB of National Technical Regulation on Noise (QCVN 26:2010/BTNMT).

The values of L_{50} . L_{90} haven't comparative regulation. respectively of about 44.0 to 49.7 dB from 7:00 AM to 9:00 PM and 43.3 to 56.2 dB from 9:00 AM to 7:00 AM for L_{50} . The values of L_{90} are respectively of about 39.7 to 46.9 dB from 6:30 AM to 8:30 PM and 33.5 dB to 40.1 dB from 10:30 PM to 4:30 AM.

 L_{max} value is 87.4 dB at 9:00 AM on July 12th. 2012 and L_{min} value is 37.2 dB at 9:00 PM on July 13th. 2012.

Owner: Vietnam Infrastructure development and finance investment joint stock company Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street.

Me Tri commune. Tu Liem. Hanoi Tel: (84-4) 37711668 – 22209668; Fax: (84-4) 22209666

TABLE 31. THE FIFTH RESULTS OF AIR SAMPLE K12.6 OF THE PACKAGE EX10 (JULY 2012)

					т-			
QCVN 05:2000/PTXIA/T	10.2009/D1.10.101		1 (300	350		1	3000
K 12.6.4	3:00 am	7102, Ct tino	2	74	09	23	0.7	523
K 12.6.3	21:00 pm July 12 th 2012	82	16	0+	89	25		718
K 12.6.2	15:00 pm July 12 th , 2012	105	52	100	73	23	4 ()	835
K 12.6.1	9:00 am July 12 th , 2012	115	48		65	23	1 10	011
Unit				۲,	mg/m		•	
Parameter	Time	VOCs	Dust	6	SO ₂	NO2	CO	3
Name of sample			3	EX 10-	K 12.6			

<u>Note</u>: QCVN 05:2009/ BTNMT: National technical regulation on ambient air quality

TABLE 32. THE FIFTH RESULTS OF NOISE SAMPLE K12.6 OF THE PACKAGE EX10 (JULY 2012)

	T-	7	-	Т-		Τ-		т—	1	_				_
	07000	O/alli	50.3	70.7	7:71	20.0	77.7	517	†:TC	73.0	47.3	0	,	
	05am	ro C	0.76	71.8	0.17	051	2.0	50 A	72.1	70.7	7.01	7	•	
	03am	3 37	40.7	69 7	11.70	40.5	5.01	45.8	5	177				
7	01am	17.7	t: /r	67.9	<u>```</u>	300	27.7	41.5		40 ×	0.01			
, 10 , 401.	23pm	49.8	0.77	78.9		39.9		46.5		417	/:::		S	
inc iiim co.	21pm	473	3	70.7		37.2		43.3		40.5				
	19pm	56.7		72.4	-	43.4		56.2		50.5				
	17pm	56.6		9.77		41.4		51.1	00,7	7.04				
1	15pm	56.3		0.6/	1	45.5		55.3	707	0./4				
,	L3pm	51.2	0.00	68.9	7 110	37.0		6.00	12.0	45.0		70		
11	Ilam	52.0		.	200	38.3	1 [7	47.3	100	7:7				
0	yam	56.1	1 10	67.4	707	20./	610	0.16	46.0	2.2				
Noise					(dp)			,1			TNNT	Lea)	,,	
sample		Leq	Imax	Lillan	ı.u.	- Cullini	1 50	007	1.90		26:2010/B	nal area -		
Ivalile 0	-			FX 10-	-01 V	K12.6					OCVN	(Norm		
		Noise 9am 11am 13pm 15pm 17pm 19pm 21pm 23pm 01am 03am 05cm	Noise 9am 11am 13pm 17pm 19pm 21pm 23pm 01am 03am 05am 56.1 52.0 51.2 56.3 56.6 56.7 47.3 49.8 47.4 46.8 57.6	Noise 9am 11am 13pm 15pm 17pm 19pm 21pm 23pm 01am 03am 05am 56.1 52.0 51.2 56.3 56.6 56.7 47.3 49.8 47.4 46.5 52.6	Leg 9am 11am 13pm 15pm 17pm 19pm 21pm 23pm 01am 03am 05am Lmax 87.4 72.1 68.9 79.0 77.6 72.4 70.7 78.9 67.9 69.7 71.8	Leq 56.1 52.0 51.2 56.3 56.6 56.7 47.3 49.8 47.4 46.5 52.6 Lmax 1 min 100.7	Leq 9am 11am 13pm 17pm 19pm 21pm 23pm 01am 03am 05am Leq 56.1 52.0 51.2 56.3 56.6 56.7 47.3 49.8 47.4 46.5 52.6 Lmax 87.4 72.1 68.9 79.0 77.6 72.4 70.7 78.9 67.9 69.7 71.8 Lmin (dB) 38.5 37.6 45.5 41.4 43.4 37.2 39.9 39.9 40.5 45.0	Leq 56.1 52.0 51.2 56.3 56.6 56.7 47.3 49.8 47.4 46.5 52.6 Lmax (dB) 38.7 38.5 37.6 45.5 41.4 43.4 37.2 39.9 40.5 45.0 45.6 43.4 37.2 39.9 40.5 45.0 45.0 45.6 45.	Leq 9am 11am 13pm 17pm 19pm 21pm 23pm 01am 03am 05am Leq 56.1 52.0 51.2 56.3 56.6 56.7 47.3 49.8 47.4 46.5 52.6 Lmax 87.4 72.1 68.9 79.0 77.6 72.4 70.7 78.9 67.9 69.7 71.8 Lmin 4B) 38.5 37.6 45.5 41.4 43.4 37.2 39.9 40.5 45.0 L50 51.0 47.5 50.9 55.3 51.1 56.2 43.3 46.5 41.5 45.8 52.4	Leq 9am 11am 13pm 17pm 19pm 21pm 23pm 01am 03am 05am Leq 56.1 52.0 51.2 56.3 56.6 56.7 47.3 49.8 47.4 46.5 52.6 Lmax 87.4 72.1 68.9 79.0 77.6 72.4 70.7 78.9 67.9 69.7 71.8 Lmin 4B) 38.7 38.5 37.6 45.5 41.4 43.4 37.2 39.9 40.5 45.0 L50 51.0 47.5 50.9 55.3 51.1 56.2 43.3 46.5 41.5 45.8 52.4 150 46.0 47.5 47.0 47.5 46.5 41.5 45.8 52.4 52.4	Leq 9am 11am 13pm 17pm 19pm 21pm 23pm 01am 03am 05am Leq 56.1 52.0 51.2 56.3 56.6 56.7 47.3 49.8 47.4 46.5 52.6 Lmax 87.4 72.1 68.9 79.0 77.6 72.4 70.7 78.9 67.9 69.7 71.8 Lmin (dB) 38.5 37.6 45.5 41.4 43.4 37.2 39.9 40.5 45.0 L50 51.0 47.5 50.9 55.3 51.1 56.2 43.3 46.5 41.5 45.8 52.4 L90 46.0 42.2 43.0 47.6 46.2 50.2 40.5 41.7 40.8 41.1 40.7	Leq 9am 11am 13pm 17pm 19pm 21pm 23pm 01am 03am 05am Lmax 56.1 52.0 51.2 56.3 56.6 56.7 47.3 49.8 47.4 46.5 52.6 Lmax 87.4 72.1 68.9 79.0 77.6 72.4 70.7 78.9 67.9 69.7 71.8 Lmin (dB) 38.7 38.5 37.6 45.5 41.4 43.4 37.2 39.9 40.5 45.0 L50 51.0 47.5 50.9 55.3 51.1 56.2 43.3 46.5 41.5 45.8 52.4 L90 46.0 42.2 43.0 47.6 46.2 50.2 40.5 41.7 40.8 44.1 48.2 45.2	Leq 9am 11am 13pm 17pm 19pm 21pm 23pm 01am 03am 05am Leq 56.1 52.0 51.2 56.3 56.6 56.7 47.3 49.8 47.4 46.5 52.6 Lmax 87.4 72.1 68.9 79.0 77.6 72.4 70.7 78.9 67.9 69.7 71.8 Lmin 4B) 38.7 38.5 37.6 45.5 41.4 43.4 37.2 39.9 40.5 45.0 L50 51.0 47.5 56.2 43.3 46.5 41.5 45.8 52.4 L50 46.0 42.2 43.0 47.6 46.2 50.2 40.5 41.7 40.8 44.1 48.2 Nable of column 46.0 46.2 50.2 40.5 40.5 41.7 40.8 44.1 48.2	Leq 56.1 52.0 51.2 56.3 56.6 56.7 47.3 49.8 47.4 46.5 52.6 Lmax (dB) 38.7 72.1 68.9 79.0 77.6 72.4 70.7 78.9 67.9 69.7 71.8 Lmin (dB) 38.7 38.5 37.6 45.5 41.4 43.4 37.2 39.9 40.5 45.0 L50 46.0 47.5 50.9 55.3 51.1 56.2 43.3 46.5 41.7 48.2 52.4 21.8 L50 46.0 47.6 46.2 50.2 40.5 41.7 40.8 44.1 48.2 70 M 26:2010/BTNMT 46.0 47.6 46.2 50.2 40.5 40.5 44.1 48.2 70

Note: QCVN 26:2010/BTNMT - National Technical Regulation on Noise

Consultancy: Institute of Environmental Technology

Address: No.18 Hoang Quoc Viet – Cau Giay – Ha Noi Tel: 043 7569 136; 043 7911 654 * Fax: 043 7911 203

77

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street. Me Tri commune. Tu Liem. Hanoi

Tel: (84-4) 37711668 - 22209668; Fax: (84-4) 22209666

+ Results of vibration

Measurement position EX 10-K12.6: House of culture in Tan Vu hamlet. Trang Cat ward. Hai An District. Hai Phong City (Package EX-10).

Coordinates: N 20° 48.059 - E 106° 44.839

- General description of the status quo of terrain and geology

Monitoring area is residential area a place where is nearest with the expressway about 500m. Monitoring position located in tarmac at house of culture. Tan Vu hamlet. Trang Cat ward. Hai An District. Hai Phong City.

The height of between the measurement points with the Ha Noi – Hai Phong expressway pavement is negligible.

Geological background at the measurement position and the expressway are soft ground.

- Starting time: 10:30 AM on April 12th. 2012; Ending time: 8:30 PM on April 13th. 2012.
 - Azimuth of the axes X. Y

X-axis set follow the North - South direction.

Y-axis set follow the East - West direction.

To set measurement range for equipment is 30 - 90 dB.

From L_{max} and Leq values showed that: Most of testing time. vibration acceleration is lower than 60dB. However, appearance of measurement values are higher than 60dB in each measurement range but still lower than 75dB.

The values of L_{10} . L_{50} . L_{90} have decreasing rule that the larger values only occurring in short time of the each measurement range.

Results of table 38 showed that all vibration values are within allowable limit according to QCVN 27:2008/BTNMT (75dB).

Average Lva value in the range from 35.2 to 56.3dB.

The value of Lva_{max} is 83.3 dB which is highest at the time from 9:00 to 9:30 AM on July 12^{th} . 2012.

The value of Lva_{min} is 30.4 dB which is lowest at the time from 23:00 to 23:30 PM on July 13^{th} . 2012.

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street. Me Tri commune. Tu Liem. Hanoi

Tel: (84-4) 37711668 – 22209668; Fax: (84-4) 22209666

TABLE 33. THE SIXTH RESULTS OF VIBRATION SAMPLE OF THE PACKAGE EX10 (JULY 2012)

Time	е		From 9:00 am to 9:30 am on July 12 th , 2012									
Parameter	Unit		Vibrati		el (Lv)	T			ration (Lva)			
		Z	Y	X	Average	Z	Y	X	Average			
L_{eq}		33.5	32.5	33.6	33.6	56.3	55.8	48.4	56.3			
$L_{\sf max}$		54.9	41	43.8	54.9	81.7	83.3	72.8	83.3			
Lmin	dB	20.8	21.4	24.7	24.7	36.3	34.8	32.4	36.3			
L_{10}		33.2	35.1	36.4	36.4	56.7	54	50.1	56.7			
L_{50}		28.1	31.7	32.7	32.7	44.2	42.8	39.9	44.2			
L_{90}		25.4	28.3	29.1	29.1	39.5	38.2	35.7	39.5			

Tim	e		From 11:00 am to 11:30 am on July 12 th . 2012									
Parameter	Unit				el (Lv)				ration (Lva)			
		Z	Y	X	Average	Z	Y	X	Average			
Leq		29.1	33.4	34.9	34.9	49.7	48	46	49.7			
L _{max}	dB	49.2	41.6	42.6	49.2	75.5	72.9	69.8	75.5			
L_{min}		22.4	21.7	24.9	24.9	32.2	30.4	30.2	32.2			
L ₁₀	u.D	30.7	36.1	37.7	37.7	47.7	46.7	45.6	47.7			
L_{50}		27.6	32.5	34	34	40.4	38.7	38.6	40.4			
L ₉₀		25.5	29	30.4	30.4	36	34.5	34.6	36			

Tim	е		From 13:00 pm to 13:30 pm on July 12 th . 2012									
Parameter	Unit				el (Lv)	_	·····		ration (Lva)			
		Z	Y	X	Average	Z	Y	X	Average			
$L_{\rm eq}$		28.2	34.7	36.8	36.8	39.8	36.6	37.3	39.8			
L _{max}		36.3	44.3	45.1	45.1	49.3	44.4	45.6	49.3			
L _{min}	dB	21.2	23	27.1	27.1	35.3	31.8	30.5	35.3			
L ₁₀	d.D	30.2	37.4	39.6	39.6	41.9	38.6	39.8	41.9			
L_{50}		27.6	33.6	35.9	35.9	38.8	35.9	36.2	38.8			
L ₉₀		25.5	30.1	32.4	32.4	37	33.9	33.8	37			

Time	Time		From 15:00 pm to 15:30 pm on July 12 th . 2012									
Parameter	Unit				el (Lv)	7			ration (Lva)			
- aramotor	Oille	Z	Y	X	Average	Z	Y	Х	Average			
Leq		28	33.4	35.2	35.2	43.5	41.5	40.6	43.5			
L_{max}		36.7	43.9	44.1	44.1	55.8	52.6	51.3	55.8			
Lmin	dB	22.7	23.4	25.8	25.8	40.2	38.5	36.3	40.2			
L_{10}	u.D	29.8	36.1	37.9	37.9	44.8	42.6	42.2	44.8			
L ₅₀		27.4	32.5	34.2	34.2	43	41.3	40.2	43			
L ₉₀		25.4	28.8	30.5	30.5	41.6	39.8	38.1	41.6			

79

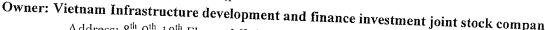
Consultancy: Institute of Environmental Technology

Address: No.18 Hoang Quoc Viet – Cau Giay – Ha Noi Tel: 043 7569 136; 043 7911 654 * Fax: 043 7911 203

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street.

Me Tri commune. Tu Liem. Hanoi

Tel: (84-4) 37711668 – 22209668; Fax: (84-4) 22209666


Time	9		From 17:00 pm to 17:30 pm on July 12 th . 2012									
D	T T : 4		Vibrat	ion Lev	el (Lv)	Vil	oration A	Accelera	ation (Lva)			
Parameter	Unit	Z	Y	Х	Average	Z	Y	X	Average			
L_{eq}		28.5	32.9	35.2	35.2	39	37.7	38.5	39			
L_{max}		42.3	42.6	43.7	43.7	52.4	58.9	56.8	58.9			
L_{min}	150	21.9	22.6	23.7	23.7	33.4	31.4	31.9	33.4			
L ₁₀	dB	29.8	35.5	37.9	37.9	40.5	38.4	40.1	40.5			
L ₅₀		27.2	32.1	34.6	34.6	37.9	35.2	36.7	37.9			
L ₉₀		25.2	28.5	30.9	30.9	36.1	33.3	34.3	36.1			

Time	9		From 19:00 pm to 19:30 pm on July 12 th . 2012									
Damarastan	Unit		Vibrati	on Lev	el (Lv)	Vil	oration	Acceler	ation (Lva)			
Parameter	Omi	Z	Y	X	Average	Z	Y	X	Average			
L_{eq}		27.9	33	36.1	36.1	45.5	44.5	42.80	45.5			
L _{max}		66	66.3	67.5	67.5	63.4	60.8	59.2	63.4			
L_{min}	dB	21.7	21.1	24.7	24.7	33.1	30.8	30.4	33.1			
L ₁₀	uБ	29.1	35	37.5	37.5	47.8	46	49.9	49.9			
L ₅₀		26.6	31.4	33.4	33.4	38.7	37.1	36.6	38.7			
L ₉₀		24.7	28.2	29.7	29.7	36	34.1	33.5	36			

Time	e		From 21:00 pm to 21:30 pm on July 12 th . 2012									
Donomoston	Unit		Vibrati	on Leve	el (Lv)	Vil	oration.	Acceler	ation (Lva)			
Parameter	Omi	Z	Y	X	Average	Z	Y	X	Average			
$L_{\sf eq}$		26.3	32.1	34.8	34.8	35.2	33	34.8	35.2			
L _{max}		36.1	40	43.2	43.2	48.1	42.1	48.1	48.1			
L _{min}	ī.D	20.2	20.4	25.5	25.5	30.5	27.5	27.9	30.5			
L ₁₀	dB	28.2	34.8	37.7	37.7	37.1	35.2	37.2	37.2			
L ₅₀		25.9	31.3	33.8	33.8	34.6	32.1	33.9	34.6			
L ₉₀		23.8	27.7	30.3	30.3	32.9	30.1	31	32.9			

Time	9		I	rom 23	:00 pm to 23:3	30 pm o	n July 1	13 th . 201	12
Donomoton	Unit		Vibrati	on Leve	l (Lv)	Vil	oration	Acceler	ation (Lva)
Parameter	Omi	Z	Y	X	Average	Z	Y	X	Average
$L_{\sf eq}$		27.1	31.4	34.8	34.8	40.5	35.5	36	40.5
L_{max}		40.2	39.5	41.7	41.7	63.6	55.9	53.2	63.6
L_{min}	dB	21.5	21.9	23.80	23.8	30.4	28.2	27.7	30.4
L_{10}	dБ	28.6	34.1	37.2	37.2	39.4	35.8	37.7	39.4
L_{50}		26.1	30.7	33.8	33.8	35	32.2	38.9	38.9
L_{90}		24.2	27.3	30.3	30.3	32.9	30	30.9	32.9

Owner: Vietnam Infrastructure development and finance investment joint stock company

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street.

Me Tri commune. Tu Liem. Hanoi

Tel: (84-4) 37711668 – 22209668; Fax: (84-4) 22209666

Time	2			From	1:00 am to 1:3	0 am or	1 July 1	3 th 201	<u> </u>
Parameter	Unit		Vibrat	ion Lev	el (Lv)				ration (Lva)
т		Z	Y	X	Average	Z	Y	X	Average
L _{eq}		27.1	33.5	36.9	36.9	43.4	40.4	42.3	43.4
L _{max}		75.4	72.9	74	75.4	61.6	69.5	63.8	69.5
L _{min}	dB	21.6	21.6	22.8	22.8	34.9	31.2	32.7	32.7
L_{10}		28.4	34.7	26	34.7	44.2	40	44.1	······································
L_{50}		20.1	30.8	32.2	32.2	40.4	35	37.6	44.2
L ₉₀		24.1	27.2	28.7	28.7	37.1	32.9	35	<u>40.4</u> 37.1

Time	2			From 3	3:00 am to 3:3	0 am or	Inly 1	2th 201	^
Parameter	Unit		Vibrat	ion Lev	el (Lv)				ration (Lva)
т		Z	Y	X	Average	Z	Y	X	Average
Leq		26.2	31.8	33.1	33.1	45.5	43.7	41.6	45.5
L _{max}		33.4	39.9	41.3	41.3	71.4	68.1	63.1	71.4
L _{min}	dB	19.7	22.1	24.2	24.2	36.5	36.5	35.9	36.5
L_{10}		28.8	34.2	35.9	35.9	42.6	42.3	42	42.6
L ₅₀		25.6	30.9	32.1	32.1	39.1	38.9	38.8	39.1
L ₉₀		23.4	27.6	28.5	28.5	37.8	37.7	37.2	37.8

Time	9			From:	5:00 am to 5:3	0 am or	Tuls: 1	2th 201	2
Parameter	Unit		Vibrat	ion Lev	el (Lv)				ration (Lva)
T		Z	Y	X	Average	Z	Y	X	Average
Leg		27	31.4	34.3	34.3	40.9	37.3	38.7	40.9
L _{max}		36.6	38.3	41.9	41.9	58.9	55.5	59.4	59.4
L _{min}	dB	20.7	21.2	22.9	22.9	32.7	30.1	30.6	32.7
- L ₁₀		29.4	34.1	37	37	42.3	38.5	39.8	42.3
L ₅₀		26.1	30.6	33.4	33.4	37.5	34.9	35.6	37.5
L ₉₀		23.8	27.3	29.8	29.8	35.1	32.8	33	35.1

Time	e			From	7:00 am to 7:3	0 am or	n July 1	3 th 201	2
Parameter	Unit	ļ	Vibrat	ion Lev	el (Lv)				ration (Lva)
		Z	Y	X	Average	Z	Y	X	Average
L_{eq}		29.4	31.6	32.9	32.9	47.1	42.1	42.9	47.1
L_{max}		44.7	39.8	41.2	44.7	64.4	61.7	58.2	64.4
L_{\min}	dB	22.1	23.4	21.8	23.4	35.3	31	31.6	35.3
L_{10}		31.2	34.2	35.7	35.7	49.6	44.3	45.5	49.6
L ₅₀		27.7	30.9	31.9	31.9	42.1	37.2	38.7	42.1
L ₉₀		25	27.8	28.3	28.3	38.6	34	35.7	38.6

Consultancy: Institute of Environmental Technology

Address: No.18 Hoang Quoc Viet – Cau Giay – Ha Noi Tel: 043 7569 136; 043 7911 654 * Fax: 043 7911 203

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street.

