

Producto 3.2. Estimación de consecuencias y análisis de riesgo cuantitativo

Definición de obras de control y mitigación contra las inundaciones en el Valle del Sula, Honduras

Febrero 2024

iPresas Risk Analysis

Plaza Semana Santa Marinera 2, 3º pta. 3 46011 – Valencia Tel.: (+34) 960 083 245 www.ipresas.com

ÍNDICE DEL DOCUMENTO

1.	Introducción y alcance de los trabajos	11
2.	Caracterización general de la zona de estudio	13
3.	Antecedentes Institucionales	16
4.	Descripción del sistema hidráulico	18
4.1.	Estado actual de los canales	20
5.	Estudios Previos	24
5.1.	Informe de asistencia humanitaria atención a la emergencia de ETA & IOTA (COPECO, 2020).	24
5.2. (BID	Evaluación de los efectos e impactos de la tormenta tropical ETA y el huracán IOTA en Hon- - CEPAL, 2021).	
6.	Propuestas de obras de mitigación	29
6.1.	Ampliación del Canal Maya	29
6.2.	Ampliación del Canal Marimba	30
6.3.	Ampliación del Canal Campín	30
6.4.	Ampliación de la quebrada Chasnigua	31
6.5.	Dragado del río Chamelecón	31
7.	Posibles alternativas a las obras de mitigación propuestas	33
8.	Estimación de consecuencias	34
8.1.	Escenarios	34
8.2.	Exposición y vulnerabilidad	35
8.3.	Estimación de consecuencias sociales	40
8.4.	Estimación de las consecuencias económicas	50
9.	Evaluación cuantitativa del riesgo	67
9.1.	Arquitectura del modelo de riesgo	67
9.2.	Resultados de riesgo	76
10.	Análisis de alternativas	90
10.1.	Reforestación de la cuenca	90
10.2.	Reasentamiento y reubicación poblacional	91
10.3.	Comparativa en costo entre alternativas para protección equivalente	92
11.	Conclusiones	94
12.	Referencias	98

ÍNDICE DE TABLAS

Tabla 3.1. Comparativo de asignación presupuestal histórico a instituciones del Valle de Sula	17
Tabla 4.1. Longitud de los canales del sistema hidráulico del Valle de Sula	19
Tabla 5.1. Población primaria afectada por ETA e IOTA (BID - CEPAL, 2021)	26
Tabla 5.2. Efectos por sectores en Millones de Lempiras (BID - CEPAL, 2021)	26
Tabla 5.3. Viviendas y daños a la vivienda para los departamentos más afectados (BID - CEPAL, 20)21)27
Tabla 5.4. Daños agropecuarios - cultivo en millones de lempiras (BID - CEPAL, 2021)	27
Tabla 8.1. Cantidad de viviendas existentes en el Valle de Sula por municipio	36
Tabla 8.2. Cantidad de habitantes actual en el Valle de Sula por municipio	38
Tabla 8.3. Tasa de crecimiento intercensal. Fuente: INE, Censos de Población y Vivienda de 2001 y	201338
Tabla 8.4. Tipo de cultivo y área cultivada en el Valle de Sula. Fuente: Zonificación de los uso (UNAH, 2024)	
Tabla 8.5. Obtención de la categoría de severidad	42
Tabla 8.6. Tasas de mortalidad utilizadas para aplicar el método Graham desarrolladas en el proy	
Tabla 8.7. Caudales máximos asociados al inicio de cada cauce en los Escenarios Base	44
Tabla 8.8. Personas afectadas por municipio para el escenario 1A – Chamelecón Base	44
Tabla 8.9. Personas afectadas por municipio para el escenario 1B – Ulúa Base	45
Tabla 8.10. Personas afectadas por municipio para el escenario 1C – Ambos ríos Base	45
Tabla 8.11. Pérdida de vidas por municipio para el escenario 1A – Chamelecón Base	46
Tabla 8.12. Pérdida de vidas por municipio para el escenario 1B – Ulúa Base	46
Tabla 8.13. Pérdida de vidas por municipio para el escenario 1C – Ambos ríos Base	46
Tabla 8.14. Caudales máximos asociados al inicio de cada cauce en los Escenarios con Obras	46
Tabla 8.15. Personas afectadas por municipio para el escenario 2A – Chamelecón Base	47
Tabla 8.16. Personas afectadas por municipio para el escenario 2B – Ulúa Base	47
Tabla 8.17. Personas afectadas por municipio para el escenario 2C – Ambos ríos Base	47
Tabla 8.18. Disminución porcentual de población afectada por municipio para el escenario 2A – Obras.	
Tabla 8.19. Disminución porcentual de población afectada por municipio para el escenario 2B – Ulo	úa Obras. 48
Tabla 8.20. Pérdida de vidas por municipio para el escenario 2A – Chamelecón Obras	48
Tabla 8.21. Pérdida de vidas por municipio para el escenario 2B – Ulúa Obras	48
Tabla 8.22. Pérdida de vidas por municipio para el escenario 2C – Ambos ríos Obras	49
Tabla 8.23. Población afectada y pérdida de vidas por municipio para el escenario con cambio clim	ático 50
Tabla 8.24. Porcentaje municipales según categoría de pobreza estimada	52

Tabla 8.25. Porcentaje de hogar según categoría de pobreza y valor asignado al contenido
Tabla 8.29. Viviendas afectadas por municipio para todo el Valle de Sula para periodos de retorno de 10, 20 y 50 años
Tabla 8.26. Viviendas afectadas por municipio para el escenario 1A – Chamelecón Base
Tabla 8.27. Viviendas afectadas por municipio para el escenario 1B – Ulúa Base
Tabla 8.28. Viviendas afectadas por municipio para el escenario 1C – Ambos ríos Base
Tabla 8.29. Consecuencias económicas en viviendas por municipio para el escenario 1A – Chamelecón Base
Tabla 8.30. Consecuencias económicas en viviendas por municipio para el escenario 1B – Ulúa Base 57
Tabla 8.31. Consecuencias económicas en viviendas por municipio para el escenario 1C – Ambos ríos Base
Tabla 8.32. Viviendas afectadas por municipio para el escenario 2A – Chamelecón con obras
Tabla 8.33. Viviendas afectadas por municipio para el escenario 2B – Ulúa con obras
Tabla 8.34. Viviendas afectadas por municipio para el escenario 2C – Ambos ríos con obras
Tabla 8.35. Consecuencias económicas en viviendas por municipio para el escenario 2A – Chamelecón con obras
Tabla 8.36. Consecuencias económicas en viviendas por municipio para el escenario 2B – Ulúa con obras 58
Tabla 8.37. Consecuencias económicas en viviendas por municipio para el escenario 2C – Ambos ríos con obras
Tabla 8.38. Disminución porcentual de consecuencias económicas por municipio para el escenario 2A – Chamelecón Obras respecto al 1A – Chamelecón Base
Tabla 8.39. Disminución porcentual de consecuencias económicas por municipio para el escenario 2B – Ulúa Obras respecto al 2A – Ulúa Base
Tabla 8.40. Viviendas afectadas y daño económicos por municipio para el escenario con cambio climático para T50 en el año 2050
Tabla 8.41. Viviendas afectadas y daño económicos por municipio para el escenario con cambio climático para T50 en el año 2100
Tabla 8.42. Valor (USD/ha) por tipo de cultivo
Tabla 8.43. Área de cultivos (ha) afectadas por tipo de cultivo para el escenario 1A – Chamelecón Base 63
Tabla 8.44. Consecuencias económicas en cultivos para el escenario 1A – Chamelecón Base
Tabla 8.45. Área de cultivos (ha) afectadas por tipo de cultivo para el escenario 2A – Chamelecón Obras 64
Tabla 8.46. Consecuencias económicas en cultivos para el escenario 2A – Chamelecón Obras
Tabla 9.1. Datos de caudales introducidos en el modelo de riesgo para diferentes escenarios de solicitaciones
Tabla 9.2. Datos de caudales introducidos en el modelo de riesgo para el escenario tendencial considerando cambio climático con predominancia de lluvias en el río Ulúa

Tabla 9.3. Datos introducidos en los nodos de Población Afectada (número de habitantes) para el caso base para cada escenario y municipio
Tabla 9.4. Datos introducidos en los nodos de Población Afectada (número de habitantes) para el caso con obras para cada escenario y municipio
Tabla 9.5. Datos introducidos en los nodos de Pérdida de vida para el caso base para cada escenario y municipio
Tabla 9.6. Datos introducidos en los nodos de Pérdida de vida para el caso con obras para cada escenario y municipio
Tabla 9.7. Datos introducidos en los nodos de Daño económico (millones de \$USD) para el caso base para cada escenario y municipio, considerando también cultivos
Tabla 9.8. Datos introducidos en los nodos de Daño económico (millones de \$USD) para el caso con obras para cada escenario y municipio, considerando también cultivos
Tabla 9.9. Resultados de riesgo para el caso base (sin obras) según predominancia hidrológica de ríos76
Tabla 9.10. Resultados de riesgo para el escenario con obras según predominancia hidrológica de ríos79
Tabla 9.11. Reducción porcentual del riesgo al ejecutar las obras respecto al escenario sin obras79
Tabla 9.12. Riesgo social en vidas/año para cada uno de los municipios en función de cada uno de los escenarios considerados
Tabla 9.13. Riesgo social en personas afectadas/año para cada uno de los municipios en función de cada uno de los escenarios considerados
Tabla 9.14. Riesgo económico en millones de \$USD/año para cada uno de los municipios en función de cada uno de los escenarios considerados
Tabla 9.15. Resultados de riesgo para el escenario tendencial (cambio climático y proyección de población) con predominancia del río Ulua
Tabla 9.16. Amortiguamiento de crecientes en el embalse El Tablón. Fuente: Estimados Laminación El Tablón (2017)87
Tabla 9.17. Caudales introducidos en el modelo de riesgo teniendo en cuenta el hipotético efecto de la presa El Tablón de reducción de caudal en el río Chamelecón
Tabla 9.18. Resultados de riesgo para diferentes escenarios, incluyendo el efecto de la presa de El Tablón sobre el río Chamelecón
Tabla 10.1. Presupuesto de las diferentes alternativas para similar valor de riesgo de inundación92

ÍNDICE DE FIGURAS

inundaciones en el Valle del Sula, Honduras"	, ,
Figura 2.1. Delimitación del Valle de Sula en la división departamental de Honhidrográficas de los ríos Ulúa y Chamelecón. Fuente: Especificaciones y funcionam (CCIVS, 2021).	iento de canales de alivio
Figura 2.2. Municipios y Modelo Digital de Elevaciones del Valle de Sula	14
Figura 2.3. Localización de los ríos Chamelecón y Ulúa en el Valle de Sula	15
Figura 3.1. Línea de tiempo de antecedentes institucionales del Valle de Sula	16
Figura 4.1. Sistema hidráulico de ríos y canales del Valle de Sula	18
Figura 4.2. Sistema hidráulico de ríos y canales del Valle de Sula. Fuente: Elaboración	n propia20
Figura 4.3. Canal Chotepe- Filopo.	20
Figura 4.4. Canal Maya	21
Figura 4.5. Canal Marimba (izquierda) y Canal Campín (derecha)	21
Figura 4.6. Canal García.	22
Figura 4.7. Canal Martínez, aguas abajo de la confluencia del canal La Fragua y el car	nal García22
Figura 4.8. Canal Tibombo	22
Figura 4.9. Canal La Fragua en su conexión con el río Ulúa	23
Figura 5.1. Infografía regional de afectación por departamentos por el paso de los (COPECO , 2020)	
Figura 6.1. Alternativas de obras propuestas para la disminución del riesgo de inunc	
Figura 6.2. Vista en corte de la Ampliación del Canal Maya	30
Figura 6.3. Vista en corte de la Ampliación del Canal Marimba	30
Figura 6.4. Vista en corte de la Ampliación del Canal Campín	31
Figura 6.5. Vista en corte de la Ampliación del quebrada Chasnigua	31
Figura 6.6. Localización del tramo del río Chamelecón propuesto para su dragado	32
Figura 8.1. Detalle de los polígonos de vivienda identificados en el municipio de La L	ima 36
Figura 8.2. Distribución de viviendas identificadas por municipio en el Valle de Sula	37
Figura 8.3. Distribución porcentual de habitantes por municipio en el Valle de Sula	38
Figura 8.4. Usos de suelo y cultivos en el Valle de Sula. Fuente: Zonificación de lo 2024)	· ·
Figura 8.5. Metodología general para estimar la pérdida de vidas por inundación	41
Figure 8.6. Pobleción efectada para los Escaparios Resa por municipio	15

Figura 8.7. Población afectada para los Escenarios con Obras por municipio
Figura 8.8. Comparativo de pérdida de vidas para los escenarios con y sin obras49
Figura 8.9. Comparativo de población afectada para los escenarios de cambio climático con y sin obras50
Figura 8.10. Metodología general para la estimación de consecuencias económicas por inundación50
Figura 8.11. Mapa con categoría de pobreza en el Valle de Sula53
Figura 8.12. Porcentaje de afectación según el nivel de inundación para el contenido de viviendas de una planta
Figura 8.13. Viviendas afectadas por municipio en el Valle de Sula para periodos de retorno de 10, 20 y 50 años
Figura 8.14. Distribución porcentual de viviendas afectadas por municipio en el Valle de Sula55
Figura 8.13. Consecuencias económicas en viviendas (\$USD) para los Escenarios Base por municipio57
Figura 8.14. Consecuencias económicas en viviendas (M \$USD) para los Escenarios con Obras por municipio.
Figura 8.15. Comparativo de consecuencias económicas para los escenarios con y sin obras60
Figura 8.16. Comparativo de consecuencias económicas para los escenarios tendenciales de cambio climático con y sin obras para T50
Figura 8.17. Porcentaje de afectación según el nivel de inundación para cada cultivo considerado62
Figura 8.18. Consecuencias económicas en cultivos (M \$USD) para el escenario base por cultivo63
Figura 8.19. Comparativo de consecuencias económicas en cultivos para los escenarios con y sin obras 64
Figura 9.1. Arquitectura del modelo de riesgo67
Figura 9.2. Discretización del rango de períodos de retorno realizada en el nodo Crecidas
Figura 9.3. Gráfico FN de población afectada para el escenario actual y las tres condiciones hidrológicas77
Figura 9.4. Gráfico FN de pérdida de vida para el escenario actual y las tres condiciones hidrológicas77
Figura 9.5. Gráfico FD de consecuencias económicas para el escenario actual y las tres condiciones hidrológicas
Figura 9.6. Gráfico FN de población afectada para el escenario actual y las tres condiciones hidrológicas80
Figura 9.7. Gráfico FN de pérdida de vida para el escenario actual y las tres condiciones hidrológicas80
Figura 9.8. Gráfico FD de consecuencias económicas para el escenario actual y las tres condiciones hidrológicas
Figura 9.9. Riesgo social en vidas/año para cada uno de los municipios en función de cada uno de los escenarios considerados
Figura 9.10. Riesgo social en personas afectadas/año para cada uno de los municipios en función de cada uno de los escenarios considerados83
Figura 9.11. Riesgo económico en millones de \$USD/año para cada uno de los municipios en función de cada uno de los escenarios considerados83
Figura 9.12. Gráfico FN de población afectada para el escenario tendencial (cambio climático y proyección de población) con predominancia del río Chamelecón y el escenario actual. En ambos escenarios sin y con obras.