Me Tri commune. Tu Liem. Hanoi

Tel: (84-4) 37711668 - 22209668; Fax: (84-4) 22209666

Allowable maximum value of the vibration acceleration level for construction activities

No.	Location	Testing time per day	Allowable vibration acceleration level. dB Average level. Leq
		6:00 AM - 6:00 PM	75
1	Special location	6:00 PM – 6:00 AM	Background level
		6:00 AM – 9:00 PM	75
2	Normal location	9:00 PM - 6:00 AM	Background level

+ Results of surface water sample:

Surface water sample (coded NM 5.6) was monitored and sampled at Lach Tray river – Hai Phong City. Coordinates of sampling location: N 20° 57.730 - E 105° 57. 265. Sample was taken 3 times at the times. a sample per 8 hours in 24 hours with 01 blank sample. pH and DO parameters are tested on location. The samples were refrigerated and fixed after sampling and transported to the laboratory in the shortest time. NM 5.6.1: sampling at 3:00 PM on July 12th. 2012; NM 5.6.2: sampling at 23:00 PM on July 12th. 2012; NM 5.6.3: sampling at 7:00 AM on July 13th. 2012. During the sampling process. appearance of boats in navigation on the Lach Tray river. Results of sample analysis are shown in table 34 as below.

The result table showed that oil & grease parameters are 0.11; 0.11; and 0.11 mg/L higher than ones in the column B1 (0.1 mg/L. lower than the limit value is 0.3 mg/L in column B2 of National technical regulation on surface water quality (QCVN 08:2008/BTNMT). COD and BOD₅ parameters of all 03 samples are lower than both B1 and B2 column at the different times according to QCVN 08:2008/BTNMT. All parameter of TSS (Total suspended solids). total phosphorus and total nitrogen are lower than QCVN 08:2008/BTNMT. The values of DO (Dissolved Oxygen) are lower than ones in the column B1 (\geq 4mg/L) (QCVN 08:2008/BTNMT).

As for pesticides of organic chlorine group have quantitative limit of analysis method is 0.05 μ g/L (the most of environmental laboratories only determine this quantitative limit). However, according to National technical regulation on surface water quality (QCVN 08:2008/BTNMT), comparative value about 0.004 – 0.01 μ g/L (Aldrin - Dieldrin); 0.014 – 0.01 μ g/L (Endrin) etc.

On the other hand, comparison of National technical regulation on surface

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street. Me Tri commune. Tu Liem. Hanoi

Tel: (84-4) 37711668 – 22209668; Fax: (84-4) 22209666

water quality (QCVN 08:2008) and Surface water quality standard (TCVN 5942:1995). DDT is 0.01 mg/L corresponding to 10 μ g/L in Viet Nam standard. Vietnam standard (TCVN) by Ministry of science and technology promulgate while Vietnam regulation by Ministry of natural resources and environment promulgate that regulation for parameters of surface water but different to 2500 times.

Me Tri commune. Tu Liem. Hanoi Tel: (84-4) 37711668 – 22209668; Fax: (84-4) 22209666

Address: 8th-9th-10th Floors. LILAMA 10 Building. Le Van Luong street.

TABLE 34. THE SIXTH RESULTS OF SURFACE WATER OF THE PACKAGE EX10 (JULY 2012)

Thit
NM 5.6.1
ĺ
1
i
1
1
1
1

84

Consultancy: Institute of Environmental Technology

Address: No.18 Hoang Quoc Viet – Cau Giay – Ha Noi Tel: 043 7569 136; 043 7911 654 * Fax: 043 7911 203

Address: 4th-5th Floors, VIT tower, 519 Kim Ma Str., Ba Dinh, Hanoi Tel: (84-4) 37711668 – 22209668; Fax: (84-4) 22209666

Note: QCVN 08:2008/BTNMT - National technical regulation on surface water quality B1-For the usage of irrigation or other purpose having the similar quality requirement like B2 level

B2 For the usage of water navigation and other purpose with less water quality MT: Blank sample.

IV. MEASURES TO REDUCE AND RESOLVE THE NEGATIVE IMPACTS ON ENVIRONMENT.

4.1. Mitigation and treatment of negative environmental impacts are applied

As mentioned in the sources of waste, the project's the most negative impacts in this stage are those impacts to the environment of air. noise. So the company made a number of solutions following:

- For air environment:

Cleaning of material transporting vehicles before leaving the site.

Vehicles must be covered with tarpaulins. the powder material should be packed and transportation must meet the standard of toxic gas emissions.

Arranging a reasonable schedule for the truck coming in and out of the site to avoid driving vehicles into the field with no way out or the trucks on the road making the line -up that will increase the total amount of dust. emissions per unit of length as well as distance per unit of time. thus contributing to reduce the unfortunate incidents occurring during transportation. such as reducing visibility of vehicles. traffic. traffic jam . traffic accidents. ...

For warehouse: all types of sand, small particles of materials for concrete production is concentrated in the warehouse or covered carefully.

Water spraying to control dust: Regularly spraying water to the dump heaps of material or materials stockpiles. especially in dry or windy weather.

Batching plants: located far from residential areas; mixed materials from the plant transferred to the vehicle should have been sealed top at three sides and covered curtain over the entrance. For materials those can be easy to cause dust. packaging should not exceed 2 sides overflow into the car and blocked the car door. in addition to using clean canvas to cover. Periodically wash and flush batching plants.

- Control noise pollution:

Rationally arrange construction schedule. restrict the continuous construction at night

Transport time of construction materials should be arranged appropriately especially when passing through the area of villages. schools. churches... must reduce speed and definitely avoid blowing horns

Consultancy: Institute of Environmental Technology

Address: No.18 Hoang Quoc Viet - Cau Giay - Ha Noi Tel: 043 7569 136; 043 7911 654 * Fax: 043 7911 203

Address: 4^{th} - 5^{th} Floors, VIT tower, 519 Kim Ma Str., Ba Dinh, Hanoi Tel: (84-4) 37711668 – 22209668; Fax: (84-4) 22209666

For equipments with big noise should be arranged with revolving construction to avoid the phenomenon of resonance noise.

For workers who have suffered from noise were equipped more protective equipment such as ear protection. helmet. ... to protect health

Material stockpiles. batching plants should be far from area of schools. resident. administrative and professional units. ...

- Protect water environment:

Coordinate with local authorities and local people to implement the ditch rehabilitation

- Handle living waste and construction waste:

Based on the guidance of Ordinance No. 59/2007/ND-CP dated 09/04/2008 signed on "solid waste". not allowed to pour the waste into the street. rivers. streams. water channels and surface water.

Make the most use of waste to reduce the amount of waste to be handled. do not dump garbage indiscriminately

Contracts with Public Works and Tourism Services Company for waste collection and treatment in time.

4. 2. Control other effects on the environment

- Protect fields and gardens
- Arrange the reasonable construction site. carefully make layout areas of batching plants. material stockpiles. living and working areas.

Protect daily lives of local people by:

Building service road during construction to facilitate traveling.

All trucks carrying materials not exceeding specified load Bureau of Vietnam's roads. speed should not exceed 60km/h.

Setting the speed limit signs. weight restrictions. aimed at minimizing the damage to the existing road network

Putting sign boards at restricted areas for people traveling or not being traveled through the construction site under construction.

V. CONCLUSION AND RECOMMENDATION

Results of soil. groundwater. surface water. noise. vibration and air environmental quality monitoring shows that air and water environmental quality are rather good. There is favorable condition for implementing of the Ha Noi – Hai Phong expressway project.

However. parameters of total oil & grease. coliform. COD are equal as allowable

Address: 4th-5th Floors, VIT tower, 519 Kim Ma Str., Ba Dinh, Hanoi Tel: (84-4) 37711668 – 22209668; Fax: (84-4) 22209666

limit of regulation.

Analysis results of dust at EX3 package by General construction company China road at the site monitoring Ly Thuong Kiet commune, Yen My District, Hung Yen province exceeded 1.6 standard allows times. Recommend contractor should strengthen the implementation of fresh water and measures to minimize dust. Analysis results of dust at pack EX 8 (Quan Re, My Duc, An Lao District, Hay Phong City) by Son Dong road and bridge Co.. Ltd. Observation time daytime dust concentrations exceed the permitted standards. Contractor should strengthen measures to minimize dust during construction to minimize dust.

According to the results of environmental monitoring, the contractors need to implement and maintain measures to reduce environmental pollution in order to ensure project in next time. Vietnam Infrastructure development and finance investment joint stock company undertook to implemented well about measures of environmental pollution reduction that proposed in the content of Environmental monitoring report.

Address: 4th-5th Floors, VIT tower, 519 Kim Ma Str., Ba Dinh, Hanoi Tel: (84-4) 37711668 – 22209668; Fax: (84-4) 22209666

APPENDIX

VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY INSTITUTE OF ENVIRONMENTAL TECHNOLOGY DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

Address: R.712, A30 Building 18 Hoang Quoc Viet Road -Cau Giay District - Hanoi -Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

ANALYTICAL RESULT

Client

No: W1207.183 : Vietnam Infrastructure Development and Finance Investment Joint Stock

Company (VIDIFI., JSC)

Address

: 8th-9th-10th floors, LILAMA 10 Building, Le Van Luong street

Me Tri commune, Tu Liem, Ha Noi

Kind of sample

: Ground water (Contract: 74/VDIFI-VCNMT/2010)

Number of sample

: 02

VILAS 366

Preservation

: 01 PE Bottle 0,5L refrigerate.

01 PE Bottle 0,5L, preserved HNO₃ refrigerate. 01 PE Bottle 0,5L, preserved H₂SO₄ refrigerate.

01 glass Bottle 1,0 L

Sampling place

: Nguyen Van Than, Dau Cau Hamlet ,Nguyen Village ,Cuu Cao Commune, Van Giang District, Hung Yen Province(Package EX2-

NN2.6)

Co-ordinate

: N 20° 57,730- E 105° 57, 265

Sampling time

: July 3rd, 2012

Testing time

: From July 05th to July 16th 2012

No	Parameter	Unit	Test methods	Res	ults	QCVN
110	1 at affected	Cint	1 est methods	NN 2.6	MT	09:2008/ BTNMT
1.	Temperature	°C	TCVN 4457-1988	27.8	27.0	-
2.	pН	-	TCVN 6492 – 1999	7.71	7.10	5.5 – 8.5
3.	COD	mgO_2/L	KMnO ₄ Method	2.2	< 1.0	4
4.	BOD ₅	mg/L	TCVN 6001 – 2008	<1.0	< 1.0	-
5.	TSS	mg/L	SMEWW 2540D – 2005	5	< 3.0	-
6.	Total P	mg/L	TCVN 6202 – 2008	0.07	< 0.01	-
7	Total N	mg/L	TCVN 5987-1995	4.5	< 0.10	
8.	Coliform	MPN/	TCVN 6187 – 1 –1996	5	ND	3
9.	E. Coli	100mL	1CVN 0167 - 1 -1990	ND	ND	ND

Note: QCVN 09:2008/BTNMT: National technical regulation on underground water quality.

ND: Non detect

Hanoi. July 16th. 2012

Department of Environmental Quality Analysis

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Deputy Director

CÔNG NGHỆ MÔI TRƯỜNG

Dr. Nguyen Thi Hue

1. Test results are valid for test samples

Vu Van Tu

DEQA/TT/BM/17.01

Version: 1.03

Page: 1/1

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Page: 1/2

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY - - - CONTRACTOR AND IECHNOLOGY

PARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

Address: R.712, A30 Building 18 Hoang Quoc Viet Road -Cau Giay District - Hanoi - Vietnam Tel: (84 - 4) 3791 1654

Fax: (84 - 4) 3791 1203

ANALYTICAL RESULT

No: W1207.186-188

: Vietnam Infrastructure Development and Finance Investment Joint Stock Company (VIDIFI., JSC)

: 8th.-9th.-10th floors, LILAMA 10 Building, Le Van Luong street, Me Tri commune, Tu Liem, Ha Noi

: Surface water (Contract : 74/VDIFI-VCNMT/2010) Kind of sample

Number of sample

VILAS 366

Client

Address

: 01 PE Bottle 0,5L refrigerate. Preservation

01 PE Bottle 0,5L, preserved HNO3 refrigerate.

01 PE Bottle 0,5L, preserved H₂SO₄ refrigerate

01 glass Bottle 1,0 L

: Bac Hung Hai River, Cuu Cao Commune, Van Giang District, Hung Yen Province (Package EX2) Sampling place

: N 20° 57'730"- E 105° 57' 265" Co-ordinate

: From July 3rd to July 4th 2012 Sampling time

: From July 5th to July 16th 2012 Testing time

2	Doromotor	Imit	Took models		Res	Results		20	QCVN
2		OIIII	I est memous	NM 1.6.1	NM 1.6.2	NM 1.6.3	MT	Column B1	Column B2
	hH	г	TCVN 6492 – 1999	7.63	7.71	7.33	7.1	5.5-9	5.5 -9
2.	DO	mg/L	TCVN 7325 – 2004	4.65	3.90	2.70	7.0	¥I	77
	COD	mgO ₂ /L	KMnO ₄ Method	12.8	8.8	15.2	< 1.0	30	20
4.	BOD_5	mg/L	TCVN 6001 – 2008	6.3	4.9	7.1	< 1.0	15	. 25
	TSS	mg/L	SMEWW 2540 D – 2005	6	8	8	<3.0	50	100
	Total P	mg/L	TCVN 6202 - 2008	0.67	0.73	0.74	< 0.01	ì	
	Total N	mg/L	TCVN 5987-1995	11.8	12.0	12.7	< 0.10	1	
8.	Pesticides			<0.5	<0.5	<0.5	< 0.5		
9.	Aldrine+	l/gn	TCVN 7876: 2008	<0.05	<0.05	<0.05	<0.05	0.008	0.01
10.	Endrine			<0.05	<0.05	<0.05	<0.05	0.014	0.01

1. Test results are valid for test samples

2. Only quoted a part of test report if receiving the agreement by terms of DEQA

3. Test iterms in italic are not recognized by VILAS: test iterms marked by (*) are recognized by subcontractor

4. Name of sample, customers written by customers' request

Version: 1.03

DEQA/TT/BM/17.01

VIETNAM ACADEMY OF SCIENCE AND LECTINOLOGY INSTITUTE OF ENVIRONMENTAL TECHNOLOGY DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

Cau Giay District – Hanor - Vietnam Tel: (84 - 4) 3791 1654

7	đ	.			Res	Results		QCVN	N
0	Farameter	Onit	r est methods	NM 1.6.1	NM 1.6.2	NM 1.6.3	MT	Column B1	Column B2
=	BHC			< 0.05	<0.05	<0.05	<0.05	0.13	0.015
12.	DDT	•		<0.05	<0.05	<0.05	< 0.05	0.004	0.005
13.	DDD			< 0.05	< 0.05	<0.05	< 0.05	ı	ı
14.	Endosunfane	μg/L	TCVN 7876: 2008	< 0.05	<0.05	<0.05	< 0.05	0.01	0.02
15.	Lindane			< 0.05	<0.05	<0.05	< 0.05	0.38	0.4
16.	Chlordane			< 0.05	<0.05	<0.05	< 0.05	0.02	0.03
17.	Heptachlor			< 0.05	< 0.05	<0.05	< 0.05	0.02	0.05
18.	Mineral oil	mg/L	SMEWW 5520 B - 2005	0.10	0.10	0.11	< 0.05	0.1	0.3
19.	Coliform	MPN/100 mL	TCVN 6187-1:1996	2300	2100	2800	ND	7500	10000

Note: QCVN 08:2008/BTNMT: National technical regulation on surface water quality

BI-For the usage of irrigation or other purpose having the similar quality requirement like B2 level

B2 – For the usage of water navigation and other purpose with less water quality NM 1.6.1: Sampling at 15:00 pm on July 3rd. 2012; M 1.6.2: Sampling at 23:00 pm on July 3rd. 2012; NM 1.6.3: Sampling at 7:00 am on July

4th. 2012; MT: Blank sample; ND: non detect

Department of Environmental Quality Analysis

Vu Van Tu

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Hanoi. July 16th. 2012

Deputy Director

Dr. Nguyen Thi Hue

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366 INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Address: R.712. A30 Building 18 Hoang Quoc Viet Road -Cau Giay District - Hanoi - Vietnem Tel: (84 - 4) 3791 1654

ANALYTICAL RESULT

Fax: (84 - 4) 3791 1203

No: A1207.64-67

VILAS 366

: Vietnam Infrastructure Development and Finance Investment Joint Stock Company (VIDIFI., JSC)

: 8th-9th-10th floors, LILAMA 10 Building, Le Van Luong street, Me Tri commune, Tu Liem, Ha Noi

: Air (Contract: 74/VDIFI-VCNMT/2010) Kind of sample

Number of sample

Address

: 179 Intersection, Cuu Cao Commune, Van Giang District, Hung Yen Province (Package EX2-K2.6) Sampling place

: N 20° 57,73.0" - E 105° 57', 26.5" Co-ordinate

: From 9 am July 03rd to 7 am on July 4th, 2012 Testing time

QCVN 05.2009/RTNMT			300	350		30000
K 2.6.4	3:00 am July 04th, 2012	154	78	81	30	2048
K 2.6.3	21:00 pm July 03 rd , 2012	122	92	06	27	1460
K 2.6.2	15:00 pm July 03 rd , 2012	160	112	95	27	3018
K 2.6.1	9:00 am July 03 rd .2012	195	83	98	63	1073
Unit			µg/m³			
Parameter	Time	VOCs	Dust	SO_2	NO_2	9
Name of sample		FY	122 - X	0.5 VI		

Note: QCVN 05:2009/ BTNMT: National technical regulation on ambient air quality

Department of Environmental Quality Analysis

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY Dr. Nguyen Thi Hue Deputy Director

Hanoi. July 16th, 2012

Vu Van Tu

Test results are valid for test samples

2. Only quoted a part of test report if receiving the agreement by terms of DEQA

3. Test iterms in italic are not recognized by 1711AS; test iterms marked by (*) are recognized by subcontractor

4. Name of sample, customers written by customers' request

....... ACADEMY OF SCIENCE AND TECHNOLOGY

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

Address: R.712. A30 Building 18 Hoang Quoc Viet Road -Cau Giay District - Hanoi - Vietnam Fax: (84 - 4) 3791 1203 Tel: (84 - 4) 3791 1654

ANALYTICAL RESULT

No: A1207.64-67

: Vietnam Infrastructure Development and Finance Investment Joint Stock Company (VIDIFI., JSC) VILAS 366

Address

Client

: 8th-9th-10th floors, LILAMA 10 Building, Le Van Luong street, Me Tri commune, Tu Liem, Ha Noi

: Air (Contract: 74/VDIFI-VCNMT/2010) Kind of sample

Number of sample

: 179 Intersection, Cuu Cao Commune, Van Giang District, Hung Yen Province (Package EX2-K2.6) : N 20° 57,73.0" - E 105° 57', 26.5" Co-ordinate

Testing time

Sampling place

: From 9 am July 03rd to 7 am on July 4th, 2012

05:2009/BTNMT OCVN 30000 300 350 July 04th, 2012 3:00 am K 2.6.4 2048 154 30 78 81 July 03rd 2012 21:00 pm K 2.6.3 1460 122 27 90 July 03rd, 2012 15:00 pm K 2.6.2 3018 160 112 27 95 July 03rd 2012 K 2.6.1 9:00 am 195 63 83 µg/m³ Unit Parameter VOCs Time Dust NO₂ SO2 Name of sample EX 2-K 2.6

Note: QCVN 05:2009/ BTNMT: National technical regulation on ambient air quality

Department of Environmental Quality Analysis

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY Deputy Director

Dr. Nguyen Thi Hue

Hanoi. July 16th. 2012

Vu Van Tu

1. Test results are valid for test samples

2. Only quoted a part of test report if receiving the agreement by terms of DEQA

3. Test iterms in italic are not recognized by 17LAS: test iterms marked by (*) are recognized by subcontractor

4. Name of sample, customers written by customers' request

DEQA/TT/BM/17.01

Version: 1.03

VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY INSTITUTE OF ENVIRONMENTAL TECHNOLOGY DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

Address: R.712, A30 Building 18 Hoang Quoc Viet Road - Cau Giay District - Har - Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

ANALYTICAL RESULT

No: A1207.EX2

Client

: Vietnam Infrastructure Development and Finance Investment Joint Stock

Company (VIDIFI., JSC)

Address

: 8th-9th-10th floors, LILAMA 10 Building, Le Van Luong street

Me Tri commune, Tu Liem, Ha Noi

Kind of sample

: Vibration (Contract : 74/VDIFI-VCNMT/2010)

Number of sample: 12

Name of sample

: EX 2 - K2.6

Testing place

: 179 Intersection, Cuu Cao Commune, Van Giang District, Hung Yen Province

(Package EX2)

Co-ordinate

: N 20° 57'73.0"- E 105° 57' 26.5"

Testing time

: From 9:00 am July 03rd to 7:30 am July 04th, 2012

Time	2			From 9	9:00 am to 9:3	0 am on	July 0	3 rd , 2012	
Parameter	Unit		Vibra	ation Lev	rel (Lv)				ation (Lva)
	dB -	Z	Y	X	Average	Z	Y	X	Average
Leq		35.9	31.8	33.8	35.9	58.8	51.8	50.9	58.8
L _{max}	dВ	47.7	38.4	41.7	47.7	80.5	67.2	69.7	80.5
L _{min}	dB	29.2	24.8	25.3	29.2	47.3	42.5	43.5	47.3
I _{>10}		33.3	34.2	36.3	36.3	59.4	54.2	53.1	59.4
L ₅₀	dB	34.4	31	33	34.4	53.6	48.5	47.6	53.6
L ₉₀		32.1	28.2	29.9	32.1	50	46	45.5	50

Time	Time		From 11:00 am to 11:30 am on July 03 rd , 2012									
Parameter	Unit	Vibration Level (Lv)				Vibration Acceleration (Lva)						
		Z	Y	X	Average	Z	Y	X	Average			
L _{eq}		31.2	32.8	36	36	57.5	51.4	48.5	57.5			
L _{max}		45.8	52.1	56.5	56.5	73.3	67.1	62.1	73.3			
L_{min}	dB	22.3	22.9	23.2	23.2	44	37.7	35.7	44			
L ₁₀	u.D	34.1	35.3	38	38	61	54	51.1	61			
L ₅₀		29.2	31.7	34.2	34.2	53.2	46.9	44.8	53.2			
L ₉₀		26.6	28.4	30.7	30.7	48.5	42.9	41	48.5			

Time			From 13:00 pm to 13:30 pm on July 03 rd , 2012									
Parameter	Unit		Vibra	tion Lev	el (Lv)	Vibration Acceleration (Lva)						
V CIA	Z	Y	X	Average	Z	Y	X	Average				
Leq		31.8	33.2	34.8	34.8	55.8	52.9	49.4	55.8			
L _{max}		46	40.4	43.8	46	80.8	75.1	70.7	80.8			
L_{\min}	dB	22.4	23.8	25.1	25.1	38.2	35.4	32.5	38.2			
L ₁₀	uD.	34.1	35.9	37.5	37.5	58.3	55.8	52.5	58.3			
L ₅₀		28.8	32.4	34	34	48.3	45.6	44.1	48.3			
L ₉₀		26.3	28.9	30.6	30.6	42.5	39.6	37.9	42.5			

^{1.} Test results are valid for test samples

DEQA/TT/BM/17.01

Version: 1.03

Page: 1/4

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY INSTITUTE OF ENVIRONMENTAL TECHNOLOGY DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

Address: R.712, A30 Building 18 Hoang Quoc Viet Road - Cau Giay District Hanoi - Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

Time)	From 15:00 pm to 15:30 pm on July 03 rd , 2012									
D	TT •4		Vibrat	tion Lev	el (Lv)	Vibration Acceleration (Lva)					
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
Leq		37.9	32.4	34.5	37.9	58.2	55.5	49.6	58.2		
L _{max}		46.7	41.1	45.2	46.7	78.1	71	65.5	78.1		
L _{min}	מג	30.2	23.1	26.5	30.2	44	40.6	37.8	44		
L ₁₀	dB	40.3	35	37	40.3	61.3	59.2	52.8	61.3		
L ₅₀		37	31.5	33.7	37	53.1	51	45.6	53.1		
L ₉₀		34.5	28.5	30.7	34.5	47.6	45.6	42	47.6		

Time	<u>, </u>]	From 1'	7:00 pm to 17:3	0 pm on	July 0	3 rd , 201	2
n	WY *4		Vibra	tion Le	evel (Lv)	Vibration Acceleration (Lva)			
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		34.2	30.9	32.7	34.2	59.6	55.2	52	59.6
L _{max}		45.2	37.6	39.7	45.2	83.2	79.9	76.8	83.2
L_{\min}	dB	23.9	23.4	23.3	23.9	45.6	40.2	37.5	45.6
L_{10}	uБ	37.3	33.4	35.3	37.3	60.2	55.4	51.8	60.2
L ₅₀		32.3	30.3	31.9	32.3	53.6	48.8	45.3	53.6
L ₉₀		27.3	27.3	28.7	28.7	50	44.6	40.9	50

Time)		From 19:00 pm to 19:30 pm on July 03 rd , 2012								
D			vel (Lv)	Vibration Acceleration (Lva)							
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
L_{eq}		29.5	30.3	31.8	31.8	56.7	54.5	49.4	56.7		
L _{max}		40.4	37.8	40.3	40.4	80	78.5	70.2	80		
Lmin	4D	22.6	21.8	23.1	23.1	38	35.7	32	38		
L_{10}	dB	31.3	32.8	34.3	34.3	57.5	54.9	49.4	57.5		
L ₅₀		28.7	29.7	31	31	48.1	45.7	40.9	48.1		
L ₉₀		26.7	26.1	27.8	27.8	42.8	40.3	35.9	42.8		

Time			From 21:00 pm to 21:30 pm on July 03 rd , 2012									
D		Vibration Level (Lv)					ration	Acceler	ation (Lva)			
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
L_{eq}		35.3	30.5	32	35.3	56.7	46.3	45.1	56.9			
L _{max}		46.7	40	38.8	46.7	70.3	62.2	61.5	70.3			
L _{min}	dB	31.9	21.6	23.4	31.9	53.8	43.2	41.1	53.8			
L_{10}	uБ	36.8	33.1	34.6	36.8	58.2	47.5	46.6	58.2			
L ₅₀		33.7	29.7	31.3	33.7	55.4	44.8	43.5	55.4			
L ₉₀		33	26.5	27.9	33	54.7	43.9	42.3	54.7			

 $I.\ Test\ results\ are\ valid\ for\ test\ samples$

DEQA/TT/BM/17.01 Version: 1.03 Page: 2/4

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA $\,$

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY ACCUMUNITATION OF ENVIRONMENTAL TECHNOLOGY DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

Address: R.712, A30 Building 18 Hoang Quoc Viet Road -Cau Giay District - Han - Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

	VILAS 366-			From 23:00 pm to 23:30 pm on July 03 rd , 2012								
Parameter	Unit			tion Lev		Vibration Acceleration (Lva)						
· · · · · · · · · · · · · · · · · · ·	Z	Y	X	Average	Z	Y	X	Average				
Leq		28.8	30.1	31.6	31.6	42.6	40.9	41.8	42.6			
L_{max}		44.7	37.8	38.2	44.7	57.2	56.8	56.8	57.2			
Lmin	dB	20.2	21.2	22.6	22.6	33.3	29.6	29.7	33.3			
L ₁₀	an	28.8	22.7	34.2	34.2	45.2	43	44.4	45.2			
L ₅₀		25.2	29.4	31	31	36.4	33.5	35.2	36.4			
L ₉₀		22.9	26.2	27.5	27.5	34.6	31.2	32.6	34.6			

Time			From 1:00 am to 1:30 am on July 04th, 2012									
Parameter	Unit		Vibra	tion Lev		Vibration Acceleration (Lva)						
i arameter Omit	Z	Y	X	Average	Z	Y	X	Average				
L _{eq}		30.2	30	32.5	32.5	36.1	36.3	33.5	36.3			
L _{max}		45.9	37.1	40.7	45.9	53.2	59.4	43.6	59.4			
L _{min}	dB	_20	22.6	23.9	23.9	31.3	28.8	28.5	31.3			
L ₁₀	ub	30.9	32.6	35.2	35.2	37.3	35.4	35.7	37.3			
L ₅₀		25.1	29.3	31.7	31.7	34.5	32.3	32.5	34.5			
L ₉₀		22.7	25.9	28.1	28.1	33	30.8	30.4	33			

Time	81		From 3:00 am to 3:30 am on July 04th, 2012									
Parameter	Unit	Vibration Level (Lv)				Vibration Acceleration (Lva)						
i ai ameter Offit	Z	Y	X	Average	Z	Y	X	Average				
L_{eq}		29.9	30.5	32.2	32.2	43.9	40.7	40.5	43.9			
L _{max}		46.1	38.6	38.8	46.1	60.3	55.4	57	60.3			
L_{min}	dB	20.2	20.5	23.1	23.1	36.8	32.4	32.3	36.8			
L ₁₀	uD	30.4	33.1	34.8	34.8	46.5	43.8	43.5	46.5			
L_{50}		27.7	29.8	31.4	31.4	38.9	35.5	35.7	38.9			
L90		23.8	26.4	27.9	27.9	37.5	33.7	33.8	37.5			

Time			From 5:00 am to 5:30 am on July 04 th , 2012									
Parameter	Unit		Vibra	tion Lev	el (Lv)	Vibration Acceleration (Lva)						
i ai ainetei Onit	Z	Y	X	Average	Z	Y	X	Average				
Leq		29.8	30.2	31.8	31.8	46.7	44.9	47.3	47.3			
L _{max}		44.6	37.2	38.9	44.6	67.2	66.5	66.8	67.2			
L _{min}	dB	20.9	21.2	21.7	21.7	33.5	31	33.4	33.5			
L ₁₀	uD	31.5	32.9	34.4	34.4	48.7	46.6	50.1	50.1			
L ₅₀		20.2	29.4	31	31	41.5	39.6	42.1	42.1			
L90		23.8	25.9	27.7	27.7	36.5	34.1	37.7	37.7			

^{1.} Test results are valid for test samples

DEQA/TT/BM/17.01

Version: 1.03

Page: 3/4

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY INSTITUTE OF ENVIRONMENTAL TECHNOLOGY DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

Address: R.712, A30 Building 18 Hoang Quoc Viet Road –Cau Giay District – Hanoi

- Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

Time		From 7:00 am to 7:30 am on July 04th, 2012									
D 4 11-14			Vibrat	tion Leve	TATEL STREET,	Vil	bration	Acceler	ation (Lva)		
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
L_{eq}		31.7	30.3	32.1	32.1	52.8	51	45.8	52.8		
L _{max}		46.8	37.5	40.3	46.8	69.8	63.5	60.2	69.8		
L_{min}	ID	22.8	20.5	22.7	22.8	39.1	37	33.4	39.1		
L ₁₀	dB	34.5	32.8	34.9	34.9	55.9	54.2	48.2	55.9		
L ₅₀		29.1	29.5	31.3	31.3	49.9	48.6	42.6	49.9		
L ₉₀		26.1	26.5	27.8	27.8	44.3	42.1	38	44.3		

Allowable maximum value of the vibration acceleration for contruction activities

No	Area	Time in day	Vibration Acceleration (dB) Average (Leq)
	0 11	From 6 am to 6 pm	75
1	Special area	From 18 pm to 6 am	Background level
	N. T	From 6 am to 9 pm	75
2	Normal area	From 9 pm to 6 am	Background level

Note: QCVN 27:2008/BTNMT: National Technical Regulation on Vibration

Department of Environmental Quality Analysis

Hanoi, July 16th, 2012

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Deputy Director

Dr. Nguyen Thi Hue

Vu Van Tu

1. Test results are valid for test samples

2. Only quoted a part of test report if receiving the agreement by terms of DEQA

3. Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

4. Name of sample, customers written by customers' request

VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY INSTITUTE OF ENVIRONMENTAL TECHNOLOGY DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

Address: R.712, A30 Building 18 Hoang Quoc Viet Road –Cau Giay District – Hanoi - Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

ANALYTICAL RESULT

VILAS 366

No: W1207.184

Client

: Vietnam Infrastructure Development and Finance Investment Joint Stock

Company (VIDIFI., JSC)

Address

: 8th-9th-10th floors, LILAMA 10 Building, Le Van Luong street

Kind of sample

Me Tri commune, Tu Liem, Ha Noi : Ground water (Contract: 74/VDIFI-VCNMT/2010)

Number of sample

. 02

Preservation

: 01 PE Bottle 0,5L refrigerate

01 PE Bottle 0,5L, preserved HNO₃ refrigerate 01 PE Bottle 0,5L, preserved H₂SO₄ refrigerate

01 glass Bottle 1,0 L

Sampling place

: Mr. Le Van Hoa, Tu Duong Village- Ly Thuong Kiet Commune – Yen My

District, Hung Yen Province (Depth: 45m). (Package EX3-NN3.6)

Co-ordinate

: N 20° 51,603- E 106° 01, 448 : From July 4th 2012

Sampling time Testing time

: From July 5th to July 16th 2012

No	Parameter	Unit	Test methods	Results		QCVN	
140	rarameter	Ont	1 est methods	NN 3.6	MT	09:2008/ BTNMT	
1.	Temperature	°C	TCVN 4457-1988	27.8	27.0	-	
2.	pН	-	TCVN 6492 – 1999	7.70	7.10	5.5 – 8.5	
3.	COD	mgO ₂ /L	KMnO ₄ Method	3.2	< 1.0	4	
4.	BOD ₅	mg/L	TCVN 6001 – 2008	1.5	< 1.0	=	
5.	TSS	mg/L	SMEWW 2540 D – 2005	5	< 3.0	-	
6.	Total P	mg/L	TCVN 6202 – 2008	0.06	< 0.01	-	
7.	Total N	mg/L	TCVN 5987-1995	0.5	< 0.10		
8.	Coliform	MPN/	mgrny (105 1 100 (9	ND	3	
9.	E. Coli	100mL	TCVN 6187 – 1 –1996	ND	ND	ND	

Note: QCVN 09:2008/BTNMT: National technical regulation on underground water quality.

ND: Non detect

Hanoi. July 16th. 2012

Dept. Environmental Quality Analysis

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY
Deputy Director

Dr. Nguyen Thi Hue

Vu Van Tu

1. Test results are valid for test samples

2. Only quoted a part of test report if receiving the agreement by terms of DEQA

3. Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

4. Name of sample, customers written by customers' request

DEQA/TT/BM/17.01

Version: 1.03

Page: 1/1

VIELINAM ACADEMY OF SCIENCE AND TECHNOLOGY

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

Address: R.712, A30 Building 18 Hoang Quoc Viet Road -Cau Giay District - Hanoi - Vietnam Fax: (84 - 4) 3791 1203 Tel: (84 - 4) 3791 1654

ANALYTICAL RESULT

No: A1207.68-71.1

Client VILAS 366; Vietnam Infrastructure Development and Finance Investment Joint Stock Company (VIDIFI., JSC)

: 8th-9th-10th floors, LILAMA 10 Building, Le Van Luong street, Me Tri commune, Tu Liem, Ha Noi Address

: Air (Contract: 74/VDIFI-VCNMT/2010) Kind of sample

Number of sample

: Tu Duong Village - Ly Thuong Kiet Commune - Yen My District, Hung Yen Province, Intersection with : 4 sample Sampling place

the 39 road far from the expressway about 5 m and 39 road about 150 m (Package EX3-K3.6)

: N 20° 51'60.3"- E 106° 01' 48.8" Co-ordinate : From 9 am July 4th to 7 am on July 5th, 2012 Testing time

Name of sample	Parameter	Unit	K 3.6.1	K3.6.2	K 3.6.3	K 3.6.4	QCVN 05:2009/BTNMT
	Time		9:00 am July 4 th . 2012	15:00 pm July 4th. 2012	21:00 pm July 4 th . 2012	3:00 am July 5 th . 2012	
7 7 7	VOCs		165	154	110	105	
EX 3 -	Dust	µg/m³	267	324	218	182	300
N. 3.0	SO_2		103	120	109	26	350
	NO2		30	28	23	22	1
	00		2683	4812	2465	1163	30000

Note: QCVN 05:2009/ BTNMT : National technical regulation on ambient air quality

Hanoi, July 16th, 2012

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Department of Environmental Quality Analysis

Dr. Nguyen Thi Hue VIE Deputy Director

Vu Van Tu

1. Test results are valid for test samples

2. Only quoted a part of test report if receiving the agreement by terms of DEQA

3. Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

4. Name of sample, customers written by customers' request

Version: 1.03

Page : 1/1

DEQA/TT/BM/17.01

VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Fax: (84 - 4) 3791 1203 Tcl: (84 - 4) 3791 1654 DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

-Cau Giay District - Hanoi - Vietnam

Address: R.712, A30 Building 18 Hoang Quoc Viet Road

ANALYTICAL RESULT

No: A1204. EX 3

: Viet Nam Infrastructure Development and Finance Investment Joint Stock Company

: 8th-9th-10th floors, LILA:MA 10 Building, Le Van Luong street, Me Tri commune, Tu Liem, Ha Noi

Noise (Contract: 74/VDIFI-VCNMT/2010) Kind of sample Address

Number of sample

CIVILAS 366

: EX3-K3.6 Name of sample

: Tu Duong Village- Ly Thuong Kiet Commune - Yen My District, Hung Yen Province, Intersection Sampling place

with the 39 road far from the expressway about 5 m and 39 road about 150 m (Package EX3-K3.6)

: N 20° 51,603- E 106° 01, 488 Co-ordinate

From 9 am July 04th to 7 am July 05th, 2012 Testing time

Nome	olumos	Noise					From 9 am	July 04th 1	to 7 am Jul	From 9 am July 04th to 7 am July 05th, 2012				
Ivanic	value of sample	Ivoise	9am	11am	13pm		17pm	19pm	21pm	23pm	_	03am	05am	07am
	Leg		67.2	64.4	61.7	64.3	62.5	51.7	55.0	57.1	48.0	53.4	55.5	61.8
EV 2	Lmax		88.0	85.5	90.1	85.6	80.1	72.6	65.5	73.4	58.7	78.4	81.5	85.1
EA 3-	_	(qB)	42.5	41.7	36.9	44.4	47.4	41.4	51.8	48.7	45.5	46.7	39.3	42.3
2.0			51.1	50.4	48.9	51.2	55.9	46.3	54.3	57.1	47.7	51.4	45.3	50.2
	L90		46.1	45.7	43.4	47.1	51.6	43.5	53.5	56.1	47.0	49.1	42.2	45.7
QCVI (Not	QCVN 26:2010/BTNMT (Nomarl area - Leq)	TINMT · Lea)				70					5.	55		70

Note: QCVN 26:2010/BTNMT - National Technical Regulation on Noise

Department of Environmental Quality Analysis

Dr. Nguyen Thi Hue

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

| Deputy Director

Hanoi. July 23rd 2012

Vu Van Tu

1. Test results are valid for test samples

2. Only quoted a part of test report if receiving the agreement by terms of DEQA

3. Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

4. Name of sample, customers written by customers' request

			N.
		•	

Address: R.712, A30 Building 18 Hoang Quoc Viet Road -Cau Giay District - Hanoi - Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

VILAS 366 ANALYTICAL RESULT

No: A1207.EX3

Client

: Vietnam Infrastructure Development and Finance Investment Joint Stock

Company (VIDIFI., JSC)

Address

: 8^{th} - 9^{th} - 10^{th} floors, LILAMA 10 Building, Le Van Luong street

Me Tri commune, Tu Liem, Ha Noi

Kind of sample:

: Vibration (Contract: 74/VDIFI-VCNMT/2010)

Number of sample: 12

Name of sample

: EX 3 – K3.6

Testing place

: Intersection with the 39 road, Ly Thuong Kiet Commune, Yen My District,

Hung Yen Province (Package EX3)

Co-ordinate

: N 20° 51'60.3"- E 106° 01' 48.8"