Figura 9.13. Gráfico FN de pérdida de vida para el escenario tendencial (cambio climático y proyección de población) con predominancia del río Chamelecón y el escenario actual. En ambos escenarios sin y con obras85
Figura 9.14. Gráfico FD de consecuencias económicas para el escenario tendencial (cambio climático y proyección de población) con predominancia del río Chamelecón y el escenario actual. En ambos escenarios sin y con obras
Figura 9.15. Gráfico FN de pérdida de vida para el escenario actual, con obras, con la presa de El Tablón y con presa y obras con predominancia del río Chamelecón
Figura 9.16. Gráfico FN de pérdida de vida para el escenario actual, con obras, con la presa de El Tablón y con presa y obras con predominancia del río Ulúa
Figura 10.1. Cobertura de suelo actual asociado a bosque latifoliado en las cuencas del río Ulúa y Chamelecón91
Figura 10.2. Presupuesto de las diferentes alternativas para similar valor de riesgo de inundación
Figura 10.3. Presupuesto de las diferentes alternativas para similar valor de riesgo de inundación, ampliando la escala para poder visualizar mejor el valor de las dos primeras alternativas

ACRÓNIMOS

BID Banco Interamericano de Desarrollo

CCIVS Comisión para el Control de Inundaciones del Valle de Sula

COPECO Comisión Permanente de Contingencias de Honduras

INE Instituto Nacional de Estadística de Honduras

PIB Producto Interior Bruto

SCS Servicio de Conservación de Suelos de Estados Unidos

SEGOB Secretaría de Gobernación Justicia y Descentralización

UNAH Universidad Nacional Autónoma de Honduras

USACE Cuerpo de Ingenieros del Ejército de Estados Unidos

1. INTRODUCCIÓN Y ALCANCE DE LOS TRABAJOS

El presente proyecto denominado "Definición de obras de control y mitigación contra las inundaciones en el Valle del Sula, Honduras" se enmarca en el Contrato HO-T1424-P001 ejecutado por Ingeniería de Presas (iPresas) para el Banco Interamericano de Desarrollo, como parte de la cooperación técnica No. ATN/OC-20042-HO denominada "Apoyo a la recuperación resiliente de Honduras tras la tormenta tropical Julia".

El **objetivo general** del proyecto consiste en definir soluciones definitivas de corto plazo para controlar y reducir el riesgo del efecto de inundaciones provocadas por eventos extremos en el Valle de Sula, Honduras. En especial, se estudiará la mitigación en las principales áreas urbanas e infraestructura crítica del Valle como San Pedro Sula, La Lima y El Progreso, además del Aeropuerto Internacional Ramón Villeda Morales.

En concreto, los objetivos específicos de la consultoría son:

- Actualización del estudio y la modelización hidráulica bidimensional del sistema compuesto por los ríos Ulúa y Chamelecón en el valle del sula, así como por los canales interconectados a los cauces naturales y las obras de protección contra inundación existentes.
- Análisis de la amenaza a partir de los mapas de inundación correspondientes a los escenarios actuales y futuros evaluados para el sistema, incluyendo resultados de calado, velocidad, tiempos de llegada y tiempos de permanencia de la lámina de agua.
- Estimación de las consecuencias sociales y económicas en la zona de estudio.
- Evaluación cuantitativa del riesgo de inundación a partir de un modelo de riesgo que integre toda la información analizada, combinando los resultados de amenaza, exposición y vulnerabilidad del sistema.
- Análisis costo-beneficio para la evaluación de alternativas y medidas de mitigación, para definir la solución final y la secuencia óptima de actuaciones a llevar a cabo para minimizar el riesgo.

El contrato establece las siguientes responsabilidades para la ejecución del proyecto:

- La Facultad de Ingeniería de la Universidad Nacional Autónoma de Honduras será responsable de realizar el levantamiento de información de campo para esta consultoría y la elaboración de los presupuestos de las obras.
- La firma internacional deberá coordinarse con Universidad, que servirá como apoyo en el terreno a la firma internacional.
- La lista preliminar de las obras a modelar será propuesta por la Secretaría de Infraestructura y Transporte.

Las actividades de esta consultoría están divididas en 4 productos, como se muestra en la Figura 1.1, en la cual se indica en naranja los productos a los que corresponde el presente informe:

- P3.2. Estimación de consecuencias sociales y económicas
- P3.3. Análisis de riesgo cuantitativo por inundación y evaluación de alternativas.

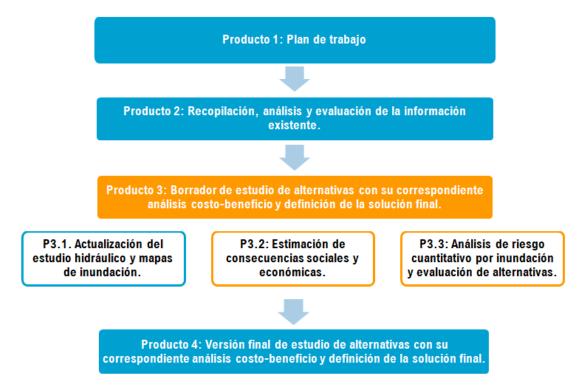


Figura 1.1. Productos del Contrato HO-T1424-P001 "Definición de obras de control y mitigación contra las inundaciones en el Valle del Sula, Honduras".

El objetivo del presente documento es la estimación de las consecuencias en términos económicos y sociales que se producirían tanto en el escenario actual del sistema hidráulico como en el escenario con la implantación de las obras de mitigación de la amenaza por inundación propuestas en el *Producto 3.1 Actualización del estudio hidráulico y mapas de inundación*. A partir de dichos resultados se realizó el análisis cuantitativo de riesgo de inundación en el Valle de Sula, combinando los resultados de amenaza, exposición y vulnerabilidad del sistema.

2. CARACTERIZACIÓN GENERAL DE LA ZONA DE ESTUDIO

El área de estudio comprende la extensión del **Valle de Sula**, con una superficie aproximada de 2 400 Km², localizado al noroeste de Honduras, en la cual se desarrolla la parte baja de las cuencas del **río Chamelecón y del río Ulúa**, cuyos cauces desembocan al Mar Caribe. Su ubicación se delimita, de acuerdo con el sistema de coordenadas de referencia UTM Zone 16N del Datum WGS 84, al Norte por la coordenada 1760000Y; al Sur por la coordenada 1670000Y; y al Este y Oeste por las coordenadas 440000X y 385000X, respectivamente.

De acuerdo con la Figura 2.1, el Valle de Sula abarca territorio de tres departamentos: Cortés, Yoro y Atlántida, formando parte de los municipios de Puerto Cortés, Tela, Choloma, El Negrito, El Progreso, La Lima, Pimienta, Potrerillos, San Manuel, San Pedro Sula, Villanueva, San Antonio de Cortés, Santa Cruz de Yojoa, San Francisco de Yojoa y Santa Rita, tal como se detalla en la Figura 2.2.

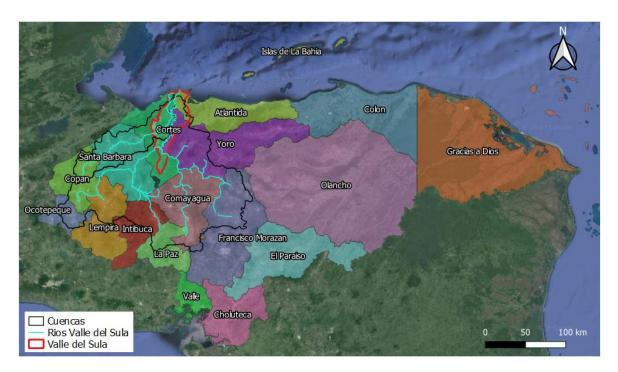


Figura 2.1. Delimitación del Valle de Sula en la división departamental de Honduras y de las cuencas hidrográficas de los ríos Ulúa y Chamelecón. Fuente: Especificaciones y funcionamiento de canales de alivio (CCIVS, 2021).

El área de estudio presenta una **orografía muy plana**, con una pendiente media estimada alrededor de 0.4% (Figura 2.2), con una elevación máxima de 650 m s.n.m. en la cuenca y de aproximadamente 45 m s.n.m en los cauces principales. Se trata de un área susceptible a continuas inundaciones, especialmente en la época lluviosa que abarca el período de junio a septiembre.

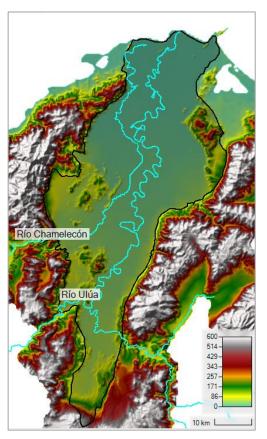


Figura 2.2. Municipios y Modelo Digital de Elevaciones del Valle de Sula.

Los ríos Ulúa y Chamelecón forman parte de la red hídrica principal de Honduras, siendo parte de las corrientes más importantes del país tanto en extensión y área de influencia como en caudal y volumen. La cuenca del río Ulúa se extiende en una superficie de 21 725 Km², mientras que la cuenda del río Chamelecón comprende una superficie de 4 435 Km². Ambas cuencas poseen en conjunto un área de 26 456 Km², lo que representa de manera estimada un 23,5% de la superficie total del país. La Figura 2.3 muestra el recorrido de ambos ríos durante su transcurso por el Valle de Sula, resaltando además los principales centros poblados.

El río Chamelecón tiene una longitud aproximada de 180 Km, recorriendo comparativamente una franja "estrecha" del país. Tiene su nacimiento en las montañas del departamento de Copán, cruzando el departamento de Santa Bárbara hasta su desembocadura en el mar Caribe ya en el departamento de Cortés previo paso por el Valle de Sula.

El río Ulúa es uno de los ríos más ancho y caudalosos de Honduras. Discurre por una longitud aproximada de 360 Km. Nace en el área montañosa de Intibucá recorriendo los departamentos de Santa Bárbara, Cortés, Yoro y Atlántida, donde desemboca hacia el mar Caribe tras haber transitado el Valle de Sula. El río Ulúa es alimentado durante su recorrido por otros ríos principales como el río Humuya, el río Comayagua y el río Sulaco.

Figura 2.3. Localización de los ríos Chamelecón y Ulúa en el Valle de Sula.

Desde el punto de vista económico, el Valle de Sula se reconoce como el "motor" del país generándose en su territorio aproximadamente el 60 % del Producto Interior Bruto (PIB) de Honduras y representando el 50% de las exportaciones a nivel nacional. Este desarrollo económico viene fuertemente marcado por la actividad agrícola, siendo sus rubros más representativos el cultivo de banano, caña de azúcar, palma africana (o palma aceitera) y granos básicos.

Desde el prisma social, el Valle cuenta con algunos de los municipios y localidades más poblados de Honduras, habitando en él un total estimado de **2 millones de personas**, más del 20 % de la población total del país. Entre las localidades más habitadas¹ e importantes se encuentran San Pedro Sula (Cortés) con 777 877, Choloma (Cortés) con 262 186, El Progreso (Yoro) con 196 884, Puerto Cortés (Cortés) con 131 981 y La Lima (Cortés) con 80 404. En la Figura 2.3 se muestra la ubicación de estas localidades y de aquellos núcleos poblados con más de 10 000 habitantes.

¹ Datos extraídos de los "Indicadores Municipales" de 2018 del INE.

3. ANTECEDENTES INSTITUCIONALES

Este apartado resume las actuaciones y recursos destinados a nivel institucional para el estudio, seguimiento y gestión de riesgo de inundación en el Valle de Sula. Se resaltan principalmente tres instituciones relevantes a lo largo del tiempo, tal como se presenta en la Figura 3.1.

Figura 3.1. Línea de tiempo de antecedentes institucionales del Valle de Sula.

- En año 1990, por medio del Decreto Ejecutivo 13-90 se creó la Comisión Ejecutiva del Valle de Sula (CEVS), como un ente público autónomo responsable del mantenimiento y la operación del sistema. De acuerdo con el artículo 4 de dicho Decreto, la CEVS tenía la responsabilidad de realizar todas aquellas gestiones relacionadas con el desarrollo del Valle y en consecuencia algunas de sus atribuciones eran: recopilar toda la información relacionada con el control de inundaciones y estudios realizados en relación a los recursos naturales del Valle, gestionar contribuciones económicas o técnicas, promover los principios técnicos y filosóficos que conlleva el desarrollo integral del valle a través de concertaciones con los grupos productivos, participar como organismo coordinador en todos los proyectos de infraestructura que se realicen en el valle, formar archivo de todos los documentos relacionados con las gestiones, participar ante los organismos gubernamentales en la toma de decisiones relacionados con los recursos agua, tierra, flora y fauna del valle.
- En el año 2010, por medio del Decreto Ejecutivo 17-2010, la Comisión Contra las Inundaciones del Valle de Sula (CCIVS) que remplazó a la CEVS. La CCIVS tenía la responsabilidad de realizar todas aquellas gestiones relacionadas con el Control de Inundaciones del Valle de Sula, con las siguientes atribuciones: recopilar datos, estudios, análisis e investigaciones que tengan relación con el control de inundaciones, recopilar información sobre estudios realizados en relación a los recursos tierra, agua, flora y fauna, gestionar contribuciones económicas, técnicas y de cualquier otra índole que coadyuven a los objetivos de la Comisión, realizar los trámites para los egresos que sean necesarios para el cumplimiento de su cometido, formar un archivo de todos los documentos relacionados con su gestión, con el objeto de preservare el historial institucional, coordinar la protección y el correcto mantenimiento de las obras de infraestructura existentes para el control de inundaciones y suscribir contratos con personas naturales o jurídicas a efecto de realizar todas aquellas obras, estudios, investigaciones que sean necesarios para sus fines. Durante el periodo en que la CCIVS estuvo activa, no contaban con fondos internacionales debido a la falta de credibilidad del gobierno ante organismos internacionales, por tanto todos los proyectos se ejecutaban con fondos nacionales.
- En el año 2022 las funciones de la CCIVS se trasladaron a la oficina regional del Valle de Sula de la Secretaría de Infraestructura y Transporte (SIT) y se creó el Centro de Estudios y Desarrollo del Valle de Sula y la Unidad Técnica Ejecutora del Valle de Sula (UTEVS), como una unidad adscrita a la SIT.