Testing time

: From 9:00 am on July 04th to 7:30 am on July 05th, 2012

Time	•		From 8:00 am to 9:30am on July 04th, 2012									
Parameter	Unit		Vibrat	ion Leve	el (Lv)	Vibration Acceleration (Lva)						
i arameter	Ouit	Z	Y	X	Average	Z	Y	X	Average			
Leq		32.1	33	33.7	33.7	57.9	50.7	50.4	57.9			
L_{max}		43.9	40.3	41.7	43.9	72.7	67.90	67.7	72.7			
L_{min}	dB	24.5	27.5	24.9	27.5	36.5	31.7	33.2	36.5			
I.10		35.6	35.1	36.5	36.5	62.6	56.1	55.9	62.6			
L ₅₀		29.9	32.5	32.8	32.8	45.7	43.7	42.7	45.7			
L90		27.4	30.3	29.7	30.3	39.2	35.6	36.3	39.2			

Time	•		From 11:00 am to 11:30 am on July 04th, 2012									
Parameter	Unit	111111111111111111111111111111111111111	Vibrat	ion Leve	el (Lv)	Vibration Acceleration (Lva)						
rarameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq		44.1	44.5	51.6	51.6	54.6	51.1	46.2	54.6			
L _{max}		63.4	70.2	77.4	77.4	76.1	73.3	68.8	76.1			
L_{\min}	dB	23	26.7	26.8	26.8	33.8	32.5	31.2	33.8			
L ₁₀		48.1	40	39.6	48.1	53.4	51.4	47.4	53.4			
L ₅₀		32.2	34.1	35.3	35.3	39.9	38.1	37.3	39.9			
L ₉₀		28.2	31	31.8	31.8	36.3	34.8	33.9	36.3			

Time	;		From 13:00 am to 13:30 pm on July 04th, 2012									
Parameter	Unit		Vibrat	ion Leve	el (Lv)	Vibration Acceleration (Lva)						
rarameter	Onn	Z	Y	X	Average	Z	Y	X	Average			
Leq		47.2	46.8	56.8	56.8	50.5	45.9	48.6	50.5			
L _{max}		65.6	72	81.4	81.4	69.8	63.9	69.7	69.8			
L _{min}	dB	24.1	27.2	28.1	28.1	32.7	31	31.5	32.7			
L ₁₀		45.5	38.7	41.1	45.5	52.2	47.2	48.6	52.2			
L ₅₀		33.2	34.7	37.2	37.2	38.5	36.5	38.7	38.7			
L ₉₀		28.3	31.5	33.5	33.5	35.3	33.6	35.1	35.3			

¹ Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road –Cau Giay District – Hanoi - Vietnam Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

T	ime		Fı	om 15:0	00 pm to 15:3	30 pm oi	a July 0	4 ^{tn} , 2012		
	~ 7			ion Leve		Vibration Acceleration (Lva)				
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average	
L_{eq}		47.3	36	36.7	47.3	52.3	48.6	44	52.3	
L _{max}		66.7	48	45.8	66.7	68.9	59.5	56.1	68.9	
L _{min}	dB	26.3	26.8	28.1	28.1	44.5	42.6	38.1	44.5	
L_{10}		43.7	38.2	39.2	43.7	55.6	51.5	46.8	55.6	
L_{50}		34.2	34.5	36	36	48.1	46.2	42.2	48.1	
L ₉₀		29.7	31.3	32.8	32.8	45.8	44.4	39.7	45.8	

Time)		Fı	com 17:0	00 pm to 17:	30 pm oi	July 0	4 th , 2012	2	
-	W.T. • .			ion Leve		Vibration Acceleration (Lva)				
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average	
L_{eq}		52.3	38.4	37.7	52.3	57.7	54.6	56.5	57.7	
L _{max}		72.1	57.2	49.3	72.1	79.7	75.3	76.2	79.7	
L_{\min}	dB	25.6	26.5	26.8	26.8	37.1	35.8	36.6	37.1	
L_{10}		49.9	40.6	40	49.9	60.5	57.3	59.2	60.5	
L_{50}		34.9	34.1	35.9	35.9	48.7	46.3	48.1	48.7	
L ₉₀		29.3	30.5	32.4	32.4	41.6	40.2	41.6	41.6	

Time	}	From 19:00 pm to 19:30 pm on July 04 th . 2012									
	** ·		Vibrat	ion Leve	el (Lv)	Vibration Acceleration (Lva)					
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
L_{eq}		29.5	31.8	33.7	33.7	57.1	50.5	45.5	57.1		
L _{max}		44.2	38.2	41.3	44.2	76.8	67.5	64.6	76.8		
L _{min}	dB	22.2	23.9	24.7	24.7	35.1	32.3	29.6	35.1		
L ₁₀		31.2	34.1	36.3	36.3	60.3	54.2	48.3	60.3		
1,50		27.8	31.3	32.9	32.9	45.4	40.3	37.1	45.4		
L ₉₀		25.6	28.8	29.5	29.5	37.7	34.6	33.5	37.7		

Time)	From 21:00 pm to 21:30 pm on July 04 th . 2012									
	T T • .		Vibrati	ion Leve	el (Lv)	Vibration Acceleration (Lva)					
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
L_{eq}		28.2	32.2	34.7	34.7	59.1	57.2	57.6	59.1		
L _{max}		49.7	51.5	52.3	52.3	85.7	82.9	83.8	85.7		
L_{\min}	dB	20.1	23.5	24.9	24.9	34.5	32.7	31.8	34.5		
L_{10}		29.3	33.9	36.6	36.6	54.9	50.8	48.1	54.9		
L ₅₀		26.2	31	33.3	33.3	40.3	37.8	36.3	40.3		
L ₉₀		23.9	28.6	30.1	30.1	37.3	35.4	33.9	37.3		

^{1.} Test results are valid for test samples

DEQA/TT/BM/17.01 Version: 1.03 Page: 2/4

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY LEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

Address: R.712, A30 Building 18 Hoang Quoc Viet Road –Cau Giay District – Hanoi - Vietnam Tel: (84 - 4) 3791 1654
Fax: (84 - 4) 3791 1203

Time	ETNAM		From 23:00 pm to 23:30 pm on July 04 th , 2012										
Damamatan	.AS 366 Unit		Vibrati	on Leve	l (Lv)	Vibration Acceleration (Lva)							
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average				
L_{eq}		27	31	34.1	34.1	38.3	35.2	36.6	38.3				
L _{max}		37	37	41.6	41.6	57.3	52.7	54	57.3				
L_{\min}	dB	19.7	22.6	25.6	25.6	34.3	31.5	31.9	34.3				
L ₁₀		29.3	33.3	36.9	36.9	38.9	36.3	38.3	38.9				
L_{50}		25.8	30.4	23.1	30.4	36.7	33.8	35.1	36.7				
L ₉₀		23.2	27.5	29.5	29.5	35.8	32.6	33.5	35.8				

Time			From 1:00 am to 1:30 am on July 05th. 2012									
Donomoton	Unit		Vibrati	on Leve	l (Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq		28.1	30.8	33.8	33.8	36.3	33.4	35.2	36.3			
L _{max}		43.7	37.6	41.7	43.7	45.5	43.1	45.2	45.5			
L_{min}	dB	20.4	22.4	24.5	24.5	32.5	30	30.7	32.5			
L ₁₀		29.8	33.5	36.6	36.6	38.1	35.2	37.5	38.1			
L ₅₀		25.8	30.1	32.8	32.8	35.6	32.7	34.4	35.6			
L90		23.1	26.7	28.9	28.9	34	31.1	32	34			

Time			From 3:00 am to 3:30 am on July 05th. 2012									
Danamatan	Unit		Vibrati	on Leve	l (Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
L_{eq}		26.8	30.7	33.4	33.4	57.6	52.5	49.9	57.6			
L_{max}		38.1	39.3	40.7	40.7	82	74.6	71.7	82			
L_{\min}	dB	19.6	22.6	22.5	22.6	43.7	38.4	37.1	43.7			
L_{10}		29.1	33.2	36.1	36.1	50.3	46.9	45.2	50.3			
L ₅₀		25.6	29.8	32.5	32.5	45.3	39.8	38.8	45.3			
L ₉₀		23.1	26.7	29.2	29.2	44.4	39	37.8	44.4			

Time	;		From 5:00 am to 5:30 am on July 05th. 2012									
n .	WT. 14		Vibrat	ion Leve	el (Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq		42.2	31.5	32.8	42.2	51.2	48.3	50.5	51.2			
L _{max}		64.1	45	42	64.1	70.4	68.9	70.6	70.6			
L_{min}	dB	20.5	20.5	23.3	23.3	32.4	32.2	31.5	32.4			
L ₁₀		34.9	33.9	35.5	35.5	52.9	50	52.2	52.9			
L ₅₀		26.8	30.2	31.8	31.8	40.5	39.5	39.3	40.5			
L ₉₀		24	27	28.5	28.5	35.6	34.8	34.9	35.6			

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road -Cau Giay District - Hanoi - Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

Time	;	From 7:00 am to 7:30 am on July 05 th . 2012									
			Vibrati	on Leve	l (Lv)	Vibration Acceleration (Lva)					
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
L_{eq}		43.9	35.1	34	43.9	57.9	57	54.9	57.9		
L _{max}		60.8	50.8	45.3	60.8	80.3	81.8	80.3	81.8		
L _{min}	dB	22.1	24.8	23.5	24.8	33.7	30.8	29.4	33.7		
L ₁₀		45.1	37.8	36.6	45.1	57.3	51.6	49.3	57.3		
L ₅₀		31.6	32.2	32.4	32.4	41.4	38.1	36.8	41.4		
L ₉₀		27.1	29	29	29	35.9	33.6	33	35.9		

Allowable maximum value of the vibration acceleration for contruction activities

No	Area	Time in day	Vibration Acceleration (dB) Average (Leq)
	C '.1	From 6 am to 6 pm	75
1	Special area	From 6 pm to 6 am	Background level
	N	From 6 am to 9 pm	75
2	Normal area	From 9 pm to 6 am	Background level

Note: QCVN 27:2008/BTNMT: National Technical Regulation on Vibration

Department of Environmental Quality Analysis

Hanoi. July 16th. 2012

INSTITUTE OF ENVIRONMENTAL

TECHNOLOGY

Deputy Director

Dr. Nguyen Thi Hue

Vu Van Tu

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Iloang Quoc Viet Road –Cau Giay District – Ila Noi - Viet Nam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

ANALYTICAL RESULT

No: W1207.185

Client

: Vietnam Infrastructure Development and Finance Investment Joint

Stock Company (VIDIFI., JSC)

Address

: 8th-9th-10th floors, LILAMA 10 Building, Le Van Luong street

Me Tri commune, Tu Liem, Ha Noi

Kind of sample

: Ground water (Contract: 74/VDIFI-VCNMT/2010)

Number of sample

VILAS 366

: 02

Preservation

: 01 PE Bottle 0,5L refrigerate.

01 PE Bottle 0,5L, preserved HNO₃ refrigerate. 01 PE Bottle 0,5L, preserved H₂SO₄ refrigerate.

01 glass Bottle 1,0 L

Sampling place

: Mr. Nam- Tân Phuc Commune -An Thi District, Hung Yen Province

. (Package EX4-NN4.4)

Co-ordinate

: N 20° 50'92.7"- E 106° 66' 37.6"

Sampling time

: July 5th, 2012

Testing time

: From July 06th to July16th 2012

		** **	T 4 41 1	Res	ults	QCVN 09:2008/
No	Parameter	Unit	Test methods	NN 4.4	MT	BTNMT
1.	Temperature	°C	TCVN 4457-1988	29.8	28.0	_
2.	pН	-	TCVN 6492 – 1999	6.65	7.10	5.5 – 8.5
3.	COD	mgO ₂ /L	KMnO ₄ Method	1.9	< 1.0	4
4.	BOD ₅	mg/L	TCVN 6001 – 2008	<1.0	< 1.0	-
5.	TSS	mg/L	SMEWW 2540 D – 2005	9	< 3.0	-
6.	Total P	mg/L	TCVN 6202 – 2008	0.04	< 0.01	
7.	Total N	mg/L	TCVN 5987-1995	5.3	< 0.10	-
8.	Coliform	MPN/	TCVN 6187 – 1 –1996	5	ND	3
9.	E. Coli	100mL	1CVIV 0107 - 1 -1990	ND	ND	ND

Note: QCVN 09:2008/BTNMT: National technical regulation on underground water quality.

ND: Non detect

Hanoi. July 16th. 2012

Department of Environmental Quality Analysis

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

WEDeputy Director

CÔNG NGHỆ MÔI TRƯỜNG

Dr. Nguyen Thi Huc

1. Test results are valid for test samples

2. Only quoted a part of test report if receiving the agreement by terms of DEQA

Vu Van Tu

3. Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

4. Name of sample, customers written by customers' request

DEQA/TT/BM/17.01

Version: 1.03

Page: 1/1

VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

EPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

Address: R.712. A30 Building 18 Hoang Quoe Viet Road -

Cau Giay District - Hanoi - Vietnam

ANALYTICAL RESULT

No: A1207.72-75

VILAS 366 : Vietnam Infrastructure Development and Finance Investment Joint Stock Company (VIDIRI., JSC) Client

: 8th.9th.10th floors, LILAMA 10 Building, Le Van Luong street, Me Tri commune, Tu Liem, Ha Noi Address

Kind of sample : Air (Contract: 74/VDIFI-VCNMT/2010)

Number of sample: 4 sample

Sampling place : Intersection with the 38 road, Tan Phuc Commune, An Thi District, Hung Yen Province (Package EX4-K4.4)

Co-ordinate : N 20° 50' 92.7" - E 106° 66' 37.6"

Testing time : From 9:00 am on July 5th to 7 am on July 6th, 2012

Unit		K 4.4.1	K 4.4.2	K 4.4.3	K 4.4.4	QCVN 05:2009/BTNMT
9:00 am July 05th, 2012	9:00 am July 05th, 2012		15:00 pm July 05 th , 2012	$21:00 \ \mathrm{pm}$ July $05^{\mathrm{th}}, 2012$	3:00 am July 06 th , 2012	
142	142		136	98	78	•
94	94		158	124	88	300
µg/m³ 79	79		68	85	73	350
18	18		25	22	25	:
1860	1860		1601	166	1441	30000

Note: QCVN 05:2009/ BTNMT: National technical regulation on ambient air quality

Department of Environmental Quality Analysis

Hanoi. July 16th, 2012

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

CONG NGHE TO MOI TRUONG TO THE TO THE Hue

Vu Van Tu

1. Test results are valid for test samples

2. Only quoted a part of test report if receiving the agreement by terms of DEQA

3. Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

4. Name of sample, customers written by customers' request

DEQA/TT/BM/17.01

Version: 1.03

-Cau Giay District - Hanoi - Vietnam Tel: (84 - 4) 3791 1654 DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

Fax: (84 - 4) 3791 1203

ANALYTICAL RESULT

No: A1207. EX4

VILAS 366: Viet Nam Infrastructure Development and Finance Investment Joint Stock Company

: 8th.9th.10th floors, LILAMA 10 Building, Le Van Luong street, Me Tri commune, Tu Liem, Ha Noi

: Noise (Contract: 74/VDIFI-VCNMT/2010) Kind of sample

Number of sample

Address Client

: EX4-K4.4 Name of sample

: Intersection with the 38 road, Tan Phuc Commune, An Thi District, Hung Yen Province (Package EX4-K4.4) Sampling place

: N-20°50'927"; E-106° 66' 376" Co-ordinate

Testing time

: From 9 am July 05th to 7 am July 06th, 2012

						Fre	From 9 am. July 05th	ulv 05th to	7 am Jul	to 7 am July 06th, 2012	2			
Name (Name of sample	Noise	9am	11am	13pm	15pm	17pm	19pm	21pm	23pm	3.70	03am	05am	07am
	T. P.O.		62.2	59.4	55.7	56.1	59.3	54.4	54.8	57.6	48.1	47.8	55.3	68.7
	I max		83.0	78.3	71.3	76.0	77.9	79.2	75.1	72.3	6.79	56.8	73.4	87.8
EX 4-	Lmin	(dB)	44.7	41.5	43.5	44.5	48.4	42.3	50.2	44.4	44.2	44.5	40.4	9.09
K4.4	1.50		53.4	55.9	50.9	50.7	58.0	50.9	53.5	54.2	47.1	46.9	44.8	62.2
	067		48.9	49.2	45.7	47.0	55.1	46.5	52.2	48.6	45.5	45.7	42.1	62.1
OCVA	OCVN 26:2010/BTNMT	3TNMT				70					55	\$		70

Note: QCVN 26:2010/BTNMT - National Technical Regulation on Noise

Department of Environmental Quality Analysis

Hanoi. July 23rd 2012

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY VIEW Deputy Director

* Dr. Nguyen Thi Hue

Vu Van Tu

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by 17LAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road -Cau Giay District - Hanoi - Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

ANALYTICAL RESULT

No: A1207.EX4

Page: 1/4

Client

: Vietnam Infrastructure Development and Finance Investment Joint

Stock Company (VIDIFI., JSC)

Address

: 8th-9th-10th floors, LILAMA 10 Building, Le Van Luong street

Me Tri commune, Tu Liem, Ha Noi

Kind of sample : Vibration (Contract: 74/VDIFI-VCNMT/2010)

Number of sample: 12

VILAS 366

Name of sample

: EX 4 - K4.4

Testing place

: Intersection with the 38 road, Tan Phuc Commune, An Thi District

(Package EX4)

Co-ordinate

: N 20° 50' 92.7" - E 106° 66' 37.6"

Testing time

: From 9:00 am July 05th to 7:30 am on July 06th, 2012

Time	•			From 9	:00 am to 9:3	0 am on	July 0	5 th , 2012	30(0)
D	WI 24		Vibrat	ion Lev	el (Lv)	Vib	ration	Acceler	ation (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		44.1	37.2	36.9	44.1	60.9	63.7	64.1	64.1
L _{max}		60.9	50.1	49.8	60.9	88.8	88.9	90	90
L _{min}	110	22.6	24.5	25.5	25.5	35.9	36.3	36.3	36.3
L ₁₀	dB	47.4	40.5	39.9	47.4	53.1	63.7	61.8	63.7
L ₅₀		35.5	35.2	35.6	35.6	50.8	62.2	60.4	62.2
L ₉₀		28.8	30.6	31.2	31.2	40.6	40	40.2	40.6

Time			I	From 11	:00 am to 11:	30 am or	July ()5 th . 201	2
	TT		Vibrat	ion Lev	el (Lv)	Vib	ration .	Accelera	ation (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		45.2	35.3	35.7	45.2	60.00	57.8	61.1	61.1
L _{max}		63.2	48.8	49.3	63.2	76.4	74.8	77.8	77.8
L _{min}	ID.	23.2	21.2	23.5	23.5	33.9	30.7	33.4	33.9
L ₁₀	dB	45.5	37.8	38.2	45.5	61.9	60	62.7	62.7
L ₅₀		33.8	32.5	33.5	33.8	41.7	39.2	41.5	41.7
L ₉₀		27.4	28.2	29.6	29.6	37.9	35.4	37	37.9

Time	ya		F	rom 13:	00 am to 13:	30 pm o	n July (05 th . 201	2
	WY *.		Vibrat	ion Leve	el (Lv)	Vib	ration	Accelera	ation (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leg		31	32.9	31.2	32.9	67.4	67.7	66.4	67.7
L _{max}		44	39.7	41.1	44	90.1	90.1	89.8	90.1
L _{min}	100	20.7	23.3	25.3	25.3	35.7	35.6	36.1	36.1
L ₁₀	dB	34.1	35.6	36.8	36.8	50.6	52.1	53.4	53.4
L_{50}		28.8	32.2	33.4	33.4	41.3	40.1	40.8	41.3
L ₉₀		25.2	28.7	29.8	29.8	38.3	37.5	38.3	38.3

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road –Cau Giay District – Hanoi - Vietnam Tel: (84 - 4) 3791 1654

Fax: (84 - 4) 3791 1203

Time)		J	From 15	5:00 pm to 15:3	30 pm or	ı July (5 th . 2012	2
					vel (Lv)	Vib	ration	Accelera	ation (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leg		34.9	33.1	35.5	35.5	47.9	46	46.5	47.9
L _{max}		53.7	40.3	52.8	53.7	63	61.1	63.2	63.2
L _{min}	170	25	25.1	26.3	26.3	41.6	40.7	40.4	41.6
L_{10}	dB	37.9	35.5	37.5	37.9	49.8	48	48.4	49.8
L ₅₀		31.7	32.4	33.9	33.9	44.8	44.3	44.5	44.8
L ₉₀		28.5	29.2	30.7	30.7	43.1	42	41.9	43.1

Time)			From 1	7:00 pm to 17:3	30 pm or	July 0	5 th . 201	2
graduation of the second	~				vel (Lv)				ation (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leg		45.5	44.8	44.2	45.5	47.9	52.5	51.4	52.5
L _{max}		62.7	61	61.4	62.7	73.6	79.8	78.1	79.8
L _{min}		36.6	35.7	35.7	36.6	36.9	36.9	38.6	38.6
$\overline{L_{10}}$	dB	47.5	45.8	45.4	47.5	45	46.3	47.4	47.4
L ₅₀		41.4	43	42.9	43	41.9	42.7	43.1	43.1
L ₉₀		39.7	40.8	40.9	40.9	39.1	40.6	40.8	40.8

Time)	From 1	9:00 pm to 19:3	30 pm oi	ı July (5 th . 201	2
	T T • .				vel (Lv)	Vib	ration	Acceler	ation (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		39.3	34.2	38	39.3	38.7	38.3	39.3	39.3
L _{max}		56.4	50.8	57.3	57.3	54.8	51.1	34.1	54.8
Lmin	tro.	20.8	21.9	24.4	24.4	32.5	30.9	30.3	32.5
L ₁₀	dB	42.6	36.2	37.5	42.6	40.5	40.5	41.7	41.7
L ₅₀		29.1	31.8	33.2	33.2	37.8	37.5	38.3	38.3
L ₉₀		25	28.2	29.8	29.8	35.3	34.2	35.1	35.3

Time	;			From 2	1:00 pm to 21:3	30 pm oı	ı July (95 th . 2012	2
	T T 4,		Vibra	tion Le	vel (Lv)	Vih	ration	Accelera	ation (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		32.5	34.9	37.6	37.6	50.7	51.4	51.4	51.4
L _{max}		72.2	72.7	73.7	73.7	75.8	76	75.6	76
L_{\min}	15	21.2	22.4	23.5	23.5	38	37.6	38.4	38.4
L ₁₀	dB	35.2	35.4	36.5	36.5	50.5	52.9	52.4	52.9
L_{50}		28.8	32	32.7	32.7	43.9	44.9	45.4	45.4
L ₉₀		25.1	28.5	29.4	29.4	39.9	40.3	40.9	40.9

^{1.} Test results are valid for test samples

DEQA/TT/BM/17.01 Version : 1.03 Page : 2/4

² Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road --Cau Giay District -- Hanoi -- Vietnam Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

Time				From 2	23:00 pm to 23:	30 pm c	n July	05 th . 20	012
Danamatan	Unit		Vibrat	tion Le	vel (Lv)	Vi	bration	Accele	eration (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		36.1	34.1	36.4	36.4	42	41.4	40.8	42
L_{max}		53.8	50.7	54.7	54.7	55.1	56.3	55.4	56.3
L_{\min}	dB	22.8	22.3	24.7	24.7	32.2	31.3	31.4	32.2
L_{10}	an	39.6	35.3	36.5	39.6	45.8	44.8	44.1	45.8
1.50		31.3	31.9	33	33	39.6	38.1	38.3	39.6
L90		26.3	28.6	29.7	29.7	35.3	34.6	34.6	35.3

Time	The state of the s			From	1:00 am to 1:3	0 am on	July 0	6 th . 2012	2
70	¥ 1 24		Vibra	tion Le	vel (Lv)	Vi	bration	Accele	ration (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
L_{eq}		40	38.2	36.7	40	44	42.8	41.5	44
L _{max}		53.7	54	51.5	54	61.2	60.3	58	61.2
L_{\min}	dB	37.2	35.3	33.6	37.2	37.7	35.9	33.9	37.7
L_{10}	un	40.9	38.7	37.3	40.9	45.3	43.3	41.8	45.3
L_{50}		39.2	37	35.2	39.2	39.6	38	30.5	39.6
L ₉₀		38.4	36.3	34.3	38.4	38.4	30.5	34.9	38.4

Time				From	3:00 am to 3:3	30 am on	July 0	6 th . 2012	
	WT *4		Vibra	tion Le	vel (Lv)	Vi	bration	Acceler	ration (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq	The state of the state of	46.4	41.9	39.6	46.4	47.7	48.4	42.4	48.4
L _{max}		68.2	62.7	57	68.2	73.8	71.3	71.1	73.8
L _{min}	dB	32.5	31.4	31.5	32.5	38.4	36.1	34.4	38.4
L_{10}	uБ	44.1	42.2	41.3	44.1	48.7	45.5	42.4	48.7
L_{50}		37.9	36.2	36.2	37.9	43	40	38.5	43
L ₉₀		35.4	33.6	33.9	35.4	40	37.6	36.2	40

Time			The second secon	From	5:00 am to 5:3	0 am on	July 0	5 th . 2012	
	**	Andreas and the state of the st	Vibra	tion Lev	el (Lv)	Vil	oration	Acceler	ation (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		30.4	38	38.8	38.8	56.2	53.7	56.7	56.7
L _{max}		45.4	55.1	55.8	55.8	90.1	89.9	89.8	90.1
L_{\min}	.115	21.2	22	23.4	23.4	30.8	29.2	28.5	30.8
L_{10}	dB	32.4	34.9	36.4	36.4	45.3	42.8	42.3	45.3
L ₅₀		26.3	30.2	31.4	31.4	35.6	33.4	34	35.6
L ₉₀		24	26.8	28.1	28.1	33	31	31.1	33

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

⁴ Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road -Cau Giay District - Hanoi - Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

Time				From 7:	:00 am to 7:3	0 am on	July 0	5 th . 2012	
	WY *.			ion Leve	The second secon	Vib	ration	Accelera	ation (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		32.8	32.6	31.8	32.8	66.7	67.2	66.9	67.2
L _{max}		48.6	41.5	33.2	48.6	75	76.1	74.2	76.1
L _{min}	ID.	26.1	24.1	29.8	29.8	41.7	43.2	42.8	43.2
L ₁₀	dB	35.2	34.8	37	37	70.2	70.4	70.5	70.5
L ₅₀		31	31.4	35.9	35.9	65.8	66.8	65.4	66.8
L ₉₀		28.8	28.6	28.9	28.9	59.3	58.7	59	59.3

Allowable maximum value of the vibration acceleration for contruction activities

No	Area	Time in day	Vibration Acceleration (dB) Average (Lcq)
		From 6 am to 6 pm	75
1	Special area	From 6 pm to 6 am	Background level
		From 6 am to 9 pm	75
2	Normal area	From 9 pm to 6 am	Background level

Note: QCVN 27:2008/BTNMT: National Technical Regulation on Vibration

Hanoi, July 16th, 2012

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Deputy Director

Vu Van Tu

Department of Environmental Quality Analysis

Dr. Nguyen Thi Hue

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road - Cau Giay District - Hanoi - Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

VILAS 366

ANALYTICAL RESULT

No: W1207.192

Client

: Viet Nam Infrastructure Development and Finance Investment Joint Stock

Address

Company (VIDIFI., JSC) : 8th-9th-10th floors, LILAMA 10 Building, Le Van Luong street

Me Tri commune, Tu Liem, Ha Noi

Kind of sample

: Ground water (Contract : 74/VDIFI-VCNMT/2010)

Number of sample

: 02

Preservation

: 01 PE Bottle 0,5L refrigerate.

01 PE Bottle 0,5L, preserved HNO₃ refrigerate. 01 PE Bottle 0,5L, preserved H₂SO₄ refrigerate.

01 glass Bottle 1,0 L

Sampling place

: Mr. Vu Van Hoi- Nhan Quyen Commune -Binh Giang District,

Hai Duong Province (Package EX4-NN 5.4)

Co-ordinate

: N 20° 51,204 - E 106° 12, 149 : July 03rd, 2012

Sampling time Testing time

: From July 05th to July 16th 2012

		** **	Tr. 4 and als	Res	ults	QCVN 09:2008/
No	Parameter	Unit	Test methods	NN 5.4	MT	BTNMT
1.	Temperature	°C	TCVN 4457-1988	27.5	28.0	
2.	рН	-	TCVN 6492 – 1999	7.01	7.10	5.5 – 8.5
3.	COD	mgO ₂ /L	KMnO ₄ Method	10.6	< 1.0	4
4.	BOD ₅	mg/L	TCVN 6001 – 2008	3.6	< 1.0	-
5.	TSS	mg/L	SMEWW 2540 D - 2005	31	< 3.0	-
6.	Total P	mg/L	TCVN 6202 – 2008	0.15	< 0.01	_
7.	Total N	mg/L	TCVN 5987-1995	28.8	< 0.10	-
8.	Coliform	MPN/	TCVN 6187 – 1 –1996	21	ND	3
9.	E. Coli	100mL	10 11 0107 - 1 -1990	ND	ND	ND

Note: QCVN 09:2008/BTNMT: National technical regulation on underground water quality.

ND: Non detect

Hanoi. July 16th. 2012

Department of Environmental Quality Analysis

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Deputy Director

Dr. Nguyen Thi Hue

1. Test results are valid for test samples

2. Only quoted a part of test report if receiving the agreement by terms of DEQA

Vu Van Tu

3. Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

4. Name of sample, customers written by customers' request

DEQA/TT/BM/17.01

Version: 1.03

Page: 1/1

יייייייייי טי יסובייטי חיים ובכחייטבטעוז INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

Fax: (84 - 4) 3791 1203 Tel: (84 - 4) 3791 1654

ANALYTICAL RESULT

VILAS 366 FTNA

Client

No: W1207.189-191

: Vietnam Infrastructure Development and Finance Investment Joint Stock Company (VIDIFI., JSC)

: 8th-9th-10th floors, LILAMA 10 Building, Le Van Luong street, Me Tri commune, Tu Liem, Ha Noi Address

: Surface water (Contract : 74/VDIFI-VCNMT/2010) Kind of sample

Number of sample

: 01 PE Bottle 0,5L refrigerate. Preservation

01 PE Bottle 0,5L, preserved HNO3 refrigerate.

01 PE Bottle 0,5L, preserved refrigerate.

01 glass Bottle 1,0 L

: O Xuyen River, O Xuyen Village, Co Bi Commune, Binh Giang District, Hai Duong Province (Package EX4) Sampling place

: N 20° 51'309"- E 105° 15' 081" Co-ordinate

: From July 6th to July 7th 2012 Sampling time : From July 9th to July 16th 2012 Testing time

å

ri 3 4. S.

9

•	7. 1.1	F 17		Results	ults		00	QCVN
Parameter	Cuit	l est metnods	NM 2.4.1	NM 2.4.2	NM 2.4.3	MT	Column B1	Column B2
Hd	1	TCVN 6492 – 1999	7.11	7.45	7.36	7.20	5.5 -9	5.5 -9
DO	mg/L	TCVN 7325 - 2004	2.60	2.45	2.37	7.38	∀ I	>2
COD	mgO ₂ /L	KMnO ₄ Method	9.6	10.4	26.2	<1.0	30	50
BODs	mg/L	TCVN 6001 - 2008	5.2	5.8	13.9	<1.0	15	25
TSS	mg/L	SMEWW 2540 D – 2005	5	7	8	<3.0	20	100
Total P	mg/L	TCVN 6202 - 2008	0.21	0.15	0.25	0.01	1	1
Total N	mg/L	TCVN 5987-1995	9.9	3.8	3.8	<0.10	1	
Pesticides	J/gn	TCVN 7876: 2008	<0.5	<0.5	<0.5	<0.5	1	1
Aldrine+Dieldrine	µg/L	TCVN 7876: 2008	< 0.05	< 0.05	< 0.05	< 0.05	0.008	0.01

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in Italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366 VIETNAM ACADEMY OF SCIENCE AIND TECHNOLOGY INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Tel: (84 - 4) 3791 1654 Cau Giay District - Hanoi - Vietnam

Fax: (84 - 4) 3791 1203

					Results	ılts		QCVN	Z
20	Parameter	Unit	Test methods	NM 2.4.1	NM 2.4.2	NM 2.4.3	TM	Column B1	Column B2
10	Endrine			< 0.05	< 0.05	< 0.05	< 0.05	0.014	0.01
1 5	RHC			< 0.05	< 0.05	< 0.05	< 0.05	0.13	0.015
3 :	DDT			< 0.05	< 0.05	< 0.05	< 0.05	0.004	0.005
2 5	DDD			< 0.05	< 0.05	< 0.05	< 0.05	ı	
14	Endosunfane	μg/L	TCVN 7876: 2008	< 0.05	< 0.05	< 0.05	< 0.05	0.01	0.02
2 ;	Lindane			< 0.05	< 0.05	< 0.05	< 0.05	0.38	0.4
16	Chlordane			< 0.05	< 0.05	< 0.05	< 0.05	0.02	0.03
17	Hentachlor			< 0.05	< 0.05	< 0.05	< 0.05	0.02	0.05
2	Mineral oil	mg/L	SMEWW 5520 B - 2005	0.12	0.13	0.15	< 0.05	0.1	0.3
19	Coliform	MPN/100 mL	TCVN 6187-1:1996	38	96	200	ND	7500	10000

Note: QCVN 08:2008/BTNMT: National technical regulation on surface water quality

B1-For the usage of irrigation or other purpose having the similar quality requirement like B2 level

B2 – For the usage of water navigation and other purpose with less water quality NM 2.4.1: Sampling at 14:00pm on July 6th. 2012; NM 2.4.2: Sampling at 22:00 pm on July 6th. 2012; NM 2.4.3: Sampling at 6:00 am on July 7th.

2012; MT: Blank sample; ND: non detect

Department of Environmental Quality Analysis

Vu Van Tu

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Hanoi. July 16th. 2012

Deputy Director

Dr. Nguyen Thi Hue

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS: test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road -Cau Gia, District - Hanoi - Vietnam

Tel: (84 - 4) 3791 1654 DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366 INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Fax: (84 - 4) 3791 1203

ANALYTICAL RESULT

No: A1207.76-79

VILAS 3 % ietnam Infrastructure Development and Finance Investment Joint Stock Company (VIDIFI., JSC) Client

: 8th.9th.10th floors, LILAMA 10 Building, Le Van Luong street, Me Tri commune, Tu Liem, Ha Noi Address

: Air (Contract: 74/VDIFI-VCNMT/2010) Kind of sample

Number of sample: 4

: Intersection with TL 20, Nhan Quyen Commune, Binh Giang District, Hai Duong Province (Package EX4-K5.4) Sampling place

: N 20° 51'20.4" - E 106° 12' 14.9" Co-ordinate : From 9 am on Apr 6th to 6:30 am on Apr 7th, 2012 Testing time

Name of	Parameter	Unit	K 5.4.1	K 5.4.2	K 5.4.3	K 5.4.4	QCVN 05:2009/BTNMT
	Time		9 am July 6 th , 2012	15:00 pm July 6th, 2012	21:00 pm July 6 th , 2012	3:00 am July 7 th , 2012	
	VOCs		130	150	130	120	s il s
	Dust		456	589	284	352	300
EX4 -	SO,	ug/m ³	93	119	117	105	350
	NO)	33	20	20	22	
	2 00		945	1346	1020	1696	30000

Note: QCVN 05:2009/ BTNMT: National technical regulation on ambient air quality

Department of Environmental Quality Analysis

Hanoi. July 16th. 2012

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY Deputy Director

Vu Van Tu

Dr. Nguyen Thi Hue

1. Test results are valid for test samples

2. Only quoted a part of test report if receiving the agreement by terms of DEQA

3. Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

4. Name of sample, customers written by customers' request

DEQA/TT/BM/17.01

Version: 1.03

Page: I/I

DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

Fax: (84 - 4) 3791 1203 Tel: (84 - 4) 3791 1654

Address: R.712, A30 Building 18 Hoang Quoc Viet Road

-Cau Giay District - Hanoi - Vietnam

ANALYTICAL RESULT

No: A1207.EX4

VILAS 366: Viet Nam Infrastructure Development and Finance Investment Joint Stock Company

: 8th.9th.10th floors, LILAMA 10 Building, Le Van Luong street, Me Tri commune, Tu Liem, Ha Noi Address

: Noise (Contract: 74/VDIFI-VCNMT/2010) Kind of sample

Number of sample

: EX4-K5.4 Name of sample

: Intersection with TL 20, Nhan Quyen Commune, Binh Giang District, Hai Duong Province (Package EX4) Sampling place

N 20° 51' 204" - E 106° 12' 149" Co-ordinate

: From 9 am July 06th to 7 am July 07th, 2012 Testing time

		;				4	From 9 am July 06th	July 06th to	to 7 am July 07th, 2012	07th, 2012				
Name	Name of sample	Noise	9am	11am	13pm	1	17pm	19pm	21pm	23pm	01am	03am	05am	07am
	Lea		72.3	72.7	69.5	68.1	68.2	0.89	0.99	57.9	55.0	66.2	69.2	70.4
i	Lmax		8.06	101.4	9.66	87.7	87.1	94.3	91.8	9.68	86.2	84.7	90.1	90.1
EX 4-	Lmin	(dB)	54.1	47.9	48.9	50.5	51.3	46.5	48.0	43.3	41.1	47.0	46.9	51.2
K5.4	1.50	,	6.79	64.1	60.1	63.1	63.6	9.19	59.1	50.1	48.1	57.0	57.7	65.3
on the	L90		62.3	56.5	53.4	55.3	57.8	54.2	53.3	47.7	45.0	53.0	51.5	58.0
QCV)	QCVN 26:2010/BTNMT (Nomarl area - Leq)	TWMT (Fed)				70					55	10		70

Note: QCVN 26:2010/BTNMT - National Technical Regulation on Noise

Department of Environmental Quality Analysis

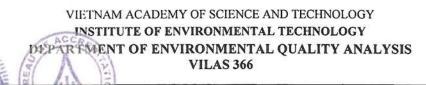
INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

//E/ Deputy Director

Hanoi. July 23rd, 2012

Dr. Nguyen Thi Hue

. Test results are valid for test samples


2. Only quoted a part of test report if receiving the agreement by terms of DEQA

3. Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

4. Name of sample, customers written by customers' request

DEQA/TT/BM/17.01

Version: 1.03

Address: R.712, A30 Building 18 Hoang Quoc Viet Road -Cau Giay District -Hanoi - Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

ANALYTICAL RESULT

No: A1204.EX4

Client

: Vietnam Infrastructure Development and Finance Investment Joint Stock

Company (VIDIFI., JSC)

Address

: 8th-9th-10th floors, LILAMA 10 Building, Le Van Luong street

Me Tri commune, Tu Liem, Ha Noi

Kind of sample

: Vibration (Contract: 74/VDIFI-VCNMT/2010)

Number of sample

: 12

VILAS 366

Name of sample

: EX 4 - K5.4

Testing place

: Intersection with the 20 provincial road, Nhan Quyen Commune, Binh

Giang District, Hai Duong Province (Package EX4)

Co-ordinate

: N 20° 51'20.4" - E 106° 12' 14.9"

Testing time

: From 9:00 am on July 06th to 7:30 am on July 07th, 2012.