La asignación presupuestal correspondiente al histórico de instituciones relacionadas anteriormente se presenta en la Tabla 3.1, donde se presentan los montos en millones de dólares, aplicando la tasa de cambio histórica promedio del período correspondiente a la vigencia de cada institución. Se resalta un aumento

significativo en los fondos asignados a la UTEVS, que en su corta trayectoria ha recibido para la ejecución de proyectos, un 55% más que el monto acumulado en las tres décadas anteriores por las instituciones antecedentes.

Institución		puesto	Periodo	Observación	
Ilistitucion	Millones de Lempiras (L)	lillones de dólares (USD)		Observacion	
CEVS	60	3.3	1990-2010	Aporte significativo de fondos internacionales	
CCIVS	100	4.5	2010-2022	Fondos nacionales	
UTEVS	300	12.2	2022-2023	Fondos nacionales e internacionales	

Tabla 3.1. Comparativo de asignación presupuestal histórico a instituciones del Valle de Sula.

4. DESCRIPCIÓN DEL SISTEMA HIDRÁULICO

El sistema hidráulico del Valle de Sula resulta ser extenso, complejo, dinámico y con un alto componente de antropización. Como se ha mencionado en el apartado anterior, está regido principalmente por el curso de dos cauces naturales, el río Ulúa y el río Chamelecón que discurren por el Valle por 190 Km y 110 Km de longitud respectivamente, con una escasa pendiente promedio de 0.4% aproximadamente. Pese a que estos cauces no confluyen naturalmente en ningún punto del Valle y desembocan en dos puntos distanciados 9 Km en la costa del Mar Caribe, están interconectados por una amplia red de canales artificiales, como se observa en la Figura 4.1, cuyo funcionamiento hidráulico y dirección de flujo varía en función de los niveles de los ríos, lo que complejiza el análisis del sistema y la simulación de su respuesta frente a las crecidas que puedan transitar por uno o ambos ríos principales.

Figura 4.1. Sistema hidráulico de ríos y canales del Valle de Sula.

El sistema de canales abarca una longitud aproximada de 225 Km, distribuidos de acuerdo con la Tabla 4.1, siendo los más importantes para el alivio del río Chamelecón los canales Maya y Chotepe, y para el río Ulúa los canales Marimba y Boquerón-El Progreso.

Canal	Longitud (Km)
Chotepe / Filopo	12.3
Maya	10.2
Chasnigua	3.96
Marimba	7.1
Campín	11.4
Los Indios	3.8
Canal Martínez	28.3
Canal Nola	14.8
Gualiqueme	6.4
Tibombo	8.6
Boquerón - El Progreso	32.6
Calam	6.2
Chamber	13.3
Johnson	2
La Fragua	8.4
García	13.4
Río Mezapa	27.6
Canal Guanchías	10.7
Río Pelo	3.7

Tabla 4.1. Longitud de los canales del sistema hidráulico del Valle de Sula.

Para entender el funcionamiento hidráulico del sistema y su incidencia en las principales poblaciones del Valle, se presenta a continuación un esquema con las conexiones existentes entre los cauces principales mediante los canales y su dirección preferente de flujo, de acuerdo con la pendiente topográfica del sistema. Es importante resaltar que algunos canales generan un alivio temporal, a manera de bypass o desvío provisional que devuelve el caudal detraído aguas abajo del punto de toma y que la dirección de flujo de los canales puede variar en función de los caudales, causando remansos que modifican significativamente el funcionamiento esperado del sistema.

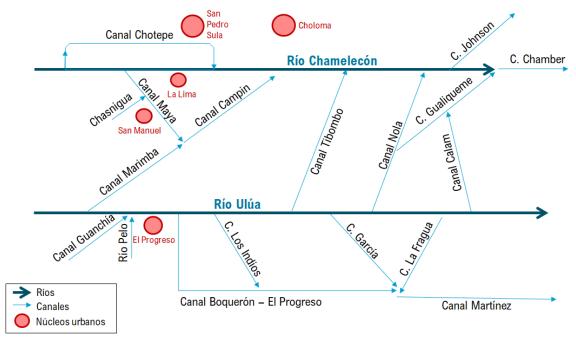


Figura 4.2. Sistema hidráulico de ríos y canales del Valle de Sula. Fuente: Elaboración propia.

Las recurrentes inundaciones que tienen lugar en la extensa planicie que conforma el Valle de Sula han motivado a lo largo de décadas la ejecución de diferentes obras en busca de protección de la zona frente a dichas inundaciones. Entre las infraestructuras hidráulicas que se construyeron destaca un extenso sistema de bordos de protección (diques longitudinales), con aproximadamente 900 Km distribuidos a lo largo de los cauces y canales.

4.1. Estado actual de los canales

De acuerdo con la visita de campo realizada entre los días 24 y 28 de julio de 2023, se pudo observar el estado actual de los canales artificiales del sistema, resaltando la falta de mantenimiento de la infraestructura hidráulica, evidenciada por la vegetación excesiva y el estado de sedimentación, que reduce la sección hidráulica disponible, obstruye y modifica las condiciones de flujo. A continuación se presenta el registro fotográfico y la descripción del estado de los principales canales visitados.

En la Figura 4.3 se observa el canal Chotepe-Filopo, a la izquierda la vista aguas arriba desde un puente localizado a 150 m de la toma desde el río Chamelecón y a la derecha la vista aguas abajo, donde se evidencia el tramo que está con un revestimiento en concreto en 1.7 Km aproximadamente de los 12.3 Km totales del canal. Existe algo de vegetación en las juntas del concreto que debería ser retirado, pero en general este tramo presenta una sección uniforme en buen estado.

Figura 4.3. Canal Chotepe- Filopo.

En la Figura 4.4 se muestra el canal Maya, a la izquierda una vista aguas abajo del canal desde un puente localizado 250 m aguas abajo de la toma desde el río Chamelecón y la fotografía de la derecha muestra el tramo medio del canal localizado a la altura de la zona industrial del municipio de La Lima, en ambas resalta el alto grado de vegetación de las bancas del canal y el estancamiento de las aguas, dada la baja pendiente del mismo.

La misma condición de alta vegetación en el lecho y bancas del canal se observa en la Figura 4.5 que muestra los canales Marimba y Campín, y en la Figura 4.6, en la cual se observa el canal García desde un puente localizado 1.2 Km aguas abajo de su conexión con el río Ulúa.

Figura 4.4. Canal Maya.

Figura 4.5. Canal Marimba (izquierda) y Canal Campín (derecha).

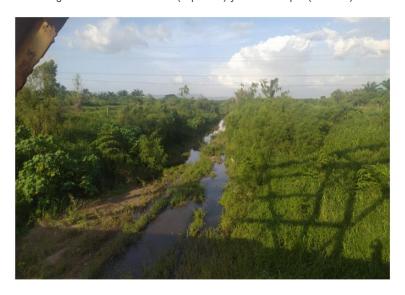


Figura 4.6. Canal García.

Algunas de las consecuencias de eventos de creciente pasadas se evidencian por ejemplo en la infraestructura de los puentes, en la Figura 4.7 se observa en la fotografía de la derecha el fallo de la estructura del puente sobre el canal Martínez, localizado 250 m aguas abajo de la confluencia de los canales La Fragua y García, y en la fotografía de la izquierda, la vista aguas abajo del puente, en la cual se observan algunos procesos erosivos.

Figura 4.7. Canal Martínez, aguas abajo de la confluencia del canal La Fragua y el canal García.

En la Figura 4.8 se presenta el estado de la toma del canal Tibombo desde el río Ulúa, en este caso se observa un amplío vertedero de derivación con revestimiento en concreto localizado en el bordo, que conecta el río al canal. En la fotografía de la derecha se observa el canal aguas abajo que presenta un alto grado de vegetación, inclusive arbórea, que reduce el área de la sección hidráulica y dificulta significativamente el avance del flujo.

Figura 4.8. Canal Tibombo.

La toma del canal La Fragua, tal como se observa en Figura 4.9, consiste en una estructura de disipación escalonada con dientes deflectores y un cuenco de amortiguación al final, que permite una transición controlada del caudal derivado del río Ulúa al canal, disminuyendo su energía hidráulica, para entregar un flujo laminar con menor velocidad y capacidad erosiva, como se observa en la fotografía de la derecha.

Figura 4.9. Canal La Fragua en su conexión con el río Ulúa.

5. ESTUDIOS PREVIOS

A continuación, se presenta un resumen de los principales estudios previos relacionados con el objetivo del presente informe, y que aportan información relevante para los análisis posteriores.

5.1.Informe de asistencia humanitaria atención a la emergencia de ETA & IOTA (COPECO, 2020)

El balance de daños que dejó ETA varía, según la fuente, en cuanto a las víctimas fatales. De acuerdo con COPECO (citada en una noticia digital de la Agencia EFE²) ETA fue responsable del fallecimiento de 60 personas. Por otro lado, las Fuerzas Armadas de Honduras³ estimaron que la pérdida de vida aumentó hasta las 125 personas. En total, se habla de cerca de 3 millones de personas que resultaron damnificadas.

De acuerdo con la información manejada por COPECO, citada en el medio digital "El Heraldo"⁴, IOTA fue responsable del fallecimiento de 14 personas y la afección de 8 470 viviendas, 71 tramos carreteros y 15 puentes.

De acuerdo con el Informe de asistencia humanitaria atención a la emergencia de ETA & IOTA (COPECO , 2020) se presenta en la Figura 5.1 las consecuencias sociales agrupadas por departamento, en la cual se reporta más del 50% de las personas afectadas directa o indirectamente por las inundaciones en el departamento de Cortés.

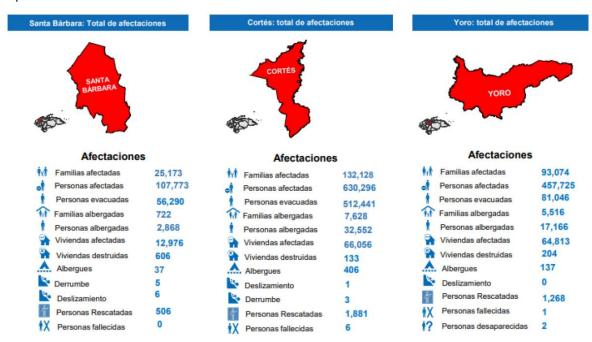


Figura 5.1. Infografía regional de afectación por departamentos por el paso de los huracanes ETA & IOTA. (COPECO, 2020).

https://www.efe.com/efe/america/sociedad/los-muertos-en-honduras-por-eta-suben-a-58-y-mas-de-dos-millones-afectados/20000013-4390688

³ https://tiempo.hn/125-muertes-eta-fuerzas-armadas-doble-copeco/

 $^{^4 \} https://www.elheraldo.hn/pais/1423686-466/muerte-y-cuantiosos-da\%C3\%B1os-en-infraestructura-y-agro-deja-iota-en-honduras$

5.2. Evaluación de los efectos e impactos de la tormenta tropical ETA y el huracán IOTA en Honduras (BID - CEPAL, 2021).

La evaluación de los efectos causados por la tormenta tropical Eta y el huracán lota utilizó como marco de referencia la tercera edición de la metodología desarrollada por la CEPAL. Esta proporciona un marco para la estimación de los efectos e impactos de los desastres con el propósito de apoyar los procesos de reconstrucción y reducción del riesgo. En este contexto, para la evaluación se utilizan los siguientes conceptos:

- Efectos: daños, pérdida y costos adicionales.
- Impactos: resultados de las variables macroeconómicas como PBI, finanzas públicas y balanza de pagos.
- Daños: Los daños son las afectaciones expresadas en términos monetarios que sufren los acervos de cada uno de los sectores durante el siniestro. Los activos del sector pueden incluir edificios, maquinaria, medios de transporte, mobiliarios, caminos, puertos, existencias finales y semiacabadas, entre otros.
- Pérdidas: bienes que se dejan de producir y servicios que se dejan de prestar durante un lapso que inicia tan pronto ocurre el desastre y se prolonga hasta que se alcanza la recuperación y la reconstrucción total.
- Costos adicionales: erogaciones requeridas para la producción de bienes y la prestación de servicios a causa del desastre. Reflejan una respuesta tanto del sector público como del sector privado, que podría tomar la forma de un gasto adicional o de una recomposición del gasto.

La evaluación se llevó a cabo utilizando datos oficiales proporcionados por el gobierno, entrevistas con el sector privado y en colaboración estrecha con el Sistema de Naciones Unidas.

Para la cuantificación de la población afectada, se realizó la distinción entre:

- Afectaciones directas (población afectada primaria sufren los efectos directos) que refieren a todas aquellas víctimas mortales, heridos (víctimas primarias traumáticas), albergados, desplazados y quienes sufren daños de su propiedad como consecuencia directa e inmediata del desastre.
- Afectaciones indirectas (población afectada secundaria) correspondientes a las asociadas a todas aquellas personas que estaban dentro de los límites del territorio impactado y que, a consecuencia de Eta y lota, sufrieron la pérdida de su empleo o de sus medios de subsistencia, así como quienes pudieron sufrir efectos adversos temporales de salud o de suspensión de servicios básicos y acceso a las vías de comunicación.

De acuerdo con la Tabla 5.1 se estima que la población afectada primaria es de aproximadamente 437 mil personas, el 55% de ellos se alberga en el departamento de Cortés. A consecuencia de estos eventos, 95 personas perdieron la vida, 32 en el departamento Cortés, 16 en Santa Bárbara y 12 en Lempira.