Time			F	rom 9:00	0 am to 9:30	am on	July 06	th, 2012	
Danamatan	Unit		Vibrati	on Level	(Lv)	Vib	ration	Accelera	tion (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		50.6	37.1	38.1	50.6	66.9	69.9	64.5	69.9
L _{max}		68.3	50.8	57.4	68.3	79.2	78.4	74.2	79.2
L_{min}	dB	32.8	29.8	29.3	32.8	60.5	60.9	55.6	60.9
L ₁₀	uБ	53.6	39.3	39.8	53.6	67.2	71.5	65.9	71.5
L ₅₀		47	35.9	36.9	47	66.4	69.4	64.2	69.4
L ₉₀		43.4	33	33.5	43.4	66	67.2	62.1	67.2

Time			Fr	om 11:0	0 am to 11:3	0 am on	July 0	6 th . 2012	2
D	WT:4		Vibratio	on Level	(Lv)	Vib	ration	Accelera	tion (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		48.8	35.8	36.8	48.8	61.5	59.2	60.1	61.5
L _{max}		64.3	49.9	45.5	64.3	84.6	81.1	85.6	85.6
L _{min}	dB	27	25.9	26.3	27	44	39.2	39.7	44
L ₁₀	uБ	52.9	38.5	39.4	52.9	61.5	59.6	58.9	61.5
L ₅₀		42.2	34.6	36	42.2	54	51.1	50.6	54
L ₉₀		32.9	31.3	32.6	32.9	49	45.6	45.7	49

Time			From 13:00 pm to 13:30 pm on July 06th . 2012								
.	Unit	Vibration Level (Lv)				Vibration Acceleration (Lva)					
Parameter		Z	Y	X	Average	Z	Y	X	Average		
Leq		43.7	34.9	36.5	43.7	56.7	56.9	55.1	56.9		
L _{max}		59.5	43.4	47.1	59.5	76.3	74.9	76.4	76.4		
L _{min}	dB	26.6	26.2	26.1	26.6	38	35.5	34.5	38		
L_{10}	uБ	47.3	37.7	38.9	47.3	61.1	60.8	58.1	61.1		
L ₅₀		38.7	33.9	35.7	38.7	49.7	48.3	46.1	49.7		
L ₉₀		31.7	30.8	32.1	32.1	43	41.2	39.6	43		

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road –Cau Giay District Hanoi - Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

Time)	From 15:00 pm to 15:30 pm on July 06 th . 2012								
Parameter Unit		Vibration Level (Lv)				Vib	ration A	Accelera	tion (Lva)	
		Z	Y	X	Average	Z	Y	X	Average	
L_{eq}	dB	48.1	37.4	38.5	48.1	54.4	55.2	53.2	55.2	
L _{max}		59.8	46	46.1	59.8	72.6	71.6	70.4	72.6	
L _{min}		29.6	28.5	27.8	29.6	42.6	44.7	42.9	44.7	
L ₁₀		51.9	40	41.1	51.9	50.6	57.9	55.5	57.9	
L ₅₀		44.7	36.5	37.7	44.7	48.9	50.7	47.9	50.7	
L ₉₀		37.4	35.2	34.4	37.4	44.9	47	44.7	47	

Time)		F	rom 17	:00 pm to 17:	30 pm o	n July (06 ^{tn} . 201	2	
	Unit	Vibration Level (Lv)				Vibration Acceleration (Lva)				
Parameter		Z	Y	X	Average	Z	Y	X	Average	
L_{eq}		46.1	34.8	35.3	46.1	55.6	52.3	50.6	55.6	
L _{max}	dB	60.2	42.6	42.6	60.2	69.2	67.7	65.4	69.2	
Lmin		26.8	26.7	23.9	26.8	40.9	36.6	36.4	40.9	
L ₁₀		50.2	37	37.8	50.2	59.4	55.5	54.3	59.4	
L ₅₀		42	34	34.7	42	50	46.4	45.5	50	
L ₉₀		33.9	31.1	31.6	33.9	44.6	40.8	40.2	44.6	

Time)		From 19:00 pm to 19:30 pm on July 06 th . 2012								
			Vibrati	on Leve	l (Lv)	Vibration Acceleration (Lva)					
Parameter U	Unit	\mathbf{Z}	Y	X	Average	Z	Y	X	Average		
Leq		40	32.7	33.9	40	54.9	54.3	53.5	54.9		
L _{max}	dB	59.8	40	43.9	59.8	68.9	69.1	67.3	69.1		
L_{min}		22.6	24.3	24.3	24.3	36.5	35.1	35.2	36.5		
L_{10}		38.4	35.5	36.5	38.4	58.8	58.1	57.5	58.8		
L_{50}		30.7	31.7	33.1	33.1	49.4	48.7	48.5	49.4		
L ₉₀		27.1	28.4	29.5	29.5	42.1	40.9	40.4	42.1		

Time	;	From 21:00 pm to 21:30 pm on July 1 06 th . 2012								
	WT *4	Vibration Level (Lv)				Vibration Acceleration (Lva)				
Parameter Unit		Z	Y	X	Average	Z	Y	X	Average	
L_{eq}		40.8	32.2	33.3	40.8	53.5	53.7	51.7	53.7	
L _{max}		60.8	42.2	42.7	60.8	71.7	72.7	70.4	72.7	
L_{\min}	.110	22.5	22.7	23.7	23.7	45.9	46.9	43.7	46.9	
L ₁₀	dB	40.7	34.8	35.9	40.7	55	54.3	53	55	
L ₅₀		29.5	31.2	32.4	32.4	51.6	51	48	51.6	
L ₉₀		26.1	27.9	28.9	28.9	47	49.1	46.5	49.1	

¹ Test results are valid for test samples

DEQA/TT/BM/17.01 Version: 1.03 Page: 2/4

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road -- Cau Giay District Hanoi - Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

Time				From 2	3:00 pm to 23:	30 pm o	n July	06 th . 20	12		
Davameter	Unit			ion Lev			Vibration Acceleration (Lva)				
Parameter	Omi	Z	Y	X	Average	Z	Y	X	Average		
Leq		32.7	31.7	34.3	34.3	51.5	53.3	47.3	53.3		
L_{max}		57.5	51.2	56.2	57.5	73.5	79	71.6	79		
L_{\min}	dB	20.8	21.3	24.6	24.6	31.8	29.7	30.1	31.8		
L_{10}	uD	29.3	33.8	35.7	35.7	53	50.6	47.2	53		
L ₅₀		25.6	30.3	32.1	32.1	43.1	40.9	38.2	43.1		
L ₉₀		23.3	27	28.9	28.9	35.1	33	33.5	35.1		

Time			From 1:00 am to 1:30 am on July 07 th . 2012									
D	KT24	Vibration Level (Lv)				Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
L_{eq}		39.5	31.2	33.1	39.5	63.6	61.8	61.5	63.6			
L_{max}		58.9	42.8	44.7	58.9	90.1	90.1	90	90.1			
L_{\min}	dB	21.5	21.9	23.4	23.4	35.5	36	34.6	36			
1.10	ub	38.5	33.8	35.7	38.5	60.4	56.6	54.5	60.4			
1.50		29.2	30.3	32.1	32.1	46.8	44.6	42.8	46.8			
L ₉₀		25.3	27	28.9	28.9	38.4	38.3	37.7	38.4			

Time			From $3:00$ am to $3:30$ am on July 07^{th} . 2012									
1)	Unit	Vibration Level (Lv)				Vi	Vibration Acceleration (Lva)					
Parameter		Z	Y	X	Average	Z	Y	X	Average			
L_{eq}		41	30.5	32.4	41	55.3	51.3	49.3	55.3			
L_{\max}		59.9	39	43.3	59.9	72.5	68.9	65.2	72.5			
L_{\min}	dB	20.6	21.3	24.3	24.3	36.2	36.4	37	37			
L_{10}	ub	39.6	33.1	35.1	39.6	58.6	54.4	52.7	58.6			
L ₅₀		27.3	29.6	31.2	31.2	45	42.5	42.6	45			
L ₉₀		24.1	26.2	27.8	27.8	37.7	37.7	39.1	39.1			

Time	Time			From 5:00 am to 5:30 am on July 07 th . 2012									
to the same that the same to the same the same to the	Unit	Vibration Level (Lv)				Vi	bration	Acceler	ation (Lva)				
Parameter		Z	Y	X	Average	Z	Y	X	Average				
Leq		36.5	30.3	31.5	36.5	58.2	54.7	51.6	58.2				
L_{max}		58.8	38.4	41.4	58.8	83.7	79.1	73.3	83.7				
L_{\min}	dB	21.4	22.3	23.3	23.3	34.4	30.5	31.3	34.4				
L_{10}	aB	34.1	32.8	34	34.1	58.9	56.8	53.9	58.9				
L ₅₀		27.8	29.6	30.8	30.8	48.4	45.8	44	48.4				
L ₉₀		24.6	26.3	27.7	27.7	39.2	37.4	35.9	39.2				

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA $\,$

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road -Cau Giay District -

Hanoi - Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

Time	,		From 7:00 am to 7:30 am on July 07th . 2012									
_	WT	Vibration Level (Lv)				Vibration Acceleration (Lva)						
Parameter	Unit	Z	. Y	X	Average	Z	Y	X	Average			
Leq		45.1	33.6	34.9	45.1	61.7	59.2	56	61.7			
L _{max}		65.3	65.3	66.2	66.2	82.1	83.2	76.5	83.2			
L _{min}	מג	24.5	22.6	23.5	24.5	39.9	37	36.2	39.9			
L ₁₀	dB	48.9	30.6	30.5	48.9	64.3	61	59	64.3			
L ₅₀		39.7	32	32.5	39.7	52.6	49.9	48.8	52.6			
L ₉₀		31	28.2	29	31	44.2	41.9	39.9	44.2			

Allowable maximum value of the vibration acceleration for contruction activities

No	Area	Time in day	Vibration Acceleration (dB) Average (Leq)
		From 6 am to 6 pm	75
1	Special area	From 6 pm to 6 am	Background level
1		From 6 am to 9 pm	75
2	Normal area	From 9 pm to 6 am	Background level

Note: QCVN 27:2008/BTNMT: National Technical Regulation on Vibration

Hanoi, July 23rd, 2012

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Deputy Director

* E

Dr. Nguyen Thi Hue

Vu Van Tu

Department of Environmental Quality Analysis

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road -Cau Giay District - Hanoi -Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

ANALYTICAL RESULT

No: W1207.279

Client

: Vietnam Infrastructure Development and Finance Investment Joint Stock

Company (VIDIFI., JSC)

Address

: 8th-9th-10th floors, LILAMA 10 Building, Le Van Luong street

Me Tri commune, Tu Liem, Ha Noi

Kind of sample

: Ground water (Contract: 74/VDIFI-VCNMT/2010)

Number of sample: 02

PETNE

VILAS 366

Preservation

: 01 PE Bottle 0,5L Refrigerate.

01 PE Bottle 0,5L, preserved HNO₃ Refrigerate. 01 PE Bottle 0,5L, preserved H₂SO₄ Refrigerate.

01 glass Bottle 1,0 L

Sampling place

: Mr. Cao Tho Vien - Gia Loc Town - Hai Duong Province (Package EX5-NN 6.4)

Co-ordinate

: N 20° 51'34.1"- E 106° 18' 13.1"

Sampling time

: July 10th, 2012

Testing time

: From July 13th to July 23rd 2012

56 - 49 500	1000			Res	ults	QCVN
No	Parameter	Unit	Test methods	NN 6.4	MT	09:2008/ BTNMT
1.	Temperature	°C	TCVN 4457-1988	28.8	28.0	-
2.	pH	(-	TCVN 6492 – 1999	7.30	7.10	5.5 – 8.5
3.	COD	mgO ₂ /L	KMnO ₄ Method	9.8	< 1.0	4
4.	BOD ₅	mg/L	TCVN 6001 – 2008	5.4	< 1.0	-
5.	TSS	mg/L	SMEWW 2540 D - 2005	10	< 3.0	-
6.	Total P	mg/L	TCVN 6202 – 2008	0.55	< 0.01	-
7.	Total N	mg/L	TCVN 5987-1995	29	< 0.10	-
8.	Coliform	MPN/	TOTAL (107 1 100)	7	ND	3
9.	E. Coli	100mL	TCVN 6187 – 1 –1996	ND	ND	ND

Note: QCVN 09:2008/BTNMT: National technical regulation on underground water quality.

ND: Non detect

Hanoi. July 23rd. 2012

Department of Environmental Quality Analysis

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Deputy Director

Dr. Nguyen Thi Hue

1. Test results are valid for test samples

2. Only quoted a part of test report if receiving the agreement by terms of DEQA

Vu Van Tu

3. Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

4. Name of sample, customers written by customers' request

DEQA/TT/BM/17.01

Version: 1.03

Page : 1/1

VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY

THE ANALYSIS VILAS 366 INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Tel: (84 - 4) 3791 1654

Address: R.712, A30 Building 18 Hoang Quoc Viet Road

Cau Giay District - Hanoi - Vietnam

Fax: (84 - 4) 3791 1203

ANALYTICAL RESULT

No: A1207.48-51

: Vietnam Infrastructure Development and Finance Investment Joint Stock Company (VIDIFI., JSC) VILAS 366

: 8th.9th.10th floors, LILAMA 10 Building, Le Van Luong street, Me Tri commune, Tu Liem, Ha Noi Address

: Air (Contract: 74/VDIFI-VCNMT/2010) Kind of sample

Number of sample

: Gia Loc Highschool, Gia Loc Town, Gia Loc District, Hai Duong Province (Package EX5-K6.4) Sampling place

: N 20° 51'34.1" - E 106° 18' 13.1" Co-ordinate

: From 9 am on July 9th to 7 am on July 10th, 2012 Testing time

Name of	Parameter	Unit	K 6.4.1	K 6.4.2	K 6.4.3	K 6.4.4	QCVN 05:2009/BTNMT
admis	Time		9 am July 9 th , 2012	15:00 pm July 9th, 2012	21:00 pm July 9th, 2012	3:00 am July 10 th , 2012	
	VOCs		145	130	110	105	1
	Dust		128	112	96	88	300
EX 5-	SOS	ug/m ³	79	95	87	74	350
K 6.4	NO.	0	22	23	18	18	10
	707		1175	1866	1219	1385	30000

Note: QCVN 05:2009/ BTNMT: National technical regulation on ambient air quality

Hanoi, July 23rd, 2012

Deputy Director

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY Department of Environmental Quality Analysis

Dr. Nguyen Thi Hue

Vu Van Tu

1. Test results are valid for test samples

2. Only quoted a part of test report if receiving the agreement by terms of DEQA

3. Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

4. Name of sample, customers written by customers' request

DEQA/TT/BM/17.01

Version: 1.03

DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

-Cau Giay District - Hanoi - Vietnam Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

ANALYTICAL RESULT

No: A1207. EX5

: Viet Nam Infrastructure Development and Finance Investment Joint Stock Company CINHAS 366

: 8th-9th-10th floors, LILAMA 10 Building, Le Van Luong street, Me Tri commune, Tu Liem, Ha Noi : Noise (Contract: 74/VDIFI-VCNMT/2010) Address

Kind of sample : Noise (Contract: 7 Number of sample : 12

Name of sample : EX5-K6.4

: Gia Loc Highschool, Gia Loc Town, Gia Loc District, Hai Duong Province (Package EX5-K6.4) Sampling place

Co-ordinate : N 20° 51'341"- E 106° 18'131" Testing time : From 9am July 09th to 7 am July 10th, 2012

							1	- coth	,	with and					
						Fr	om 9am J.	uly 09" to	7 am July	v 10", 201.	7				_
Name of sample	sample	Noise	9am	11am	13pm	15pm	17pm	pm 17pm 19pm 21pm 23pm 01a	21pm	23pm	01am	03am	05am	07am	
	Lea		62.0	60.3	59.3	62.7	6.09	59.8	59.5	9.05	57.1	55.8	54.9	66.5	
1_	I.max		90.8	77.4	76.8	86.1	82.8	74.2	74.5	77.5	74.1	72.1	6.62	89.1	
EX 5-	Lmin	(dB)	50.8	47.3	44.4	53.7	50.5	47.8	50.8	45.3	52.9	47.2	42.7	56.3	_
K6.4	1.50		58.8	56.5	53.2	59.5	58.5	58.4	56.4	47.4	55.9	53.7	46.6	61.6	_
	1,90		55.3	51.4	48.0	57.0	55.1	54.0	53.6	46.4	55.4	51.4	44.4	59.3	
OCVN	QCVN 26:2010/BTNMT	TINNTS				70					55	2		70	

Note: QCVN 26:2010/BTNMT - National Technical Regulation on Noise

Department of Environmental Quality Analysis

Hanoi. July 23rd. 2012

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

VIENDEPUT Director

Vu Van Tu

Dr. Nguyen Thi Hue

1. Test results are valid for test samples

2. Only quoted a part of test report if receiving the agreement by terms of DEQA

3. Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

4. Name of sample, customers written by customers' request

DEQA/TT/BM/17.01

Version: 1.03

Page : *I/I*

Address: R.712, A30 Building 18 Hoang Quoc Viet Road –Cau Giay District – Hanoi -

Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

Time	,			From 7	7:00 am to 7:3	0 am on	July 10	0 ¹¹ . 2012	Trip No.
	200 2		Vibrat	ion Leve		Vil	bration	Acceler	ation (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Lcq		40.3	31.2	32.6	40.3	50.8	47.6	44.5	50.8
L _{max}		53.9	42	39.1	53.9	63.5	63.6	57.8	63.6
L _{min}	FASTER-	26.9	22.3	22.3	26.9	37	35	34.4	37
L ₁₀	dB	45.1	33.5	35	45.1	37	35	34.4	37
L ₅₀		34.3	30.4	32	34.3	54.2	49.9	46.1	54.2
L ₉₀		30.8	27.3	28.7	30.8	45	41.8	40.2	45

Allowable maximum value of the vibration acceleration for contruction activities

No	Area	Time in day	Vibration Acceleration (dB) Average (Lcq)
		From 6 am to 6 pm	75
1	Special area	From 18 pm to 6 am	Background level
		From 6 am to 9 pm	75
2	Normal area	From 21 to 6 am	Background level

Note: QCVN 27:2008/BTNMT: National Technical Regulation on Vibration

Department of Environmental Quality Analysis

Hanoi. July 23rd. 2012

INSTITUTE OF ENVIRONMENTAL **TECHNOLOGY**

Deputy Director

Dr. Nguyen Thi Hue

Vu Van Tu

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Fax: (84 - 4) 3791 1203 DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

Cau Giay District - Hanoi - Vietnam Tel: (84 - 4) 3791 1654

ANALYTICAL RESULT

VILAS 366

No: A1207.52-55

: Vietnam Infrastructure Development and Finance Investment Joint Stock Company (VIDIFI., JSC)

: 8th-9th-10th floors, LILAMA 10 Building, Le Van Luong street, Me Tri commune, Tu Liem, Ha Noi Address

: Air (Contract: 74/VDIFI-VCNMT/2010) Kind of sample

Number of sample: 4

: 13 Hamlet, Vinh Ninh small village, Thanh Cuong Commune, Thanh Ha District, Hai Duong Province Sampling place

(Package EX6-K7.4)

: N 20° 49'18.1" - E 106° 28' 49.0" Co-ordinate

: From 9 am on July 10th to 7 am on July 11th, 2012 Testing time

Name of sample	Parameter	Unit	K 7.4.1	K 7.4.2	K 7.4.3	K 7.4.4	QCVN 05:2009/BTNMT
	Time		9:00 am July 10 th , 2012	15:00 pm July 10 th , 2012	21:00 pm July 10 th , 2012	3:00 am July 11th, 2012	
	VOCs		120	130	06	105	•
1	Dust		105	95	98	06	300
EX 6 –	SO,	ug/m³	98	93	78	72	350
K./.A	NO,)	33	18	20	18	
	00		1259	3223	984	696	30000

Note: QCVN 05:2009/ BTNMT: National technical regulation on ambient air quality

Department of Environmental Quality Analysis

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

VIEW Deputy Director

Hanoi, July 23rd, 2012

Dr. Nguyen Thi Hue

1. Test results are valid for test samples

Vu Van Tu

2. Only quoted a part of test report if receiving the agreement by terms of DEQA

3. Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

4. Name of sample, customers written by customers' request

DEQA/TT/BM/17.01

Fax: (84 - 4) 3791 1203 Tel: (84 - 4) 3791 1654 DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

-Cau Giay District - Hanot - Vietnam

ANALYTICAL RESULT

No: A1207. EX 6

Viet Nam Infrastructure Development and Finance Investment Joint Stock Company

8th.9th.10th floors, LILAMA 10 Building, Le Van Luong street, Me Tri commune, Tu Liem, Ha Noi

Noise (Contract: 74/VDIFI-VCNMT/2010) Kind of sample Address

Number of sample

Velas 366

EX6-K7.4 Name of sample

Vinh Ninh small village, Thanh Cuong Commune, Thanh Ha District, Hai Duong Province Sampling place

(Package EX6-K7.4) N 20° 49'18.1" - E 106° 28' 49.0" Co-ordinate

From 9am July 10th to 7 am July 11th, 2012 Testing time

	33	;				H	From 9am July 10th t	July 10th t	o 7 am Ju	to 7 am July 11th, 2012	2			
Name	Name of sample	Noise	9am	11am	13pm	15pm	17pm	19pm	21pm	23pm	1000	03am	05am	07am
	Lea		58.2	59.5	51.8	55.6	9.09	57.8	54.0	48.3	48.6	42.0	55.1	57.8
1	Lmax		78.1	84.1	71.6	9.77	8.98	778.3	85.2	6.89	70.9	52.4	70.3	81.5
EX 6-	I,min	(dB)	42.6	42.7	40.8	46.2	41.5	40.0	45.2	44.6	43.1	40.6	38.8	40.2
K7.4	1.50	,	53.3	52.7	47.7	52.9	52.0	51.2	49.1	46.9	45.0	41.8	47.4	49.1
,	L90		48.0	47.8	44.3	49.1	46.7	45.2	47.5	45.6	44.1	41.2	42.1	43.6
OCV!	QCVN 26:2010/BTNMT	TNMT I ea				70					ĸ	55		70
7017	Hall alva	1 557												

Note: QCVN 26:2010/BTNMT - National Technical Regulation on Noise

Department of Environmental Quality Analysis

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Deputy Director

. Hanoi. April 23rd. 2012

Vu Van Tu

Dr. Nguyen Thi Hue

[.] Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

l. Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road -Cau Giay District - Hanoi - Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

ANALYTICAL RESULT

No: A1207.EX6

Client

: Vietnam Infrastructure Development and Finance Investment

Joint Stock Company (VIDIFI., JSC)

Address

: 8th-9th-10th floors, LILAMA 10 Building, Le Van Luong street

Me Tri commune, Tu Liem, Ha Noi

Kind of sample

: Vibration (Contract: 74/VDIFI-VCNMT/2010)

Number of sample

VILAS 366

: 12

Name of sample

: EX 6 - K7.4

Testing place

: 13 Hamlet, Vinh Ninh small village, Thanh Cuong Commune,

Thanh Ha District, Hai Duong Province (Package EX6)

Co-ordinate

: N 20° 51'34.1" - E 106° 18' 13.1"

Testing time

: From 9:00 am on July10th to 7:30 am on July 11th, 2012

Time)			From 9	:00 am to 9:3	0 am on	July 1	0 th , 2012	
D	WT 34		Vibrati	ion Leve	el (Lv)	Vi	bration	Acceler	ation (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		39.9	35.1	34.8	39.9	66.9	63.9	62.3	66.9
L _{max}		64.2	57.2	42.4	64.2	89.4	87.6	84.3	89.4
L _{min}	αL	25.1	25.6	25.9	25.9	39.6	36.1	35.6	39.6
L_{10}	dB	40.3	36	37.3	40.3	60.3	58	58	60.3
L ₅₀		32.40	32.8	34	34	50.2	47.4	47	50.2
L-90		29.2	29.8	30.9	30.9	44.3	41.1	40.1	44.3

Time	,			From 1	1:00 am to 11	:30 am	n July	10 th . 201	12
D .	WT *4		Vibrat	ion Lev	el (Lv)	Vi	bration	Acceler	ation (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		38.3	33.6	34.8	38.3	52.4	50.8	52.4	52.4
L _{max}		52.7	41.8	42.3	52.7	71.1	76.5	75.5	76.5
L _{min}	dB	24	24.4	25.5	25.5	37.4	33.3	34.4	37.4
L ₁₀	u.b	41.3	36.1	37.5	41.3	54.9	30.1	53.8	54.9
L ₅₀		34	32.7	34	34	48.9	43.9	47.7	48.9
L ₉₀		28.5	29.5	30.7	30.7	42.9	38.2	40.2	42.9

Time	saver yr.]	From 13	:00 pm to 13:	:30 pm	n July	10 th . 201	12
	WT		Vibrat	ion Leve	el (Lv)	Vi	bration	Acceler	ation (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		39.9	36.5	37.8	39.9	46.4	42.6	43.9	46.4
L _{max}		54.5	48.5	49.2	54.5	60.3	57.3	55.7	60.3
L _{min}	dB	23.6	24.4	28.8	28.8	34.2	30.3	32	34.2
L ₁₀	aВ	43.7	39.2	40.6	43.7	49.9	45.8	47.5	49.9
L ₅₀		36.5	35.4	36.8	36.8	44.1	40.5	41.9	44.1
L ₉₀		28.3	31.5	33.4	33.4	38.5	35.7	36.5	38.5

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road –Cau Giay District – Hanoi - Vietnam Tel: (84 - 4) 3791 1654

Fax: (84 - 4) 3791 1203

Time]	From 13	5:00 pm to 15:3	30 pm or	ı July 1	0 th . 201	2
	WT •4				vel (Lv)				ation (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		34.5	34.3	35.9	35.9	56.3	55.8	56	56.3
L _{max}		48.7	42.2	46.6	48.7	80.6	81.2	81.8	81.8
Lmin	JD.	25.2	25.8	26.1	26.1	37.8	34.2	34.4	37.8
L ₁₀	dB	37.2	36.9	38.5	38.5	58.2	52.4	49	58.2
L ₅₀		31.3	33.5	35	35	55.3	49.9	46.6	55.3
L ₉₀		28.4	30.3	31.5	31.5	41.7	38.1	37.3	41.7

Time)		-	From 1	7:00 pm to 17:3	0 pm or	July 1	0 th . 201	2
-	TT •4		Vibra	tion Le	vel (Lv)	Vit	ration	Acceler	ation (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq	Secretary (* 1999) benefit desirables (* 1941) destructure	33.1	33.7	34.8	34.8	46.2	45.6	43.9	46.2
L_{max}		47.5	41.5	42	47.5	61.7	64.1	61.6	64.1
L_{\min}	αr	24.2	24.9	25.8	25.8	36	34	32.8	36
L_{10}	dB	34.9	36.3	37.3	37.3	49	47.6	46.3	49
L ₅₀		30.8	33	34.1	34.1	43.8	41.8	40.6	43.8
L ₉₀		28.2	29.7	30.7	30.7	39.8	37.3	36.6	39.8

Time	,]	From 19	9:00 pm to 19:3	30 pm or	ı July 1	0 th . 201	2
-	¥T *4				vel (Lv)				ation (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		30.7	31.9	33.2	33.2	51.6	51.7	48.5	51.7
L_{max}		48	39.8	42.9	48	71.7	69.8	68.1	71.7
L _{min}	CIL	22.7	22	22.6	22.7	32.3	29.7	29.2	32.3
L ₁₀	dB	31.7	34.5	36	36	54.4	55.2	51.2	55.2
L ₅₀		28.3	31.1	32.3	32.3	45	43.4	40.9	45
L ₉₀		26	27.8	28.9	28.9	38	35.2	34.5	38

Time	;]	From 2	1:00 pm to 21:3	0 pm or	July 1	0 th . 201	2
	¥T *,		Vibra	tion Le	vel (Lv)	Vil	ration	Acceler	ation (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		32.7	31.4	32.6	32.7	51	47.5	48.4	51
Lmax		52.60	39.1	40.4	52.6	72.2	68.6	68.4	72.2
L_{min}	an.	21.7	22.2	24.2	24.2	37.9	33.3	34	37.9
L_{10}	dB	34.2	34	35.1	35.1	49.9	46.5	48	49.9
L ₅₀		28.2	30.6	31.8	31.8	40.7	37.2	37.3	40.7
L ₉₀		25.2	27.6	28.7	28.7	39.3	35.2	35.3	39.3

 $^{{\}it 1. Test results are valid for test samples}$

DEQA/TT/BM/17.01 Version: 1.03 Page: 2/4

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA $\,$

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road –Cau Giay District – Hanoi - Vietnam Tel: (84 - 4) 3791 1654

Fax: (84 - 4) 3791 1203

Time				From 2	3:00 pm to 23:	30 pm c	n July	10 th . 20	12
Damamatan	Unit		Vibrat	tion Le	vel (Lv)	Vi	bration	Accele	ration (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		26.6	31.2	32.1	32.1	49.5	50.6	43.2	50.6
L_{max}		43.4	39.9	39.7	43.4	76.8	78.8	70	78.8
L_{\min}	dB	20.2	21.7	21.5	21.7	34.3	30.8	30.6	34.3
L_{10}	an	28	33.8	34.7	34.7	45.3	39	39.7	45.3
L_{50}		25.2	30.3	31.3	31.3	37.8	33.8	34	37.8
L ₉₀		23	27	28	28	36	32.2	32	36

Time	WILLIAM S			Fron	1:00 am to 1:3	0 am on	July 1	th. 2012	2
D 4	TT . 24		Vibra	tion Le	evel (Lv)	Vi	bration	Accele	eration (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		26.8	30.9	32.3	32.3	52.9	46.1	45.5	52.9
L _{max}		39.4	38.9	39.1	39.4	77.1	66.2	68.4	77.1
L _{min}	dB	20.1	22	22.4	22.4	34.3	30.3	30.3	34.3
L_{10}	UD	29.5	33.5	35	35	51.9	46.4	46.2	51.9
L_{50}		25.4	30.1	31.5	31.5	38.9	35.1	35.3	38.9
L ₉₀		23	26.8	28	28	35.9	32.1	32	35.9

Time				From	3:00 am to 3:3	0 am on	July 1	1 th . 2012	2
**	W T . *4		Vibra	tion Le	evel (Lv)	Vi	bration	Accele	ration (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
L_{eq}		30.4	30.8	32.2	32.2	55.5	50.6	47.9	55.5
L _{max}		48.7	40.3	39.8	48.7	80	75.7	72.9	80
L_{\min}	ar	20.9	19.8	22.4	22.4	45.7	38	35.2	45.7
L_{10}	dΒ	32.5	33.4	34.8	34.8	54.9	50.5	47.7	54.9
L_{50}		29	30	31.5	31.5	47.6	41.7	38.4	47.6
L ₉₀		24.9	26.5	28	28	46.9	39.9	36.5	46.9

Time	ali, dan dan mana and dan mana			From	5:00 am to 5:3	30 am on	July 1	1 th . 201	2
	#T *.		Vibrat	tion Lev	vel (Lv)	Vi	bration	Accele	ration (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		32.3	30.6	32	32.3	60.3	44.9	50.2	60.3
L_{max}		47.5	38.6	38.7	47.5	85.8	67.2	75.2	85.8
L_{\min}	ar	22.6	22.8	23.2	23.2	33.7	29.5	29.6	33.7
L_{10}	dB	35.4	33.2	34.8	35.4	49.7	42.2	40.8	49.7
L ₅₀		29.6	29.7	31.1	31.1	40.8	35.8	35.9	40.8
L ₉₀		25.8	26.6	27.8	27.8	37.2	32.4	32.8	37.2

^{1.} Test results are valid for test samples

² Only quoted a part of test report if receiving the agreement by terms of DEQA

³ Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road -Cau Giay District - Hanoi - Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

Time				From 7	7:00 am to 7:3	0 am on	July 1	1 th . 2012	
-	** • •		Vibrat	tion Leve	el (Lv)	Vil	bration	Acceler	ation (Lva)
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average
Leq		30.6	31.3	32.6	32.6	44.9	36.8	36.1	44.9
L _{max}		44.2	39.9	40.5	44.2	65.8	56.3	52.1	65.8
L _{min}	ID.	21.7	21.2	23.9	23.9	34.2	28.3	29	34.2
L ₁₀	dB	33.6	33.8	35.2	35.2	48.1	38.7	38.8	48.1
L ₅₀		27.4	30.4	31.8	31.8	40.4	34.1	34.4	40.4
L ₉₀		24.6	27.1	28.5	28.5	36.6	31.3	31.6	36.6

Allowable maximum value of the vibration acceleration for contruction activities

No	Area	Time in day	Vibration Acceleration (dB) Average (Leq)
		From 6 am to 6 pm	75
1	Special area	From 18 pm to 6 am	Background level
		From 6 am to 9 pm	75
2	Normal area	From 21 to 6 am	Background level

Note: QCVN 27:2008/BTNMT: National Technical Regulation on Vibration

Hanoi. July 23rd. 2012

Department of Environmental Quality Analysis INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Deputy Director

NA.

Dr. Nguyen Thi Hue

Vu Van Tu

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road –Cau Giay District – Hanoi

- Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

VILAS 366

ANALYTICAL RESULT

No: W1207.280

Client

: Vietnam Infrastructure Development and Finance Investment Joint Stock

Company (VIDIFI., JSC)

Address

: 8th-9th-10th floors, LILAMA 10 Building, Le Van Luong street

Me Tri commune, Tu Liem, Ha Noi

Kind of sample

: Ground water (Contract: 74/VDIFI-VCNMT/2010)

Number of sample

: 02

Preservation

: 01 PE Bottle 0,5L refrigerate.

01 PE Bottle 0,5L, preserved HNO $_3$ refrigerate. 01 PE Bottle 0,5L, preserved H $_2$ SO $_4$ refrigerate.

01 glass Bottle 1,0 L

Sampling place

: Mr. Tran Van Doai- My Duc Commune -An Lao District,

Hai Phong Province (Package EX8-NN 8.5)

Co-ordinate

: N 20° 51'34.1"- E 106° 18' 13.1"

Sampling time
Testing time

: July 12th, 2012 : From July 13th to July 23rd 2012

		220 770		Res	ults	QCVN 09:2008/
No	Parameter	Unit	Test methods	NN 8.5	MT	BTNMT
1.	Temperature	°C	TCVN 4457-1988	31.0	28.0	-
2.	pH	-	TCVN 6492 – 1999	7.78	7.10	5.5 – 8.5
3.	COD	mgO ₂ /L	KMnO ₄ Method	10.3	< 1.0	4
4.	BOD ₅	mg/L	TCVN 6001 – 2008	5.9	< 1.0	-
5.	TSS	mg/L	SMEWW 2540 D - 2005	8	< 3.0	-
6.	Total P	mg/L	TCVN 6202 – 2008	0.27	< 0.01	_
7.	Total N	mg/L	TCVN 5987-1995	8.5	< 0.10	
8.	Coliform	MPN/	TCVN 6187 – 1 –1996	12	ND	3
9.	E. Coli	100mL	1CVN 0187 - 1 -1990	ND	ND	ND

Note: QCVN 09:2008/BTNMT: National technical regulation on underground water quality.

ND: Non detect

Hanoi. July 23rd. 2012

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Deputy Director

VIỆN CÔNG NGHỆ MÔI TRƯỜNG

Dr. Nguyen Thi Hue

Vu Van Tu

Department of Environmental Quality Analysis

1. Test results are valid for test samples

2. Only quoted a part of test report if receiving the agreement by terms of DEQA

3. Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

4. Name of sample, customers written by customers' request

DEQA/TT/BM/17.01

Version: 1.03

Page: 1/1

DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

Tel: (84 - 4) 3791 1654

Fax: (84 - 4) 3791 1203

ANALYTICAL RESULT

No: W1207.281-283

: Vietnam Infrastructure Development and Finance Investment Joint Stock Company (VIDIFI., JSC) VILAS 366

: 8th.9th.10th floors, LILAMA 10 Building, Le Van Luong street, Me Tri commune, Tu Liem, Ha Noi Address

: Surface water (Contract: 74/VDIFI-VCNMT/2010) Kind of sample

Client

: 04 sample Number of sample : 01 PE Bottle 0,5L refrigerate Preservation 01 PE Bottle 0,5L, preserved HNO3 refrigerate

01 PE Bottle 0,5L, preserved H2SO4 refrigerate

01 glass Bottle 1,0 L

: Da Do River, My Duc Commune, An Lao District, Hai Phong City (Package EX8-NM4.5) Sampling place

N 20° 46'814"- E 105° 36'858" Co-ordinate

: From July 11th to July 12th, 2012 Sampling time : From July 13th to July 23rd, 2012 Testing time

5	Darameter	Ilmit	Test methods		Results	Ilts		QC 08:2008/	QCVN 08:2008/BTNMT
	I al ameter			NM 4.5.1		NM 4.5.2 NM 4.5.3	MT	Column B1	Column B2
	Ha	1	TCVN 6492 – 1999	8.25	8.27	8.33	7.20	5.5 -9	5.5-9
	DO	mg/L	TCVN 7325 - 2004	6.45	6.50	5.20	7.38	>4	77
	COD	mgO ₂ /L	KMnO ₄ Method	15.5	16.1	12.1	<1.0	30	20
	BODs	mg/L	TCVN 6001 – 2008	7.7	8.3	6.5	<1.0	15	25
1	TSS	mg/L	SMEWW 2540 D - 2005	10	15	10	<3.0	50	100
	Total P	mg/L	TCVN 6202 - 2008	0.59	0.11	0.13	0.01	ı	t
	Total N	mg/L	TCVN 5987-1995	5	9	5.5	<0.10	1	•
1	Pesticides	mg/L	TCVN 7876: 2008	< 0.5	< 0.5	< 0.5	<0.5	ī	É

[.] Test results are valid for test samples

9

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366 VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Cau Giay District - 1la Noi - Vict Nam Address: R.712, A30 Building 18 Hoang Quoc Viet Road -

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

5	Parameter	Unit	Test methods		Results	Its		QCVN 08:2008/BTNMT
140	I al allietel	Cili	A VOT MANUALITY	NM 4.5.1	NM 4.5.2 NM 4.5.3	NM 4.5.3	TM	Column B1
9	Aldrine+Dieldrine			< 0.05	< 0.05	< 0.05	< 0.05	0.008
5	Endrine			< 0.05	< 0.05	< 0.05	<0.05	0.014
1 3	RHC			< 0.05	< 0.05	< 0.05	<0.05	0.13
3 :	DDT			< 0.05	< 0.05	< 0.05	<0.05	0.004
<u>ا</u> ا	DDD	ug/L	TCVN 7876: 2008	< 0.05	< 0.05	< 0.05	< 0.05	
1 2	Endosunfane (Thiodan)	,		< 0.05	< 0.05	< 0.05	< 0.05	0.01
2 :	Lindane			< 0.05	< 0.05	< 0.05	< 0.05	0.38
16	Chlordane			< 0.05	< 0.05	< 0.05	<0.05	0.02
17.	Heptachlor			< 0.05	< 0.05	< 0.05	<0.05	0.02
18.	Mineral oil	mg/L	SMEWW 5520 B - 2005	0.12	0.12	0.10	< 0.05	0.1
19.	Coliform	MPN/100 mL	TCVN 6187-1:1996	380	490	460	ND	7500

Note: QCVN 08:2008/BTNMT: National technical regulation on surface water quality

B1-For the usage of irrigation or other purpose having the similar quality requirement like B2 level

B2 - For the usage of water navigation and other purpose with less water quality

NM 4.5.1: Sampling at 14:00 pm on July 11th. 2012; NM 4.5.2: Sampling at 22:00 pm July11th. 2012; NM 4.5.3: Sampling at 6:00 am July12th. 2012;

MT: Blank sample; ND: non detect

Department of Environmental Quality Analysis

Vu Van Tu

Hanoi. April 23rd, 2012

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY VE Deputy Director

ONG NGHÊ

Dr. Nguyen Thi Hue

1. Test results are valid for test samples

2. Only quoted a part of test report if receiving the agreement by terms of DEQA

3. Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

4. Name of sample, customers written by customers' request

DEQA/TT/BM/17.01

Page: 2/2

Version: 1.03

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Address: R.712. A30 Building 18 Houng Quoc Viet Road -Cau Giay District - Hanoi - Vietnam Fax: (84 - 4) 3791 1203 Tel: (84 - 4) 3791 1654 DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

VILAS 366

ANALYTICAL RESULT

No: A1207.56-59

: Vietnam Infrastructure Development and Finance Investment Joint Stock Company (VIDIFI., JSC)

: 8th.9th.10th floors, LILAMA 10 Building, Le Van Luong street, Me Tri commune, Tu Liem, Ha Noi Address

Kind of sample : Air (Contract : 74/VDIFI-VCNMT/2010)

Number of sample: 4

Sampling place : Three - way crossroads Quan Re, My Duc Commune, An Lao District, Hai Phong City (Package EX 8-K10.5)

: N 20° 46'12.8" - E 106° 36' 35.2" Co-ordinate

: From 9 am on July 11th to 7 am on July 12th, 2012 Testing time

Name of	Parameter	Unit	K 10.5.1	K 10.5.2	K 10.5.3	K 10.5.4	QCVN 05:2009/BTNMT
	Time		9:00 am July 11 th , 2012	15:00 pm July 11th, 2012	21:00 pm July 11 th , 2012	3: July	
	VOCs		285		218	234	(1)
	Dust		902	522	328	372	300
EX 8 -	SO	ug/m³	73	68	84	70	350
K 10.5	NO	0	25	27	18	17	•
	700		1297	1462	1289	1709	30000

Note: QCVN 05:2009/ BTNMT: National technical regulation on ambient air quality

Department of Environmental Quality Analysis

Hanoi, July 23rd, 2012

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY Deputy Director

Dr. Nguyen Thi Hue

Vu Van Tu

1. Test results are valid for test samples

2. Only quoted a part of test report if receiving the agreement by terms of DEQA

3. Test iterms in italic are not recognized by VILAS: test iterms marked by (*) are recognized by subcontractor

4. Name of sample, customers written by customers' request

DEQA/TT/BM/17.01

Version: 1.03

Page : I/I

DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366 VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

-Cau Giay District - Hanoi - Vietnam Tel: (84 - 4) 3791 1654

Fax: (84 - 4) 3791 1203

ANALYTICAL RESULT

No: A1207. EX 8

: 8th.9th.10th floors, LILAMA 10 Building, Le Van Luong street, Me Tri commune, Tu Liem, Ha Noi Client VILAS 366: Viet Nam Infrastructure Development and Finance Investment Joint Stock Company

: Noise (Contract: 74/VDIFI-VCNMT/2010) Kind of sample

Number of sample

: EX8-K10.5 Name of sample

: Three - way crossroads Quan Re, My Duc Commune, An Lao District, Hai Phong City (Package EX 10-K10.5) Sampling place

: N 20° 46'12.8" - E 106° 36' 35.2" Co-ordinate

: From 9 am July 11th to 7 am July12th, 2012 Testing time

		,				Fr	om 9 am.	From 9 am July 11th t	to 7 am July12th, 2012	ly12th, 201	2			
Name	Name of sample	Noise	9am	11am	13pm	15pm	17pm	19pm	21pm	23pm	10000	03am	05am	07am
	Lea		62.6	65.3	53.5	67.0	62.0	62.6	9.09	57.8	9.78	53.7	48.7	62.8
			82.2	92.6	72.6	87.5	84.9	88.7	77.2	72.6	63.5	57.2	9.07	85.1
EX 8-		(dB)	48.9	46.2	41.2	55.1	47.2	49.2	50.4	49.3	50.5	52.5	41.8	51.2
K10.5	1.50		54.0	57.8	50.3	62.1	56.9	57.5	58.6	57.2	57.5	53.6	45.1	59.9
	T90		51.2	50.9	46.3	59.8	52.4	53.4	52.7	56.2	26.7	53.1	43.0	56.5
OCVI	QCVN 26:2010/BTNMT	BTNMT (Lea)				70					55	10		70