Departamento	Fallecidos	Heridos	Desaparecidos	Evacuados	Albergados
Cortés	32	2	0	241 641	52 623
Gracias a Dios	0	9	0	67 129	6 370
Yoro	5	О	1	33 143	18 636
Santa Bárbara	16	1	1	21 589	3 479
Colón	0	0	3	20 751	2 010
Atlántida	8	2	0	12 596	366
Copán	0	0	0	12 239	1 555
Choluteca	0	0	0	10 035	2 554
El Paraíso	0	0	0	4 389	1 527
Olancho	0	0	0	2 806	696
La Paz	3	0	0	2 387	376
Francisco Morazán	2	0	2	1814	3814
Intibucá	6	0	1	1 645	610
Comayagua	4	9	0	1616	352
Ocotepeque	7	1	0	1034	256
Islas de La Bahía	0	0	0	1009	
Lempira	12	0	2	992	3
Valle	0	0	0	397	1 422
Total	95	24	10	437 212	96 649

Tabla 5.1. Población primaria afectada por ETA e IOTA (BID - CEPAL, 2021).

Como resultado de la **evaluación de impactos**, el estudio estimó que los efectos totales causados por la tormenta tropical Eta y el huracán lota fueron de aproximadamente L. 52 099 millones. Los daños representaron el 44% de la afectación, las pérdidas 52% y los costos adicionales 4%.

En general, de acuerdo con las cifras de la Tabla 5.2, los efectos en 2020 estuvieron concentrados en el sector productivo, 68%, seguido por el sector social, 18%. Los subsectores productivos más afectados fueron comercio e industria, con 78% de los daños y 62% de las pérdidas, y agricultura con 18% y 27%, respectivamente. Los daños y las pérdidas en estos subsectores fue estrictamente privados. En el caso del sector social, el subsector vivienda concentró el 74% de los daños. Estos resultados permiten configurar un perfil de la dimensión humana del evento: fueron afectadas las fuentes de ingreso de las familias y el sitio donde habitan. La afectación en infraestructura representó 10% del total.

Sectores	Daños	Pérdidas 2020	Pérdidas 2021	Costos adicionales	Total
Social	7 885	25	17	1 448	9 375
Educación	815			552	1 367
Salud	1 253	22	11	144	1 430
Vivienda	5 8 1 7	3	6	649	6 475
Costo de la emergencia				103	103
Productivo	9 892	19 596	5 595	426	35 509
Agropecuario	1 752	5 060	1711	312	8 835
Turismo	473	1 955	723		3 151
Comercio e industria	7 667	12 581	3 161	114	23 523
Infraestructura	3 331	852	798	469	5 450
Electricidad	109	146		6	261
Agua y saneamiento	1 162	8		10	1 180
Transporte	2 049	676	798	453	3 976
Telecomunicaciones	11	22			33
Ambiente	1 567	198			1765
Total	22 675	20 671	6410	2 343	52 099

Tabla 5.2. Efectos por sectores en Millones de Lempiras (BID - CEPAL, 2021).

En cuanto al subsector Vivienda, tal como se evidencia en la Tabla 5.3, la mayor parte del daño se experimentó en solo cuatro departamentos: Copán, Cortés, Olancho y Yoro. Estos departamentos representan el 37% de todas las unidades de vivienda ocupadas a nivel nacional, pero experimentaron el 82% de los daños y la destrucción de viviendas, con un total de 6111 unidades habitacionales.

Departamento	Viviendas ocupadas	Porcentaje del país	Viviendas dañadas o destruidas	Porcentaje
Copán	81321	4	2 299	31
Cortés	374 676	20	2 502	34
Olancho	109 219	6	497	7
Yoro	124 046	7	813	11
Total	689 262	37	6 111	83

Tabla 5.3. Viviendas y daños a la vivienda para los departamentos más afectados (BID - CEPAL, 2021).

Para el subsector productivo agropecuario el 90% del daño fue registrado en el sector agrícola y el 10% en el sector pecuario. Los cultivos agrícolas con mayor daño fueron: café (49%), banano (27%), plátano (7%) y caña de azúcar (5%). Estas cuatro actividades agrícolas representan el 88% del daño total agropecuario estimado y ocasionado por este desastre (Tabla 5.4).

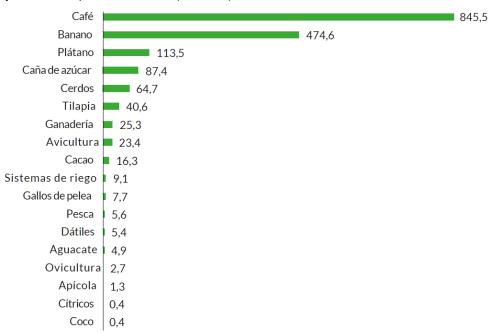


Tabla 5.4. Daños agropecuarios - cultivo en millones de lempiras (BID - CEPAL, 2021).

En el capítulo de recomendaciones del informe se resaltan las siguientes conclusiones:

- El saldo económico, ambiental y humano expuesto confirma la alta vulnerabilidad de Honduras a los desastres de origen natural. Si bien el país ha mejorado su capacidad de respuesta, siguen existiendo situaciones ligadas a la visión estratégica del territorio que impiden abordar el origen de la vulnerabilidad de forma definitiva y que permean la forma en que se gestionan los desastres.
- La primera causa estructural de la vulnerabilidad en Honduras está relacionada con el enfoque en la administración del territorio. El desarrollo en Honduras está concentrado en la llamada "T del desarrollo". Este patrón de ocupación territorial no ha considerado la planificación territorial ni la gestión de riesgos, exacerbando la vulnerabilidad y el riesgo de los sistemas sociales y económicos

- dentro de la "T". Por ejemplo, el desarrollo industrial en el Valle de Sula generó el incremento de población vulnerable en un territorio expuesto a la amenaza de inundación, sin que se contara con una estrategia sostenible para gestionar este riesgo.
- El segundo elemento estructural se refiere a la continuidad y sincronía de la política pública. Esta causa tiene que ver, en primera instancia, con la falta de una visión de desarrollo de largo plazo, basada en las necesidades reales del país e independiente de ciclos político-administrativos.
- El tercer elemento tiene que ver con la carencia de marcos de referencia para incentivar de innovaciones en el manejo del territorial. Es necesario trabajar en el desarrollo de proyectos y programas que permitan generar evidencia para su replicabilidad en las diferentes cuencas del país y para promover el desarrollo de una estrategia de desarrollo integral del país.
- La cuarta causa estructural está relacionada con la falta de compresión del riesgo en el territorio. Como muestra, según el índice de riesgo climático, Honduras es un país con un alto riesgo a desastres. Sin embargo, la información de amenazas y riesgos de desastres existente, generada por diversos programas y proyectos a lo largo del tiempo, no es accesible para su uso por los distintos actores en la planificación del territorio. También, es importante considerar que actualmente la gestión del riesgo de desastres se basa en datos de eventos históricos pero las nuevas tendencias dictan que los modelos probabilísticos prospectivos son un mejor acercamiento para la comprensión de los riesgos.

6. PROPUESTAS DE OBRAS DE MITIGACIÓN

De acuerdo con lo expuesto en el Producto 3.1. Actualización del estudio hidráulico y mapas de inundación, a partir del análisis hidráulico del desarrollo espacial y temporal de la inundación por los ríos Chamelecón y Ulúa, con miras a la disminución del riesgo en las poblaciones de La Lima, San Manuel, San Pedro Sula y El Progreso, se han propuesto las alternativas de intervención localizadas en la Figura 6.1 y descritas a continuación.

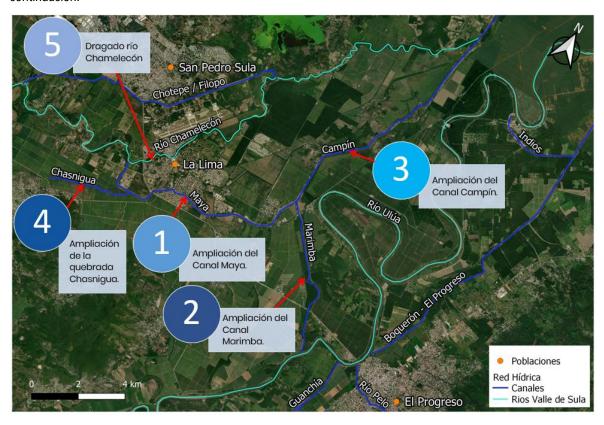


Figura 6.1. Alternativas de obras propuestas para la disminución del riesgo de inundación en el Valle de Sula.

El conjunto de obras está diseñado para que su funcionamiento sistémico permita detraer caudal de los cauces principales, aguas arriba de los centros poblados principales del Valle de Sula, disminuyendo así la probabilidad de desbordamiento de los ríos Ulúa y Chamelecón en cercanías a las zonas más densamente pobladas de la zona de estudio.

6.1. Ampliación del Canal Maya

Consiste en ampliar la sección transversal del canal Maya, para aumentar su capacidad de desagüe, que actualmente está alrededor de 370m³/s, mientras que su diseño original es de 750 m³/s. Se propone la adecuación de 10 Km de canal, ampliando la sección actual, que se observa en color naranja en la Figura 6.2, conformando una sección trapezoidal de 25 m de base, con taludes de pendiente 3:1 y una profundidad de 8 m, conservando así la localización de los bordos actuales y su cota corona. La intervención considera tanto la ampliación de la sección hidráulica del canal, como el mejoramiento de la pendiente longitudinal del mismo, lo que permite reducir las irregularidades y obstrucciones al flujo en el canal. Además se proyecta un revestimiento del canal en concreto, lo que incide directamente en el mejoramiento de las condiciones de flujo, por la reducción del coeficiente de rugosidad.

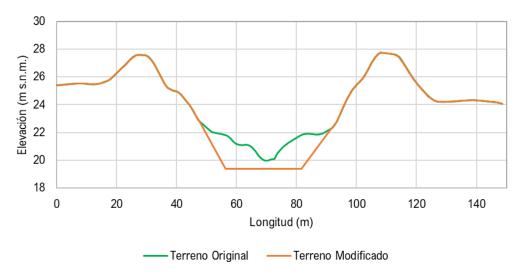


Figura 6.2. Vista en corte de la Ampliación del Canal Maya.

6.2. Ampliación del Canal Marimba

Consiste en la limpieza y la recuperación de la sección hidráulica del canal, estableciendo una pendiente longitudinal más uniforme hasta su conexión con el canal Campín. Se proyecta la adecuación de 4 Km de canal, ampliando la sección actual, que se observa en color naranja en la Figura 6.3, conformando una sección trapezoidal de 15 m de base, con taludes de pendiente 3:1 y una profundidad variable entre 4 y 8 m, conservando así la localización de los bordos actuales y su cota corona.

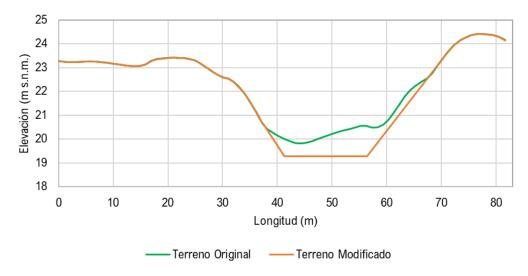


Figura 6.3. Vista en corte de la Ampliación del Canal Marimba.

6.3. Ampliación del Canal Campín

Consiste en ampliar la sección transversal del canal Campín, que recibe los caudales derivados del río Chamelecón mediante el canal Maya y del río Ulúa a través del canal Marimba, esto en coherencia con las obras de ampliación propuestas para estos canales, lo que en consecuencia aumentará el caudal de creciente por el canal Campín. Por ello, se propone la adecuación de los 11 Km del canal, ampliando la sección actual, que se observa en color naranja en la Figura 6.4, conformando una sección trapezoidal de 20 m de base, con taludes de pendiente 4:1 para empalmar con la sección actual y una profundidad variable entre 8 y 9 m, conservando así la localización de los bordos actuales y su cota corona.

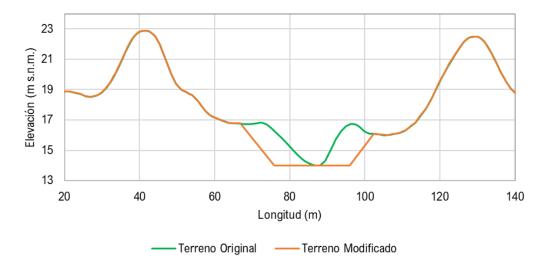


Figura 6.4. Vista en corte de la Ampliación del Canal Campín.

6.4. Ampliación de la quebrada Chasnigua

Consiste en la limpieza y la recuperación de la sección hidráulica del canal, estableciendo una pendiente longitudinal más uniforme hasta su conexión con el canal Maya. Se proyecta la adecuación de 4 Km de canal, ampliando la sección actual, que se observa en color naranja en la Figura 6.5, conformando una sección trapezoidal de 10 m de base, con taludes de pendiente 3:1 que empalman con la sección actual y una profundidad variable entre 3.5 y 4.5 m, conservando así la localización de los bordos actuales y su cota corona.

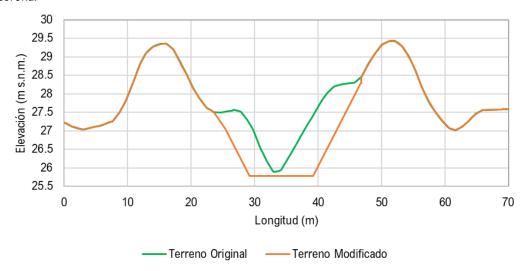


Figura 6.5. Vista en corte de la Ampliación del quebrada Chasnigua.

6.5. Dragado del río Chamelecón

Dada la dinámica fluvial del cauce, se evidencian zonas de sedimentación a lo largo del cauce, que han contribuido a la reducción de la sección hidráulica disponible y consecuentemente a la respuesta del sistema para el tránsito de avenidas, aumentando el riesgo de desbordamiento. Por tanto se propone la limpieza del cauce y el mejoramiento de la sección hidráulica en aproximadamente 3.5 Km del río, de acuerdo con la localización (línea punteada) en la Figura 6.6, que inicia en la toma del canal Maya y se extiende hasta el límite del casco urbano de La Lima.

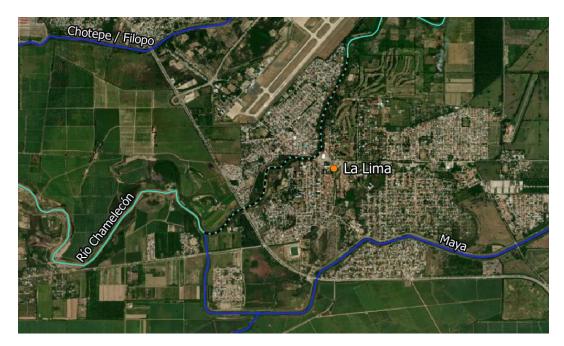


Figura 6.6. Localización del tramo del río Chamelecón propuesto para su dragado.

7. Posibles alternativas a las obras de mitigación propuestas

De manera paralela al estudio de cuantificación de riesgo para el escenario con las obras planteadas (Apartado 5), con el objetivo de conocer las pérdidas evitadas esperable tras la ejecución de las mismas, se ha realizado un análisis similar para tres medidas de mitigación alternativas a las obras hidráulicas.

Concretamente, las alternativas de mitigación analizadas se describen a continuación:

- Reforestación en las cuencas: consiste en cambiar el uso de suelo en algunas zonas de las cuencas. Este tipo de medidas se entienden principalmente desde un punto de vista medioambiental (rehabilitación del medio natural en cuencas), así como estrategia de reducción de la erosión superficial de las cuencas, su susceptibilidad a procesos de remoción en masa y su consecuente aporte de sedimentos a los cauces. En este caso, con esta medida se busca reducir los caudales de entrada al Valle, atenuando el caudal pico de los eventos de creciente, siendo este también una ventaja adicional de su implementación.
- Reasentamiento y reubicación de parte de la población: consiste en movilizar y reubicar la población y viviendas localizadas actualmente en zonas con riesgo de inundación, para así disminuir la exposición ante la misma amenaza (área inundable), disminuyendo en consecuencia el riesgo social y económico.
- Aunque dentro del marco del proyecto no se entiende como una alternativa, se ha realizado un análisis de sensibilidad para tener en cuenta el posible efecto en el Valle de Sula que tendría la construcción de la presa denominada "El Tablón". Se proyecta como una presa de usos múltiples (entre ellos la regulación de crecidas) sobre el río Chamelecón, aproximadamente a 30 km al suroeste de San Pedro Sula y 2.5 km aguas abajo de la confluencia con la Quebrada La Mina, que lleva varios años en fase de anteproyecto.

8. ESTIMACIÓN DE CONSECUENCIAS

Se procedió a la cuantificación de consecuencias sociales y económicas para distintos escenarios hidrológicos, para así obtener una curva que relacione caudales de tránsito con sus consecuencias asociadas.

Mediante la modelización hidráulica se determinó la extensión de la inundación, definiendo los valores de profundidad de agua y velocidad en el área de estudio por cada escenario calculado. A partir de estos resultados, junto con información georreferenciada de la infraestructura existente, se determina qué elementos quedarían afectados y con qué magnitud, para cada escenario.

Tal y como se puede deducir del párrafo anterior, este proceso requiere una fase inicial de recopilación de todos los elementos expuestos de la zona, sobre la que superponer las manchas de inundación obtenida, de manera que se pueda transferir los parámetros de calado y velocidad hallados a cada elemento y así cuantificar los daños potenciales.

Para completar todo este proceso, en primer lugar, se incluye en el apartado 8.1 una descripción de los escenarios calculados, en el apartado 8.2 se detallan los elementos expuestos en la zona que han sido considerados y su metodología de estimación, por último, en los apartados 8.3 y 8.4 se detalla la metodología empleada y los resultados obtenidos para las consecuencias sociales y económicas, respectivamente.

8.1. Escenarios

Se han obtenido los resultados de consecuencias a partir de los caudales de tránsito modelizados hidráulicamente, descritos en detalle en el Producto 3.1. Actualización del estudio hidráulico y mapas de inundación, para los tres escenarios definidos a continuación.

- Escenarios Base (2023): estos escenarios consideran el tránsito de los caudales modelizados bajo las condiciones de exposición actuales (año 2023), para el caso sin obras.
 - a. Chamelecón Base: Considera que no ocurren crecidas simultáneas asociadas al mismo período de retorno por los dos cauces principales del sistema, en este caso la cuenca predominante es la del río Chamelecón. Se contemplan las crecidas asociadas a los periodos de retorno de 2.33, 5, 10, 20 y 50 años.
 - Ulúa Base: Considera que no ocurren crecidas simultáneas asociadas al mismo período de retorno por los dos cauces principales del sistema, en este caso la cuenca predominante es la del río Ulúa. Se contemplan las crecidas asociadas a los periodos de retorno de 2.33, 5, 10, 20 y 50 años.
 - c. Ambos ríos Base: Considera que ocurren crecidas simultáneas asociadas al mismo período de retorno por los dos cauces principales del sistema, aplicando un factor de reducción areal. Se contemplan las crecidas asociadas a los periodos de retorno de 2.33, 20 y 50 años.
- Escenarios con Obras (2023): estos escenarios consideran el tránsito de los caudales modelizados bajo las condiciones de exposición actuales (año 2023), para el caso con las obras de mitigación propuestas.
 - a. Chamelecón con Obras: Considera que no ocurren crecidas simultáneas asociadas al mismo período de retorno por los dos cauces principales del sistema, en este caso la cuenca predominante es la del río Chamelecón. Se contemplan las crecidas asociadas a los periodos de retorno de 2.33, 5, 10, 20 y 50 años.
 - b. Ulúa con Obras: Considera que no ocurren crecidas simultáneas asociadas al mismo período de retorno por los dos cauces principales del sistema, en este caso la cuenca

- predominante es la del río Ulúa. Se contemplan las crecidas asociadas a los periodos de retorno de 2.33, 5, 10, 20 y 50 años.
- c. Ambos ríos con Obras: Considera que ocurren crecidas simultáneas asociadas al mismo período de retorno por los dos cauces principales del sistema, aplicando un factor de reducción areal. Se contemplan las crecidas asociadas a los periodos de retorno de 2.33, 20 y 50 años.
- 3. Escenarios Futuros: se han tenido en cuenta dos escenarios tendenciales a años futuros (2050 y 2100). Estos escenarios consideran el tránsito de los caudales modelizados en situación futura, considerando el Cambio Climático para el escenario más pesimista (RCP 8.5) que supone un aumento de las precipitaciones en la zona de estudio, y, además, bajo las condiciones de exposición de la población futura para el caso sin y con obras. Se considera la proyección de la población según las tasas de crecimiento intercensales estimadas por el INE y distribuidas en el mismo espacio actual. En este caso se estimaron las consecuencias para el caso predominante de la cuenca del río Chamelecón, asumiendo un aumento de los caudales similar al incremento en las precipitaciones máximas estimado por los modelos de pronóstico del IPCC⁵, que corresponde al 16% para el año 2050 y del 40% para el año 2100.
 - a. Chamelecón CC Base: Considera que no ocurren crecidas simultáneas asociadas al mismo período de retorno por los dos cauces principales del sistema, en este caso la cuenca predominante es la del río Chamelecón. Se contemplan los caudales asociados a los periodos de retorno de 2.33, 5, 10, 20 y 50 años con la incidencia del cambio climático, bajo las condiciones de exposición futuras (años 2050 y 2100), para el caso sin obras.
 - b. Chamelecón CC con Obras: Considera que no ocurren crecidas simultáneas asociadas al mismo período de retorno por los dos cauces principales del sistema, en este caso la cuenca predominante es la del río Chamelecón. Se contemplan las crecidas asociadas a los periodos de retorno de 2.33, 5, 10, 20 y 50 años con la incidencia del cambio climático, bajo las condiciones de exposición futuras (años 2050 y 2100), para el caso con las obras de mitigación propuestas.

8.2. Exposición y vulnerabilidad

A continuación se describen los elementos y el valor expuesto estimado para cada uno de los elementos considerados en el análisis de consecuencias sociales y económicas.

8.2.1. Viviendas

La estimación de la cantidad de viviendas se realizó a partir de la base de datos de "Open Buildings" de Google (W. Sirko, 2021), que identifica las huellas de las edificaciones a partir de imágenes satelitales de alta resolución, lo que permite obtener los polígonos que delimitan el área de cada una de las viviendas vista en planta, tal como se presenta en el detalle de la Figura 8.1, que muestra un zoom en la zona del río Chamelecón en su paso por el municipio de La Lima.

-

⁵ https://interactive-atlas.ipcc.ch/

Figura 8.1. Detalle de los polígonos de vivienda identificados en el municipio de La Lima.

De acuerdo con la Tabla 8.1, se identificaron un total aproximado de 660 mil viviendas expuestas en el Valle de Sula, de las cuales la mayoría pertenecen a los municipios de San Pedro Sula, El Progreso y Choloma. La Figura 8.2 presenta la localización de las viviendas identificadas por municipio en el Valle de Sula.

Municipio	Viviendas	
San Pedro Sula	261000	
Choloma	98600	
El Progreso	98900	
La Lima	30800	
San Manuel	28700	
Puerto Cortes	19100	
Villanueva	64500	
Potrerillos	10900	
Tela	13500	
Pimienta	12000	
El Negrito	13400	
Santa Rita	7300	
TOTAL	658700	

Tabla 8.1. Cantidad de viviendas existentes en el Valle de Sula por municipio.

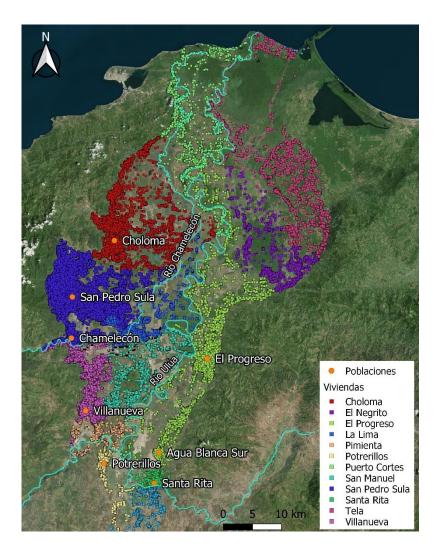


Figura 8.2. Distribución de viviendas identificadas por municipio en el Valle de Sula.

8.2.2.Población

Las áreas consideradas para estimar la población expuesta corresponden a todo el Valle de Sula, descrito en el aparatado 2, que se extiende por los departamentos de Cortés, Yoro y Atlántida, formando parte de 15 municipios: Puerto Cortés, Tela, Choloma, El Negrito, El Progreso, La Lima, Pimienta, Potrerillos, San Manuel, San Pedro Sula, Villanueva, San Antonio de Cortés, Santa Cruz de Yojoa, San Francisco de Yojoa y Santa Rita.

Donde habitan aproximadamente 2.6 millones de habitantes, valor estimado a partir de la capa de viviendas identificadas en el apartado 8.2.1 y aplicando una tasa promedio de ocupación de 4 habitantes/vivienda, establecida con base en el informe "Evaluación de los efectos e impactos de la tormenta tropical ETA y el huracán IOTA en Honduras" (BID - CEPAL, 2021) y en el informe del Instituto Nacional de Estadística de Honduras (INE, 2023).

El número de habitantes del Valle de Sula estimado para el año 2023, discretizado por municipio se presenta en la Tabla 8.2 y su distribución porcentual en la Figura 8.3, donde se observa que la mayor parte de la población del Valle de Sula se concentra en los municipios de San Pedro Sula, Choloma y El Progreso.

Municipio	Habitantes	Porcentaje
San Pedro Sula	1044000	40%
Choloma	394400	15%
El Progreso	395600	15%
La Lima	123200	5%
San Manuel	114800	4%
Puerto Cortes	76400	3%
Villanueva	258000	10%
Potrerillos	43600	2%
Tela	54000	2%
Pimienta	48000	2%
El Negrito	53600	2%
Santa Rita	29200	1%
TOTAL	2,634,800	100%

Tabla 8.2. Cantidad de habitantes actual en el Valle de Sula por municipio.

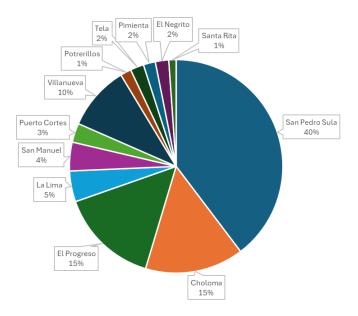


Figura 8.3. Distribución porcentual de habitantes por municipio en el Valle de Sula.

Con el objetivo de tener en cuenta la población correspondiente a cada año de cálculo, se ha proyectado la población al año 2023 (actual) y 2100 (futuro). Para ello, se ha empleado el método de crecimiento geométrico, que supone que la población crece exponencialmente con una tasa constante cada unidad de tiempo, aplicando la tasa de crecimiento intercensal establecida por el INE (Tabla 8.3), para cada uno de los municipios.

Cabecera municipal	Tasa de crecimiento intercensal 2001-2013 (%)
San Pedro Sula	1.78
Puerto Cortes	1.16
Villanueva	5.59
Potrerillos	1.76
Tela	1.2
Pimienta	3.04
El Negrito	1.83
Santa Rita	0.66

Tabla 8.3. Tasa de crecimiento intercensal. Fuente: INE, Censos de Población y Vivienda de 2001 y 2013.

8.2.3. Cultivos

En uno de los proyectos del presente contrato, la UNAH estuvo encargada del levantamiento de datos de campo y trabajos de zonificación agrícola según los diferentes cultivos establecidos en el Valle de Sula. Fruto de su trabajo, se levantó el mapa mostrado en la Figura 8.4.

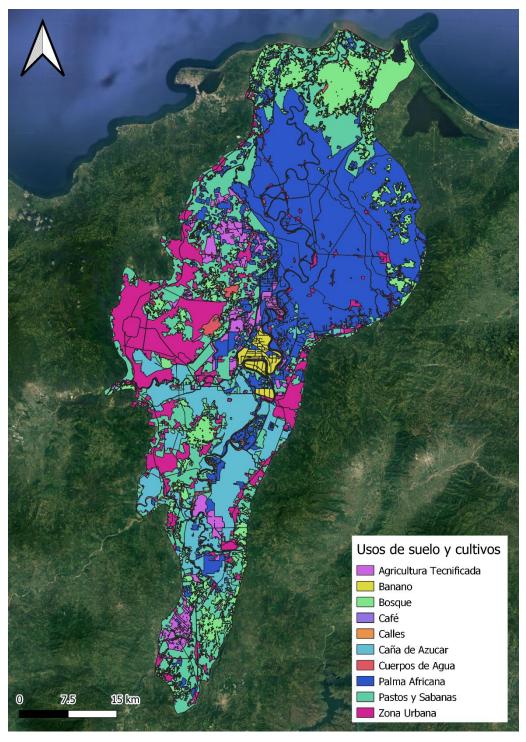


Figura 8.4. Usos de suelo y cultivos en el Valle de Sula. Fuente: Zonificación de los usos de suelo (UNAH, 2024).