Note: QCVN 26:2010/BTNMT - National Technical Regulation on Noise

Department of Environmental Quality Analysis

Dr. Nguyen Thi Hue EDeputy Director

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Hanoi. July 23rd. 2012

Vu Van Tu

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road –Cau Giay District – Hanoi - Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

ANALYTICAL RESULT

No: A1207.EX 8

Client

: Vietnam Infrastructure Development and Finance Investment Joint

Stock Company (VIDIFI., JSC)

Address

: 8^{th} - 9^{th} - 10^{th} floors, LILAMA 10 Building, Le Van Luong street

Me Tri commune, Tu Liem, Ha Noi

Kind of sample

VILAS 366

: Vibration (Contract: 74/VDIFI-VCNMT/2010)

Number of sample

: 12

Name of sample

: EX 8 - K10.5

Testing place

: Three - way crossroads Quan Re, My Duc Commune, An Lao District,

Hai Phong City (Package EX 8)

Co-ordinate

: N 20° 46'12.8" - E 106° 36' 35.2"

Testing time

: From 9:00 am on July 11th to 7:30 am on July 12th, 2012

Time			From 9:00 am to 9:30 am on July 11th, 2012										
D4	WT 24		Vibra	tion Lev	rel (Lv)	Vibration Acceleration (Lva)							
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average				
L_{eq}		41.2	34.7	35.5	41.2	53.3	50.3	47.7	53.3				
L _{max}		53.6	42.2	42.4	53.6	72.6	69.7	69.9	69.9				
Lmin	σι	31.7	26.4	27.5	31.7	41.2	39.3	33.7	41.2				
L_{10}	dB	43.6	36.9	38.1	43.6	53.8	51.8	45.8	53.8				
L ₅₀		39.5	34	34.7	39.5	47.4	45.4	41	47.4				
L ₉₀		35.8	31.3	31.7	35.8	44.3	42.3	38.4	44.3				

Time	9		From 11:00 am to 11:30 am on July 11th. 2012									
n	TI:4		Vibra	tion Lev	vel (Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq		48.8	40.4	38.5	48.8	63.7	63.6	60.4	63.7			
L _{max}		58.7	52.8	46.3	58.7	90	89.6	86.5	90.			
L _{min}	JD.	37.3	29	29.9	37.3	42.2	36.9	36.7	42.2			
L_{10}	dB	52	42.8	41	52	54.5	48.9	48.6	54.5			
L ₅₀		47	38.6	37.8	47	48.6	42.7	42.7	48.6			
L ₉₀		42.5	35.1	34.7	42.5	44.9	39.7	39.4	44.9			

Time				From 13	3:00 pm to 13	:30 pm	on July	11 th . 20	12		
1)	¥1		Vibrat	ion Lev	el (Lv)	Vibration Acceleration (Lva)					
Parameter		Z	Y	X	Average	Z	Y	X	Average		
L_{eq}		37.4	33.3	34.1	37.4	50	46.6	44.9	50		
L _{max}		49.8	41.5	41.7	49.8	74	71.4	69.3	74		
L _{min}		26.6	24.1	24.3	26.6	38	33.8	33.8	38		
L ₁₀		40.9	35.7	36.8	40.9	48.7	44	43.5	48.7		
L ₅₀		33.7	32.7	33.3	33.7	44	39.5	39.5	44.0		
L ₉₀	dB	30	29.9	29.9	30	41.2	36.4	36.7	41.2		

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road –Cau Giay District – Hanoi - Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

Time	÷			From 15:00 pm to 15:30 pm on July 11 th . 2012						
	T T •,		Vibrat	ion Lev	vel (Lv)	Vibration Acceleration (Lva)				
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average	
Leg		63.9	69.3	71.4	71.4	54	50.4	48	54	
L _{max}		89.9	90	89.7	90	68.9	69.4	66.3	69.4	
L _{min}	175	37.7	30.8	30	37.7	43.2	39.5	39	43.2	
L_{10}	dB	54.1	41.7	42.3	54.1	57.4	51.5	50	57.4	
L ₅₀		48.4	38.4	37.9	48.4	50.5	45.6	44.3	50.5	
L ₉₀		43	35.6	34.7	43	46.7	42.3	41.3	46.7	

Time	e		-	From 1	7:00 pm to 17	:30 pm	on July	11 th . 20	012	
	#T *4		Vibrat	ion Lev	vel (Lv)	Vibration Acceleration (Lva)				
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average	
Leg		44.7	36.5	36.1	44.7	54.6	49.1	49.1	54.6	
L _{max}		53	43.2	43	53	76.7	68.6	67.6	76.7	
L _{min}	ID.	33.8	27.7	27.3	33.8	41.2	36.5	35.4	41.2	
L ₁₀	dB	47.9	39.1	38.5	47.9	57.3	51.1	50	57.3	
L ₅₀		43.7	35.7	35.5	43.7	48.8	43.5	42.6	48.8	
L ₉₀		38.3	32.2	32	38.3	43.8	38.6	38.4	43.8	

Time)	From 19:00 pm to 19:30 pm on July 11 th . 2012									
	#T •/		Vibrat	ion Le	vel (Lv)	Vibration Acceleration (Lva)					
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
Leg		38.3	32.9	33.9	38.3	53.1	47.9	46.5	53.1		
L _{max}		50.7	48.2	49.7	50.7	73.9	69.3	66.7	73.9		
L _{min}	1D	28.9	24.1	25.3	28.9	38.5	34.2	34.4	38.5		
L_{10}	dB	41.6	35.2	36.3	41.6	55.2	49.1	48.2	55.2		
L ₅₀		36.7	32.2	33	36.7	46.3	41.7	40.9	46.3		
L ₉₀		32.6	29.2	30	32.6	41.6	38.2	37.5	41.6		

Time	<u>,</u>	From 21:00 pm to 21:30 pm on July 11 th . 2012										
	WT*4		Vibrat	ion Lev	vel (Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
Leq		35.3	31.8	33.8	35.3	48.3	49.6	48.8	49.6			
L _{max}		51.1	48.5	51.8	51.8	67.5	72.1	71.2	72.1			
L _{min}	ID	24	23.9	21.6	24	40.6	36	34.9	40.6			
L ₁₀	dB	38.7	34.4	36.4	38.7	49.7	50.3	49.7	50.3			
L ₅₀		32.3	31.2	32.8	32.8	44.4	41.8	41.2	44.4			
L ₉₀		28.5	28.1	29.3	29.3	42.5	38	37.8	42.5			

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road --Cau Giay District -- Hanoi -- Vietnam

Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

Time	e			From	23:00 pm to 23:3	0 pm o	n July	11 th . 20)12		
Parameter	Unit		Vibra	tion L	evel (Lv)	Vibration Acceleration (Lva)					
1 at afficiet	Onn	Z	Y	X	Average	Z	Y	X	Average		
L_{eq}		36.1	32	33.6	36.1	42.3	38.7	39.2	42.3		
L_{max}		50.9	38.5	43.1	50.9	54.7	60	57.5	60		
L_{\min}	dB	23.3	22.4	23.2	23.3	38.9	33.4	34.4	38.9		
L_{10}	ub	39.5	34.7	36.2	39.5	43.3	39.4	40.3	43.3		
L ₅₀		29.8	31.3	32.7	32.7	41.8	36.3	37.7	41.8		
L ₉₀		26.2	27.8	29.2	29.2	40.9	35.1	36.4	40.9		

Time	2			Fron	n 1:00 am to 1:30) am on	July 1	2 th . 201	2		
Danamatan	Unit		Vibra	tion L	evel (Lv)	Vibration Acceleration (Lva)					
Parameter	Onn	Z	Y	X	Average	Z	Y	X	Average		
Leq		28.7	32.2	35	35	43.1	42.6	40.9	43.1		
L _{max}		59.4	58.6	59.5	59.5	59.7	67.9	64.9	67.9		
L_{\min}	dB	23.1	21.7	23.5	23.5	38.4	32.4	33.1	38.4		
L_{10}	uъ	30.2	34.2	36.1	36.1	43.7	38.7	38.6	43.7		
L ₅₀		26.7	30.8	32.4	32.4	42.3	35.9	35.8	42.3		
L ₉₀		25	27.5	28.8	28.8	41.1	34.2	34.5	41.1		

Time	<u> </u>	From 3:00 am to 3:30 am on July 12 th . 2012									
D	Unit		Vibra	tion L	evel (Lv)	Vibration Acceleration (Lva)					
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
Leq		30.6	30.7	32.5	32.5	43.1	39.7	40	43.1		
L _{max}		43.7	37.9	40.7	43.7	57.8	63.3	61.5	63.3		
Lmin	αL	22.9	22.1	22.2	22.9	39	36.3	36.8	39		
L ₁₀	dB	33.3	33.2	35.1	35.1	44.3	38.9	39.9	44.3		
L ₅₀		28.6	30.1	31.6	31.6	43.1	37.9	38.8	43.1		
L ₉₀		26.4	26.9	28.1	28.1	40.2	37.1	38.1	40.2		

Time	,	From 5:00 am to 5:30 am on July 12 th . 2012									
n	W T \$4		Vibra	tion L	evel (Lv)	Vibration Acceleration (Lva)					
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average		
Leg		35	33.3	36.3	36.3	45.1	42.7	43.3	45.1		
L_{max}		72.6	72.6	73.8	73.8	66.7	68	69.8	69.8		
L_{\min}	m	22.1	23.1	24.2	24.2	35.2	31.7	31.2	35.2		
L ₁₀	dB	38.1	34.5	35.7	38.1	46.2	40.4	40.9	43.1		
L ₅₀		31.5	31	32.3	32.3	43.1	36	36.1	38.6		
L ₉₀		26.6	27.7	28.8	28.8	38.60	34.1	33.5	38.6		

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road -Cau Giay District - Hanoi - Vietnam Tel: (84 - 4) 3791 1654 Fax: (84 - 4) 3791 1203

Time		From 7:00 am to 7:30 am on July 12th. 2012										
	WY **		Vibra	tion Lev	vel (Lv)	Vibration Acceleration (Lva)						
Parameter	Unit	Z	Y	X	Average	Z	Y	X	Average			
L_{eq}		41.5	34.3	34.2	41.5	49.4	48.3	47.5	49.4			
L _{max}		51.8	41.3	39.7	51.8	68.3	71.1	69.5	71.1			
L_{min}	dB	34.2	25.7	27	34.2	40.8	36.5	35.5	40.8			
L ₁₀	uБ	44.1	36.8	36.5	44.1	50.9	47.8	47.5	50.9			
L ₅₀		40.2	33.5	33.7	40.2	46.7	42.2	41.3	46.7			
L ₉₀		37.1	30.6	30.9	37.1	43.9	39.1	38.5	43.9			

Allowable maximum value of the vibration acceleration for contruction activities

No	Area	Time in day	Vibration Acceleration (dB) Average (Leq)
	6 1	From 6 am to 6 pm	75
1	Special area	From 18 pm to 6 am	Background level
	27 1	From 6 am to 9 pm	75
2	Normal area	From 9 pm to 6 am	Background level

Note: QCVN 27:2008/BTNMT: National Technical Regulation on Vibration

Hanoi. July 23rd. 2012

Department of Environmental Quality Analysis

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Deputy Director

THUUNG

Dr. Nguyen Thi Hue

Vu Van Tu

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

Fax: (84 - 4) 3791 1203 Tel: (84 - 4) 3791 1654

ANALYTICAL RESULT

No: W1207.284-286

: Vietnam Infrastructure Development and Finance Investment Joint Stock Company (VIDIFI., JSC)

8th-9th-10th floors, LILAMA 10 Building, Le Van Luong street, Me Tri commune, Tu Liem, Ha Noi

Surface water (Contract: 74/VDIFI-VCNMT/2010) Kind of sample Address

Number of sample

Preservation

Client AS 366

: 01 PE Bottle 0,5L refrigerate

01 PE Bottle 0,5L, preserved HNO3 refrigerate

01 PE Bottle 0,5L, preserved H2SO4 refrigerate

01 glass Bottle 1,0 L

: Lach Tray River, Trang Cat commune, Hai An district, Hai Phong Province (Package EX10) Sampling place

N 20° 57'730"- E 105° 57'265" Co-ordinate

From July 12th to July 13th From July 13th to July 23rd Sampling time

Testing time

Parameter	Unit	Test methods		Results	ults		QC 08:2008	QCVN 08:2008/BTNMT
			NM 5.6.1	NM 5.6.2	NM 5.6.3	MT	Column B1	Column B2
Hd	1	TCVN 6492 – 1999	8.05	7.88	7.98	7.20	5.5 -9	5.5 -9
DO	mg/L	TCVN 7325 - 2004	5.30	5.00	4.53	7.38	∀	77
COD	mgO ₂ /L	KMnO ₄ Method	17	16	18	<1.0	30	20
BODs	mg/L	TCVN 6001 - 2008	8.7	8.2	9.3	<1.0	15	25
TSS	mg/L	SMEWW 2540 D - 2005	18	15	91	<3.0	50	100
Total P	mg/L	TCVN 6202 - 2008	0.19	2.65	0.14	0.01	1	
Total N	mg/L	TCVN 5987-1995	12.5	7	10.2	<0.10	î	1
Pesticides	µg/L	TCVN 7876: 2008	< 0.5	< 0.5	< 0.5	<0.5	1	1
Aldrine+Dieldrine	1/2	900C - 3595 IVXOT	< 0.05	< 0.05	< 0.05	<0.05	0.008	0.01
Endrine	n/gr	10414 /8/0:2008	< 0.05	< 0.05	< 0.05	<0.05	0.014	0.01

5.

4

9

6

3

ci

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of $DE\mathcal{Q}A$

^{3.} Test iterms in italic are not recognized by VILAS: test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Address: R.712, A30 Building 18 Hoang Quoc Viet Road -Cau Giay District - Hanoi - Vietnam Tel: (84 - 4) 3791 1654

Fax: (84 - 4) 3791 1203

DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

	Domandon	T _n :	Test methods		Results	ults		QCVN 08:2008/BTNMT	BINMI
ď	r al allieuei		Fedt meenone	NM 5.6.1	NM 5.6.2	NM 5.6.3	TM	Column B1	Column B2
=	BHC	2-72-42		< 0.05	< 0.05	< 0.05	< 0.05	0.13	0.015
12	DDT			< 0.05	< 0.05	< 0.05	< 0.05	0.004	0.005
3	מממ			< 0.05	< 0.05	< 0.05	<0.05	i	1
14.	Endosunfane (Thiodan)	J/g/L	TCVN 7876: 2008	< 0.05	< 0.05	< 0.05	< 0.05	0.01	0.02
15	Lindane			< 0.05	< 0.05	< 0.05	< 0.05	0.38	0.4
6	Chlordane			< 0.05	< 0.05	< 0.05	< 0.05	0.02	0.03
17.	Heptachlor	· ·		< 0.05	< 0.05	< 0.05	<0.05	0.02	0.05
18.	Mineral oil	mg/L	SMEWW 5520 B - 2005	0.11	0.11.	0.11	< 0.05	0.1	0.3
19.	Coliform	MPN/100 mL	TCVN 6187-1:1996	930	960	1100	ND	7500	10000

B1- For the usage of irrigation or other purpose having the similar quality requirement like B2 level Note: QCVN 08:2008/BTNMT: National technical regulation on surface water quality

B2-For the usage of water navigation and other purpose with less water quality NM 5.6.1: Sampling at 15:00 pm on July 12^{th} . 2012; NM 5.6.2: Sampling at 23:00 pm July 13^{th} . 2012; NM 201

MT: Blank sample; ND: non detect

Department of Environmental Quality Analysis

Vu Van Tu

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Hanoi. July 23rd. 2012

VIEN **Deputy Director**

Dr. Nguyen Thi Hue

Version: 1.03

^{1.} Test results are valid for test samples

^{2.} Only quoted a part of test report if receiving the agreement by terms of DEQA

^{3.} Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

^{4.} Name of sample, customers written by customers' request

Road - Cau Giay District - Hanoi - Vietnam Fax: (84 - 4) 3791 1203 Tel: (84 - 4) 3791 1654 DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366

VILAS 366

ANALYTICAL RESULT

No: A1207.60-63

: 8th-9th-10th floors, LILAMA 10 Building, Le Van Luong street, Me Tri commune, Tu Liem, Ha Noi : Vietnam Infrastructure Development and Finance Investment Joint Stock Company Address Client

Kind of sample : Air (Contract: 74/VDIFI-VCNMT/2010)

Number of sample: 04 sample

Sampling place : House of culture in Tan Vu Village, Trang Cat Commune, Hai An District, Hai Phong City

(Package EX10- K12.6).

: N 20° 48'059" - E 106° 44' 839" Co-ordinate

From 9 am July 12th to 7 am July 13th, 2012 Testing time

12.6.1 K 12.6.2 K 12.6.3 K 12.6.4 :00 am 15:00 pm 21:00 pm 3:00 am 12 th , 2012 July 12 th , 2012 July 13 th , 2012 115 82 78	K 12.6.3 21:00 pm July 12 th , 2012 82
15:00 pm July 12 th , 2012 105	9:00 am 15:00 pm July 12 th , 2012 July 12 th , 2012
	9:00 am July 12 th , 2012
1.	July
Parameter Time VOCs	

Note: QCVN 05:2009/ BTNMT : National technical regulation on ambient air quality.

Department of Environmental Quality Analysis

Hanoi, July 23rd, 2012

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY Deputy Director

Vu Van Tu

Dr. Nguyen Thi Hue

1. Test results are valid for test samples

2. Only quoted a part of test report if receiving the agreement by terms of DEQA

3. Test iterms in italic are not recognized by VILAS; test iterms marked by (*) are recognized by subcontractor

4. Name of sample, customers written by customers' request

DEQA/TT/BM/17.01

Version: 1.03

Page: 1/1

VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF ENVIRONMENTAL QUALITY ANALYSIS VILAS 366 INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Address: R.712. A30 Building 18 Houng Quoc Viet Road Cau Gíav District - Hanoi - Vietnam Fax: (84 - 4) 3791 1203 Tel: (84 - 4) 3791 1654

ANALYTICAL RESULT

No: A1207. EX 10

VILAS 3:84-94-104 floors, LILAMA 10 Building, Le Van Luong street, Me Tri commune, Tu Liem, Ha Noi error: Viet Nam Infrastructure Development and Finance Investment Joint Stock Company Address Client

: Noise (Contract: 74/VDIFI-VCNMT/2010) Kind of sample

Number of sample: 12

: EX10-K12.6 Name of sample

: Tan Vu Village, Trang Cat Commune, Hai An District, Hai Phong City (Package EX10- K12.6) Sampling place

: N 20° 48'059" - E 106° 44' 839" Co-ordinate

: From 9 am July 12th to 7:00 am July 13th, 2012 Testing time

Nomo	Momo of comple	Noise				Fr	om 9 am J	From 9 am July 12th to7:00 am July 13th, 2012	7:00 am Ju	ly 13th, 201	2			
Maille	oi sampie	Deloni	9am	11am	13pm	15pm	17pm	md61	21pm	23pm	Contract of	03am	05am	07am
	Led		56.1	52.0	51.2	56.3	9.99	26.7	47.3	49.8	47.4	46.5	52.6	56.3
EV 10	Lmax		87.4	72.1	68.9	79.0	9.77	72.4	70.7	78.9	6.79	69.7	71.8	79.2
V17 6	Lmin	(qB)	38.7	38.5	37.6	45.5	41.4	43.4	37.2	39.9	39.9	40.5	45.0	39.2
0.21W	L50		51.0	47.5	50.9	55.3	51.1	56.2	43.3	46.5	41.5	45.8	52.4	51.4
	L90		46.0	42.2	43.0	47.6	46.2	50.2	40.5	41.7	40.8	44.1	48.2	47.3
QCVN (Non	QCVN 26:2010/BTNMT (Nomarl area - Leq)	BTNMT - Leq)			7	70					55			70

Note: QCVN 26:2010/BTNMT - National Technical Regulation on Noise

Department of Environmental Quality Analysis

Dr. Nguyen Thi Hue

INSTITUTE OF ENVIRONMENTAL TECHNOLOGY

Deputy Director

Hanoi. July 23rd, 2012

Vu Van Tu

. Test results are valid for test samples

2. Only quoted a part of test report if receiving the agreement by terms of DEQA

3. Test iterms in italic are not recognized by F1LAS; test iterms marked by (*) are recognized by subcontractor

4. Name of sample, customers written by customers' request

DEQA/TT/BM/17.01

Version: 1.03