Como se puede apreciar (Tabla 8.4), en el Valle de Sula destacan los siguientes tipos de cultivos: palma africana, pastos, caña de azúcar, agricultura tecnificada y banano. Y precisamente estos cinco cultivos son los que se analizarán de cara a conocer los daños económicos tras inundación a introducir en el modelo de riesgo.

Tipo de cultivo/cobertura	Área cultivada (ha)
Palma africana	75476
Pastos y sabanas	59688
Bosque	28783
Caña de azúcar	23348
Agricultura tecnificada	10522
Banano	2502

Tabla 8.4. Tipo de cultivo y área cultivada en el Valle de Sula. Fuente: Zonificación de los usos de suelo (UNAH, 2024).

8.3. Estimación de consecuencias sociales

Para la estimación de consecuencias sociales, se establecerán dos variables, la primera considera toda la **población afectada** en cada uno de los escenarios de inundación, es decir a todas aquellas personas que residen dentro del área inundada y la segunda considera la **pérdida de vidas** generada por dicha amenaza.

8.3.1.Metodología

Conociendo las características de la inundación, se estimó la pérdida de vidas para cada escenario. Esta estimación se basó en el método de Wayne Graham⁶, en el que se calcula en primer lugar la población afectada, al cruzar los mapas de inundación obtenidos de la modelización hidráulica (*Producto 3.1. Actualización del estudio hidráulico y mapas de inundación*) con los mapas de densidad poblacional, para después multiplicarse por un coeficiente de mortalidad (o tasa de mortalidad) que depende del tiempo de aviso, el entendimiento de la severidad de la inundación por parte de la población y la severidad de la inundación. La Figura 8.5 muestra el esquema general de la metodología propuesta.

⁶ Graham, W. J. (1999). A Procedure for Estimating Loss of Life Caused by Dam Failure, (September), 43.

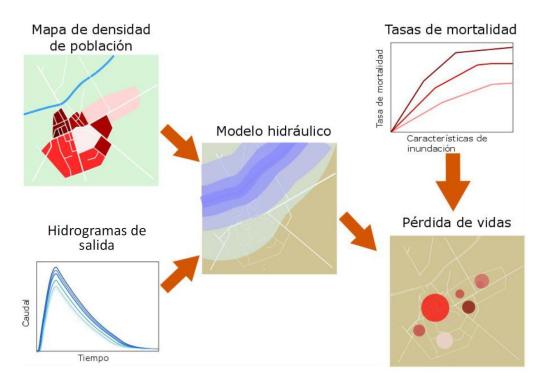


Figura 8.5. Metodología general para estimar la pérdida de vidas por inundación.

Mediante esta metodología, la pérdida de vidas en el caso de una inundación se obtiene al combinar:

- Severidad de la inundación: Muestra el grado de destrucción de las edificaciones y los refugios, por lo que es función de la altura de la lámina de agua y su velocidad.
- **Tiempo de aviso**: Tiempo transcurrido entre que se produce el primer aviso a la población y el frente de inundación alcanza a la población. Por lo tanto, es un indicador del tiempo disponible para evacuar o proteger a la población.
- Entendimiento de la severidad de la inundación: Para incluir el conocimiento de la población de las posibles consecuencias y su estado de alerta ante una posible inundación.

Dentro del proyecto europeo SUFRI (Proyecto SUFRI: Sustainable Strategies of Urban Flood Risk Management with non-structural measures to cope with the residual risk, 2009-2011), se adaptaron distintas tasas de mortalidad que podían estudiar diferentes grados de entendimiento de la severidad de la inundación en función de los sistemas de aviso, la existencia o no de un Plan de Emergencia, la coordinación entre los servicios de emergencia y la formación de la población.

Las tasas de mortalidad se han dividido en diez categorías, tal y como se muestra en la Tabla 8.6. De acuerdo con la información secundaria recopilada, las poblaciones de San Pedro Sula, La Lima, El Progreso y San Manuel cuentan con un Plan Municipal de Gestión de Riesgo y Propuesta de Zonificación Territorial elaborado en el año 2017, mientras que actualmente se están actualizando los Planes de Acción Durante Emergencias – PADE–, en los cuales se establece los sistemas de alerta, la coordinación entre los servicios de emergencia y autoridades, así como los protocolos de comunicación y medios para notificar a las poblaciones en caso de emergencia. También se resalta que el Programa de las Naciones Unidas para el Desarrollo (PNUD) junto con las autoridades municipales, están trabajando en el fortalecimiento de los Comités de Emergencia Local (CODEL) y liderazgos comunitarios de los municipios de Villanueva y Potrerillos.

No obstante, es evidente que una vez se finalice la actualización de los PADE, es indispensable una fase de implementación y socialización a las comunidades. Por ello, se considera que la información disponible se

encuentra desactualizada, adoptando como categoría más característica la Categoría 4 para la zona de estudio.

El tiempo de aviso se define como el tiempo de arribo de la onda, considerado en este caso como el tiempo que transcurre desde que inicia el tránsito de la creciente a la entrada del Valle de Sula por cada uno de los cauces principales, hasta que la inundación alcanza en forma diferenciada a cada una de las viviendas identificadas en la zona de estudio.

La severidad de la inundación es función del valor del parámetro DV, obtenido como el producto del calado (profundidad máxima de la lámina de agua) por su velocidad. La severidad puede dividirse en baja, para valores menores a 4.6 m²/s, media, para valores mayores a 4.6 m²/s. La severidad alta se asigna únicamente a áreas en las que la onda de creciente llegaría en menos una hora y quedarían totalmente arrasadas, no dejando zonas posibles de evacuación. Los valores del parámetro DV asociado a cada categoría se indican en la Tabla 8.5.

Categoría de Severidad	DV
Baja	< 4.6 m ² /s
Media	> 4.6 m ² /s
Alta	Áreas cercanas a la presa

Tabla 8.5. Obtención de la categoría de severidad.

	Cotomorio (C)	t aviso	S	everidad (Sv)
	Categoría (C)	TW (h)	Alta (3)	Media (2)	Baja (1)
	- No existe formación a la población.	0	0.9	0.3	0.02
	No se dispone de sistemas de aviso ni PEP.	0.25	0.9	0.3	0.02
C1	No hay coordinación entre servicios de emergencia y	0.625	0.7	80.0	0.015
١٠.	autoridades.	1	-	0.06	0.0006
	 No existen medios de comunicación a la población. 	1.5	-	0.0002	0.0002
	The existent medice de contamederen d'id postitioni	24	-	0.0002	0.0001
	- No existe formación a la población.	0	0.9	0.3	0.02
	- No se dispone de PEP, aunque existen otros sistemas de	0.25	0.9	0.3	0.02
C2	aviso.	0.625	0.675	0.075	0.014
	- No hay coordinación entre servicios de emergencia y	1	-	0.055	0.00055
	autoridades.	1.5	-	0.0002	0.0002
	- No existen medios de comunicación a la población.	24	-	0.0002	0.0001
	- No existe formación a la población.	0	0.9	0.3	0.02
	- Existe PEP, pero no se ha implantado.	0.25	0.85	0.2	0.015
СЗ	- Existe coordinación entre servicios de emergencia y	0.625	0.6	0.07	0.012
	autoridades (no existen protocolos).	1	-	0.05	0.0005
	 No existen medios de comunicación a la población. 	1.5	-	0.0002	0.0002
		24	-	0.0002	0.0001
	- No existe formación a la población.	0	0.9	0.3	0.02
	- PEP implantado con sistemas de aviso correspondientes.	0.25	0.75	0.15	0.01
C4	- Existe coordinación entre servicios de emergencia y	0.625	0.5	0.04	0.007
	autoridades, protocolos de comunicación.	1	-	0.03	0.0003
	 No existen medios de comunicación a la población. 	1.5	-	0.0002	0.0002
	The existent medice de contambacion à la poblacion.	24	-	0.0002	0.0001
	- No existe formación a la población.	0	0.9	0.3	0.02
	- PEP implantado con sistemas de aviso correspondientes.	0.25	0.75	0.15	0.01
C5	- Coordinación entre servicios de emergencia y	0.625	0.5	0.0375	0.0065
	autoridades.	1	-	0.0275	0.000275
	- Medios de comunicación a la población (sin comprobar).	1.5	-	0.0002	0.0002
	, , ,	24	-	0.0002	0.0001
	- No existe formación a la población.	0	0.9	0.3	0.02
	- PEP implantado con sistemas de aviso correspondientes.	0.25	0.75	0.15	0.01
C6	- Coordinación entre servicios de emergencia y	0.625	0.475	0.035	0.006
	autoridades.	1	-	0.025	0.00025
	- Medios de comunicación a la población implantados.	1.5	-	0.0002	0.0002
		24	-	0.0002	0.0001
	- Formación a la población.	0	0.9	0.3	0.02
	- PEP implantado con sistemas de aviso.	0.25	0.65	0.1	0.0075
C7	- Coordinación entre servicios de emergencia y	0.625	0.4	0.02	0.002
	autoridades.	1	-	0.01	0.0002
	- Medios de comunicación a la población implantados.	1.5	-	0.0002	0.0002
\vdash	***Si se produce rotura en 'C8', 'C9' y 'C10'.	24	-	0.0002	0.0001
	- Formación a la población.	0	0.9	0.3	0.02
	- PEP implantado. Simulacros o PEP empleado prev.	0.25 0.625	0.55 0.34	0.06 0.01	0.006 0.0015
C8	- Coordinación entre servicios de emergencia y	0.625		0.01	0.0015
	autoridades.	1.5	-	0.003	0.00015
	- Medios de comunicación a la población implantados.	1.5 24	_	0.0002	0.00013
\vdash		0	0.9	0.0002	0.0001
	- Formación a la población.	0.25	0.55	0.06	0.02
	- PEP implantado. Simulacros o PEP empleado prev.	0.625	0.34	0.008	0.000
C9	-Alta coordinación entre servicios de emergencia y	1	-	0.004	0.0013
	autoridades.	1.5	_	0.0004	0.000123
	- Medios de comunicación a la población implantados.	24		0.0002	0.0001
—		0	0.9	0.0002	0.00
	- Planes de formación continua a la población.	0.25	0.5	0.03	0.005
	- PEP implantado. Simulacros o PEP empleado prev.	0.625	0.3	0.005	0.003
C10	- Alta coordinación entre servicios de emergencia y	1	-	0.003	0.001
	autoridades.	1.5	_	0.0002	0.0001
	- Medios de comunicación a la población implantados.	24	_	0.0002	0.0001
		24	_	0.0002	0.0001

Tabla 8.6. Tasas de mortalidad utilizadas para aplicar el método Graham desarrolladas en el proyecto SUFRI.

8.3.2. Cálculo y resultados obtenidos

Como se puede deducir de la formulación anterior, el parámetro DV para establecer la categoría de severidad de la inundación se calcula como el producto de la profundidad del agua por la velocidad de la onda de inundación. Por otro lado, el tiempo de llegada se obtuvo a partir de cruzar la capa de "tiempos de arribo" exportado del HEC-RAS con la capa de localización de las viviendas en la zona de estudio.

Las distintas tasas de mortalidad se obtienen empleando la Tabla 8.6 con los distintos valores de tiempo de aviso y severidad, para cada escenario y vivienda del área de estudio. El número de pérdida de vidas resulta del producto de la tasa de mortalidad obtenida por la población que reside en cada área.

A continuación se presentan los resultados de los escenarios analizados, cuya descripción y nomenclatura se estableció en el apartado 8.1.

ESCENARIOS 1. BASE

A continuación, se indica la población afectada según los distintos escenarios hidrológicos analizados para el caso **Base sin obras**, que están caracterizados detalladamente en el *Producto 3.1. Actualización del estudio hidráulico y mapas de inundación*, cuyo caudal pico asociado (m³/s) a cada uno de los escenarios analizados se presenta en la Tabla 8.7.

	Escenario 1A- Chamelecón Base		Escenario 1B-	Escenario 1B- Ulúa Base		bos ríos Base
Período de	Rìo Chamelecón	Río Ulúa	Rìo Chamelecón	Río Ulúa	Rìo Chamelecón	Río Ulúa
retorno (Años)	Q (m³/s)	Q (m³/s)	Q (m³/s)	Q (m³/s)	Q (m³/s)	Q (m³/s)
2	811	2250	811	2250	576	1598
5	1417	4036	1417	4036	1006	2866
10	1863	5367	1863	5367	1323	3810
20	2316	5367	1863	6720	1645	4771
50	2932	6720	2316	8542	2082	6065

Tabla 8.7. Caudales máximos asociados al inicio de cada cauce en los Escenarios Base.

La población afectada es toda aquella alcanzada por la extensión de la mancha de inundación definida para dicho escenario. Los resultados por municipio para los escenarios A con caudal predominante por la cuenca del río Chamelecón se presentan en la Tabla 8.8, para los escenarios B con caudal predominante por la cuenca del río Ulúa se presentan en la Tabla 8.9 y para los escenarios C con caudal reducido con factor areal en ambos ríos simultáneamente en la Tabla 8.10. De acuerdo con los resultados, se estima una población total afectada de 166 mil personas para el escenario más crítico con la inundación producida por una creciente de 50 años de período de retorno y de 76 mil personas afectadas para la inundación asociada a 10 años de período de retorno.

	ESCENARIO 1A- CHAMELECÓN BASE					
MUNICIPIO	TR2	TR5	TR10	TR20	TR50	
San Pedro Sula	228	2,256	6,564	27,612	62,916	
El Progreso	5,144	9,412	18,464	18,460	25,876	
La Lima	2,612	25,384	35,100	39,588	54,528	
San Manuel	4,028	13,556	15,828	16,092	23,280	
TOTAL	12,012	50,608	75,956	101,752	166,600	

Tabla 8.8. Personas afectadas por municipio para el escenario 1A – Chamelecón Base.

	ESCENARIO 1B- ULÚA BASE					
MUNICIPIO	TR2	TR5	TR10	TR20	TR50	
San Pedro Sula	228	2,256	6,564	6,592	28,088	
El Progreso	5,144	9,412	18,464	25,904	32,780	
La Lima	2,612	25,384	35,100	35,396	41,040	
San Manuel	4,028	13,556	15,828	20,940	21,552	
TOTAL	12,012	50,608	75,956	88,832	123,460	

Tabla 8.9. Personas afectadas por municipio para el escenario 1B – Ulúa Base.

	ESCENARIO 1C- AMBOS RÍOS BASE					
MUNICIPIO	TR2	TR 20	TR 50			
San Pedro Sula	160	3,932	14,956			
El Progreso	2,904	13,764	22,588			
La Lima	452	32,436	36,888			
San Manuel	484	14,600	20,500			
TOTAL	4,000	64,732	94,932			

Tabla 8.10. Personas afectadas por municipio para el escenario 1C – Ambos ríos Base.

De estos resultados, se evidencia que en términos de población afectada total, el escenario que considera predominantes los caudales del río Chamelecón resulta el más crítico a partir de 20 años de periodo de retorno, sin embargo, al analizar los valores discretizados por municipio (Figura 8.6), se observa que para los municipios de El Progreso y San Manuel, el escenario que considera predominantes los caudales del río Ulúa resulta más desfavorable.

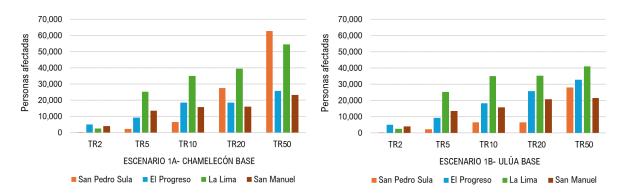


Figura 8.6. Población afectada para los Escenarios Base por municipio.

Por último, tras aplicar la tasa de mortalidad determinada en cada caso, se obtiene la estimación de la pérdida de vida por municipio para los escenarios A con caudal predominante por la cuenca del río Chamelecón se presentan en la Tabla 8.11, para los escenarios B con caudal predominante por la cuenca del río Ulúa se presentan en la Tabla 8.12 y para los escenarios C con caudal reducido con factor areal en ambos ríos simultáneamente en la Tabla 8.13.

ESCENARIO 1A- CHAMELECÓN BASE					
MUNICIPIO	TR2	TR5	TR10	TR20	TR50
San Pedro Sula	0	0	1	3	6
El Progreso	1	1	2	2	3
La Lima	0	3	4	4	5
San Manuel	0	1	2	2	2
ΤΩΤΔΙ	1	5	8	10	17

Tabla 8.11. Pérdida de vidas por municipio para el escenario 1A – Chamelecón Base.

ESCENARIO 1B- ULÚA BASE					
MUNICIPIO	TR2	TR5	TR10	TR20	TR50
San Pedro Sula	0	0	1	1	3
El Progreso	1	1	2	3	3
La Lima	0	3	4	4	4
San Manuel	0	1	2	2	2
TOTAL	1	5	8	9	12

Tabla 8.12. Pérdida de vidas por municipio para el escenario 1B – Ulúa Base.

	ESCENARIO 1C- AMBOS RÍOS BASE				
MUNICIPIO	TR2	TR 20	TR 50		
San Pedro Sula	0	0	2		
El Progreso	0	1	2		
La Lima	0	3	4		
San Manuel	0	1	2		
TOTAL	0	6	10		

Tabla 8.13. Pérdida de vidas por municipio para el escenario 1C – Ambos ríos Base.

Teniendo en cuenta las condiciones de la inundación en la zona de estudio y de acuerdo con la metodología descrita anteriormente, la severidad resultante del producto de calado máximo por su velocidad en las viviendas expuestas, en la mayoría de los casos resulta de **Categoría Baja**, que en conjunción con los tiempos de aviso, resulta en **tasas de mortalidad muy bajas**, con las que se estima un valor alrededor de 20 víctimas fatales en los municipios de análisis, para el escenario hidrológico más extremo con el tránsito de la creciente de 50 años de período de retorno.

ESCENARIOS 2. OBRAS

A continuación, se indica la población afectada según los distintos escenarios hidrológicos analizados considerando la construcción de las obras de mitigación propuestas en el *Producto 3.1. Actualización del estudio hidráulico y mapas de inundación*, cuyo caudal pico asociado (m³/s) a cada uno de los escenarios analizados se presenta en la Tabla 8.14.

	Escenario 2A- Cham	elecón con Obras	Escenario 2B- Ul	úa con Obras	Escenario 2C- Ambo	s ríos con Obras
Período de retorno (Años)	Rìo Chamelecón Q (m³/s)	Río Ulúa Q (m³/s)	Rìo Chamelecón Q (m³/s)	Río Ulúa Q (m³/s)	Rìo Chamelecón Q (m³/s)	Río Ulúa Q (m³/s)
2	811	2250	811	2250	576	1598
5	1417	4036	1417	4036	1006	2866
10	1863	5367	1863	5367	1323	3810
20	2316	5367	1863	6720	1645	4771
50	2932	6720	2316	8542	2082	6065

Tabla 8.14. Caudales máximos asociados al inicio de cada cauce en los Escenarios con Obras.

La población afectada es toda aquella alcanzada por la extensión de la mancha de inundación definida para dicho escenario. Los resultados por municipio para los escenarios A con caudal predominante por la cuenca del río Chamelecón se presentan en la Tabla 8.15, para los escenarios B con caudal predominante por la cuenca del río Ulúa se presentan en la Tabla 8.16 y para los escenarios C con caudal reducido con factor areal en ambos ríos simultáneamente en la Tabla 8.17. De acuerdo con los resultados (Tabla 8.18 y Tabla 8.19), se estima una población total afectada de 136 mil personas para el escenario más crítico con la inundación producida por una creciente de 50 años de período de retorno, lo que supone una reducción del 18% al implementar las obras de mitigación propuestas; mientras que para 10 años de período de retorno, las personas afectadas disminuyen un 37%, con una población afectada de 48 mil personas una vez

implementadas las obras de mitigación. La Figura 8.7 presenta los resultados gráficos comparativos de los escenarios A y B.

	ESCENARIO 2A- CHAMELECÓN OBRAS				
MUNICIPIO	TR2	TR5	TR10	TR20	TR50
San Pedro Sula	164	1,620	5,096	26,836	60,196
El Progreso	3,804	8,452	17,180	17,184	24,852
La Lima	996	6,048	10,812	15,380	30,560
San Manuel	3,208	12,524	15,060	15,204	20,672
TOTAL	8.172	28.644	48.148	74.604	136.280

Tabla 8.15. Personas afectadas por municipio para el escenario 2A – Chamelecón Base.

	ESCENARIO 2B- ULÚA OBRAS				
MUNICIPIO	TR2	TR5	TR10	TR20	TR50
San Pedro Sula	164	1,620	5,096	5,108	27,120
El Progreso	3,804	8,452	17,180	24,832	31,924
La Lima	996	6,048	10,812	11,416	17,728
San Manuel	3,208	12,524	15,060	20,524	20,972
TOTAL	8,172	28,644	48,148	61,880	97,744

Tabla 8.16. Personas afectadas por municipio para el escenario 2B – Ulúa Base.

	ESCENARIO 2C- AMBOS RÍOS OBRAS				
MUNICIPIO	TR2	TR 20	TR 50		
San Pedro Sula	100	2,944	13,852		
El Progreso	1,728	12,300	21,520		
La Lima	452	8,960	12,944		
San Manuel	484	13,928	18,912		
TOTAL	2.844	38.132	67.228		

Tabla 8.17. Personas afectadas por municipio para el escenario 2C – Ambos ríos Base.

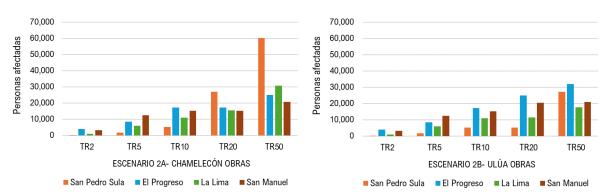


Figura 8.7. Población afectada para los Escenarios con Obras por municipio.

Al analizar la disminución porcentual de población afectada por municipio, comparando los escenarios sin y con obras, para los escenarios A con caudal predominante por la cuenca del río Chamelecón, se obtienen los valores de la Tabla 8.18, en la cual se evidencia una reducción de población afectada entre el 18% y el 43% para las recurrencias analizadas, resaltando que el mayor impacto se observa para un período de retorno de 5 años.

	ESCENARIO 2A- CHAMELECÓN OBRAS				
MUNICIPIO	TR2	TR5	TR10	TR20	TR50
San Pedro Sula	28%	28%	22%	3%	4%
El Progreso	26%	10%	7%	7%	4%
La Lima	62%	76%	69%	61%	44%
San Manuel	20%	8%	5%	6%	11%
TOTAL	32%	43%	37%	27%	18%

Tabla 8.18. Disminución porcentual de población afectada por municipio para el escenario 2A - Chamelecón Obras.

De forma análoga, se presentan los resultados obtenidos para los escenarios B con caudal predominante por la cuenca del río Ulúa en la Tabla 8.19, en la cual se evidencia una reducción de población afectada entre el 21% y el 43% para las recurrencias analizadas. Para todos los escenarios, el municipio de La Lima presenta la mayor reducción porcentual, seguido del municipio de San Pedro Sula.

		ESCENA	RIO 2B- ULÚ <i>l</i>	OBRAS	
MUNICIPIO	TR2	TR5	TR10	TR20	TR50
San Pedro Sula	28%	28%	22%	23%	3%
El Progreso	26%	10%	7%	4%	3%
La Lima	62%	76%	69%	68%	57%
San Manuel	20%	8%	5%	2%	3%
TOTAL	32%	43%	37%	30%	21%

Tabla 8.19. Disminución porcentual de población afectada por municipio para el escenario 2B – Ulúa Obras.

Por último, tras aplicar la tasa de mortalidad determinada en cada caso, se obtiene la estimación de la pérdida de vida por municipio para los escenarios A con caudal predominante por la cuenca del río Chamelecón se presentan en la Tabla 8.20, para los escenarios B con caudal predominante por la cuenca del río Ulúa se presentan en la Tabla 8.21 y para los escenarios C con caudal reducido con factor areal en ambos ríos simultáneamente en la Tabla 8.22.

		ESCENARIO	2A- CHAMELI	ECÓN OBRAS	
MUNICIPIO	TR2	TR5	TR10	TR20	TR50
San Pedro Sula	0	0	1	3	6
El Progreso	0	1	2	2	3
La Lima	0	1	1	2	3
San Manuel	0	1	2	2	2
ΤΟΤΔΙ	1	3	5	7	14

Tabla 8.20. Pérdida de vidas por municipio para el escenario 2A - Chamelecón Obras.

	ESCENARIO 2B- ULÚA OBRAS				
MUNICIPIO	TR2	TR5	TR10	TR20	TR50
San Pedro Sula	0	0	1	1	3
El Progreso	0	1	2	3	3
La Lima	0	1	1	1	2
San Manuel	0	1	2	2	2
TOTAL	1	3	5	6	10

Tabla 8.21. Pérdida de vidas por municipio para el escenario 2B – Ulúa Obras.

	ESCENARIO 2C- AMBOS RÍOS OBRAS				
MUNICIPIO	TR2	TR 20	TR 50		
San Pedro Sula	0	0	1		
El Progreso	0	1	2		
La Lima	0	1	1		
San Manuel	0	1	2		
TOTAL	0	4	7		

Tabla 8.22. Pérdida de vidas por municipio para el escenario 2C – Ambos ríos Obras.

En la Figura 8.8 se presentan gráficamente los resultados comparativos de las consecuencias sociales en términos de pérdida de vidas para los escenarios sin y con obras, en la cual, como se había señalado anteriormente, se evidencia que el escenario más crítico corresponde al que predominan las mayores crecientes por el cauce del río Chamelecón, en el que la implementación de obras reduce el número de víctimas fatales estimadas a 14 personas, para el período de retorno de 50 años.

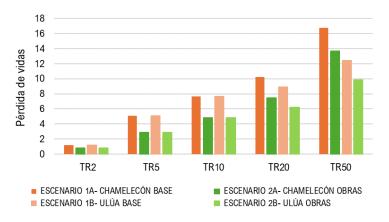


Figura 8.8. Comparativo de pérdida de vidas para los escenarios con y sin obras.

Es importante resaltar que, dadas las condiciones de la inundación, en términos de la duración de las áreas anegadas, las consecuencias sociales más significativas se basan en la afectación directa de las viviendas y los cultivos, que perjudica tanto la calidad de vida de las personas, como sus medios productivos. De esta manera, los resultados más significativos del impacto de la implantación de las obras de mitigación propuestas se observan en la Tabla 8.18 y Tabla 8.19 que comparan la variables de población afectada.

ESCENARIOS 3. CAMBIO CLIMÁTICO

A continuación, se indican las consecuencias sociales según los escenarios de cambio climático, que corresponden a los resultados del tránsito de la creciente asociada a un período de retorno de 50 años, con un incremento del 40% en las precipitaciones actuales. La población afectada se establece a partir de la proyección de la población geolocalizada actual al año 2100, tal como se expuso en el apartado 8.2.2. La Tabla 8.23 y Figura 8.9 presenta los resultados comparativos del escenario con y sin obras para las variables de población afectada y pérdida de vidas, donde se evidencia una reducción del 11% en las víctimas fatales estimadas, con mayor impacto en los municipios de La Lima y San Manuel. De esta manera, se puede establecer que la implantación de las obras de mitigación propuestas tiene un impacto social positivo aún en el escenario con cambio climático, en el cual las condiciones de amenaza y exposición aumentan significativamente.

	Población afectada		Pérdida de vidas		
MUNICIPIO	TR 50 Sin Obras	TR 50 Con Obras	TR 50 Sin Obras	TR 50 Con Obras	Reducción (%)
San Pedro Sula	450,239	446,175	45	45	1%
El Progreso	124,595	122,460	12	12	2%
La Lima	354,822	275,737	35	28	22%
San Manuel	135,982	99,400	14	10	27%
TOTAL	1,065,638	943,771	107	94	11%

Tabla 8.23. Población afectada y pérdida de vidas por municipio para el escenario con cambio climático.

Figura 8.9. Comparativo de población afectada para los escenarios de cambio climático con y sin obras.

8.4. Estimación de las consecuencias económicas

8.4.1.Metodología

Para la estimación de las consecuencias producidas por las distintas inundaciones consideradas, se siguió el procedimiento que se señala en la Figura 8.10. que consiste en combinar, para cada uno de los rubros de daño, la profundidad alcanzada por el agua, el porcentaje de daño en función del nivel del agua según las curvas calado-daños y el costo unitario de reparación y reconstrucción de cada elemento a considerar.

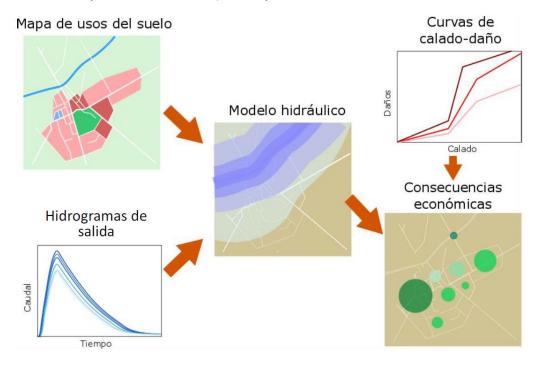


Figura 8.10. Metodología general para la estimación de consecuencias económicas por inundación.

En términos generales los daños económicos pueden expresarse de acuerdo con la siguiente fórmula, para cada escenario de crecida (escenario i):

$Da\tilde{n}o(escenario_i) = Cantidad_i * Afectación_i * Precio_i$

De esta forma se debe identificar las unidades (j) dañadas de ese rubro y contabilizarlas, evaluar el grado de deterioro o afectación producido, y estimar el precio de reposición de cada unidad. Los rubros considerados para la cuantificación de los costos se determinaron a partir del análisis de las experiencias previas, los antecedentes metodológicos y las particularidades de la zona de estudio, así como teniendo en cuenta la disponibilidad de la información necesaria para su cálculo.

Las unidades afectadas se han contabilizado a partir de una Base de Datos Espacial (BDE) generada ad hoc a partir de datos recopilados de organismos públicos y la proyección de cantidades al año en curso, con información en capas vectoriales, compatible con los Sistemas de Información Geográfica (SIG). Para la misma se empleó el sistema de coordenadas EPSG:32616 - WGS 84 / UTM zone 16N. La aplicación de un software de manejo de bases SIG (QGIS 3.24) permitió cruzar la información de los distintos rubros con las manchas de inundación correspondientes a los escenarios seleccionados.

Los precios unitarios de los bienes y servicios afectados han sido estimados para cada unidad seleccionada en los diferentes rubros, a partir de referencias bibliográficas y estudios locales. Las diferentes fuentes consultadas se adjuntan y mencionan de forma particular en la descripción de cada rubro.

Los niveles de inundación, o calados, para cada escenario se extrajeron del modelo hidráulico bidimensional creado mediante el software HEC-RAS (USACE) explicado en el *Producto 3.1. Actualización del estudio hidráulico y mapas de inundación.* Para la estimación de consecuencias económicas de este informe se ha calculado únicamente el rubro correspondiente a Vivienda.

Los costos unitarios utilizados para calcular el daño de cada rubro fueron obtenidos de diferentes fuentes de información que serán descritas en los ítems correspondientes a cada rubro, como ya se ha comentado. Cada precio obtenido se actualizó a diciembre de 2023, mediante la aplicación de un coeficiente de actualización. Dichos coeficientes se construyeron a partir de la evolución de índices de precios de referencia para el rubro considerado. La siguiente fórmula describe el cálculo para la obtención de los coeficientes de actualización.

$$Coeficiente \ de \ actualizaci\'on_{t,k} = \frac{\'indice_t}{\'indice_k}$$

Donde t es el momento al que se quiere actualizar el precio (2023) y k es el momento de estimación del precio de referencia. El índice de referencia empleado es el Índice de Precios al Consumidor (IPC).

Por otro lado, para algunos precios o simplemente para presentar los resultados finales se considera un cambio de moneda a diciembre de 2023 entre Lempiras hondureños (HNL) y dólares estadounidenses (USD) de valor 24.72 HNL/USD.

En los próximos apartados se describe qué unidades se consideran para caracterizar el daño en cada uno de los rubros y cómo se efectuó la valoración de la afectación y la estimación de precios.

8.4.2. Vivienda

El rubro "Vivienda" es una de las variables más significativas en el análisis de daño económico asociado a riesgo de inundación. Las poblaciones generalmente se asientan a las orillas del río, donde se encuentran los

mejores recursos naturales para desarrollar actividades económicas, sin analizar las pérdidas que podrían ocasionarse ante una inundación.

Las inundaciones históricas en el Valle de Sula han causado daños considerables en el rubro Viviendas. Concretamente, la mayor parte de los daños tiene que ver con la afección sobre el propio contenido de las viviendas (así se pudo corroborar durante la visita técnica). Esto es debido a que las inundaciones que se producen no son destructivas, desde el punto de vista de daño estructural a las viviendas, pues la orografía de la zona impide que se generen velocidades altas durante las inundaciones. Por ello, la valoración de este rubro se realiza considerando el costo de reposición de los bienes (contenido) de las viviendas.

El **costo unitario** del contenido de la vivienda es variable en función del municipio y de si la vivienda se considera en zona "urbana" o "rural". Así se establece en el documento *Línea de base para los municipios La Lima y El Progreso de Honduras* (CEPAL, 2024). Estos costos van desde 43,340 HNL (1,753 USD) en el caso de viviendas urbanas de El Progreso hasta 3,940 HNL (159 USD) para el caso de viviendas rurales en La Lima.

Teniendo lo anterior en cuenta, se ha particularizado cada vivienda en función del nivel de pobreza en la zona donde se ubican. Para ello, se ha hecho uso del mapa de pobreza incluido en un análisis multirriesgo de Honduras (PROSPERIA, 2022). En este mapa se presentan una serie de áreas hexagonales donde se asigna un valor de probabilidad de pobreza por área. En esta capa el nivel de pobreza (con probabilidad asignada a más del 97.5% de las áreas hexagonales del Valle de Sula) se clasificó en cuatro: No pobres (46%), pobreza relativa (17%), pobreza moderada (20%) y pobreza extrema (17%), en coherencia con la información publicada en el documento Hogares en Situación de Pobreza (INE Honduras, 2021).

En resumen, se han discretizado los siguientes rangos de probabilidad de pobreza (Tabla 8.25), a fin de que el porcentaje de los hogares encajen en cada una de las categorías conforme a los valores estimados por el INE. Las categorías que se han tenido en cuenta se presentan en la Figura 8.11. Se especifica además, que la categoría de pobreza asignada ha sido contrastada con la capa de zonificación de las viviendas (también dividida en 4 categorías) que ha desarrollado la UNAH durante el presente contrato, con verificación de un muestreo de las viviendas tipo en sitio, evidenciando que las zonas coinciden aproximadamente entre ambas fuentes.

La discretización estimada de los niveles de pobreza por municipio se resumen en la Tabla 8.24, donde se destacan los porcentajes de pobreza extrema del 36% para San pedro Sula, 12% en El Progreso, 4% en la Lima y 21 % en San Manuel, teniendo en cuenta únicamente las viviendas pertenecientes al Valle de Sula.

Municipio	No pobres	Relativa	Moderada	Extrema
San Pedro Sula	20%	21%	23%	36%
Choloma	10%	58%	19%	13%
El Progreso	36%	22%	30%	12%
La Lima	37%	38%	20%	4%
San Manuel	13%	35%	31%	21%
Puerto Cortes	6%	28%	37%	29%
Villanueva	13%	32%	25%	30%
Potrerillos	44%	50%	7%	0%
Tela	4%	6%	44%	46%
Pimienta	8%	42%	37%	12%
El Negrito	1%	41%	51%	8%
Santa Rita	80%	19%	1%	0%

Tabla 8.24. Porcentaje municipales según categoría de pobreza estimada.

En cuanto a los costos del contenido de la vivienda, los mismos se han obtenido, como se ha comentado con anterioridad, del informe *Línea de base para los municipios La Lima y El Progreso de Honduras* (CEPAL,

2024). A efectos del presente estudio, se ha realizado una reclasificación de estos con base en las categorías de pobreza. Para ello se ha considerado que el costo más alto (en el municipio de El Progreso para vivienda urbana) se le atribuye a la categoría de "No Pobres", y así sucesivamente hasta la categoría de "Pobreza extrema" a las que se le ha asignado el costo más bajo (en el municipio de La Lima para vivienda rural).

Rango probabilidad de pobreza	Categoría	Porcentaje de hogares	Valor contenido (HNL)
0-0.175	No Pobres	46.20%	43,340
0.175-0.350	Pobreza Relativa	16.90%	28,950
0.350-0.575	Pobreza Moderada	19.50%	25,220
0.575-1	Pobreza Extrema	17.40%	3,940

Tabla 8.25. Porcentaje de hogar según categoría de pobreza y valor asignado al contenido.

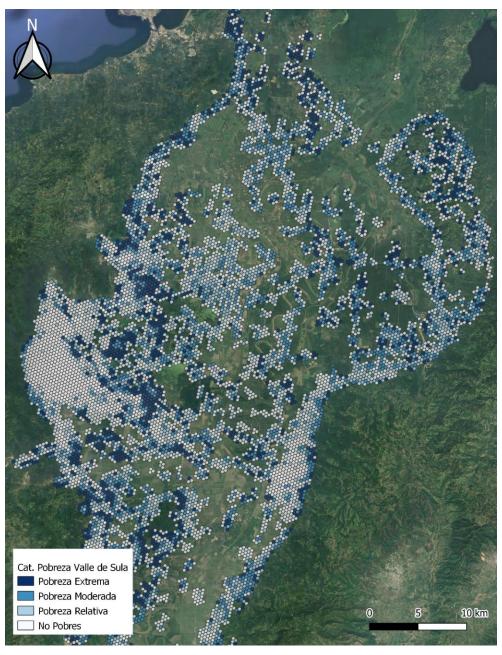


Figura 8.11. Mapa con categoría de pobreza en el Valle de Sula.

Por otro lado, para **estimar el daño** asociado a la reposición del contenido de las viviendas, se adoptó una función de porcentaje de daño en función de la profundidad de inundación. Esta relación se muestra en la Figura 8.12 y se ha extraído del documento Baseline analysis. Estimation of damage functions for Belize City (BID, 2017). En dicho estudio se analizó, en función del contenido de las viviendas, las diferentes alturas de agua a partir de la cual se generan daños en los mismos.



Figura 8.12. Porcentaje de afectación según el nivel de inundación para el contenido de viviendas de una planta.

Finalmente, el daño asociado a la reposición de los contenidos de la vivienda se calculó aplicando la siguiente fórmula:

$$extbf{Da}$$
ño $extbf{Contenido}$ $extbf{viviendas}_i = \sum_{i} extbf{Viviendas}_{j,i} extbf{ iny Costo}_j extbf{ iny Coef}_{j,i}$

Donde:

- Viviendas_{i,i}: Cantidad de viviendas de tipo j afectadas en el escenario i.
- Costo;: Costo de reposición total del contenido de una vivienda de tipo j.
- Coef_{j,i}: Porcentaje de afectación de las viviendas de tipo j en base al nivel de inundación en el escenario i.

8.4.3. Resultados obtenidos para viviendas

A partir de la metodología descrita anteriormente, se calcularon las pérdidas económicas estimadas por el daño a viviendas, para cada uno de los escenarios de análisis. Los resultados se presentan a continuación.

ESCENARIOS 1. BASE

Las viviendas afectadas son todas aquellas alcanzadas por la extensión de la mancha de inundación definida para dicho escenario. Si analizamos la incidencia de la inundación para todos los municipios del Valle de Sula para las crecientes asociadas a 10, 20 y 50 años de periodo de retorno en el escenario más crítico en términos de viviendas afectadas, se obtienen los resultados de la Tabla 8.27 y Figura 8.15, con un total de 31 mil viviendas afectadas para 10 años de periodo de retorno y alrededor de 59 mil viviendas para 50 años de periodo de retorno. Se calcula el porcentaje que representa el número de viviendas afectadas sobre el

total expuesto en cada municipio, resaltando los municipios de La Lima, San Manuel y Puerto Cortés como aquellos con el mayor porcentaje de viviendas afectadas sobre el total del municipio.

Municipio	Municipio Viviendas		Viviendas afectadas		Porcentaje del T	Porcentaje del Total existente por municipio			Porcentaje del Total viviendas afectadas		
Municipio	Existentes	TR10	TR20	TR50	TR10	TR20	TR50	TR10	TR20	TR50	
San Pedro Sula	260970	1641	6903	15729	0.6%	2.6%	6.0%	5.2%	17.8%	26.5%	
El Progreso	98853	4616	4615	6469	4.7%	4.7%	6.5%	14.7%	11.9%	10.9%	
La Lima	30771	8775	9897	13632	28.5%	32.2%	44.3%	28.0%	25.6%	23.0%	
San Manuel	28683	3957	4023	5820	13.8%	14.0%	20.3%	12.6%	10.4%	9.8%	
Choloma	98586	4618	4993	6822	4.7%	5.1%	6.9%	14.7%	12.9%	11.5%	
El Negrito	13438	365	365	575	2.7%	2.7%	4.3%	1.2%	0.9%	1.0%	
Pimienta	11965	1334	1336	1519	11.1%	11.2%	12.7%	4.3%	3.5%	2.6%	
Potrerillos	10933	952	952	1183	8.7%	8.7%	10.8%	3.0%	2.5%	2.0%	
Puerto Cortes	19111	3730	4011	5506	19.5%	21.0%	28.8%	11.9%	10.4%	9.3%	
Santa Rita	7255	63	63	135	0.9%	0.9%	1.9%	0.2%	0.2%	0.2%	
Tela	13521	152	152	216	1.1%	1.1%	1.6%	0.5%	0.4%	0.4%	
Villanueva	64503	1184	1412	1703	1.8%	2.2%	2.6%	3.8%	3.6%	2.9%	
ΤΩΤΔΙ	658 589	31 387	38 722	59 309							

Tabla 8.26. Viviendas afectadas por municipio para todo el Valle de Sula para periodos de retorno de 10, 20 y 50 años.

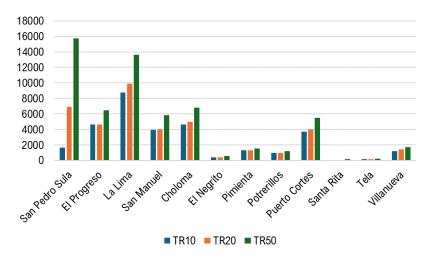


Figura 8.13. Viviendas afectadas por municipio en el Valle de Sula para periodos de retorno de 10, 20 y 50 años.

También se analiza el porcentaje de viviendas afectadas que representa cada municipio sobre el total afectado en el Valle de Sula, evidenciando que San Pedro Sula y La Lima son los municipios con mayor incidencia en el total de viviendas afectadas por escenario, tal como se observa en el gráfico de la Figura 8.14.

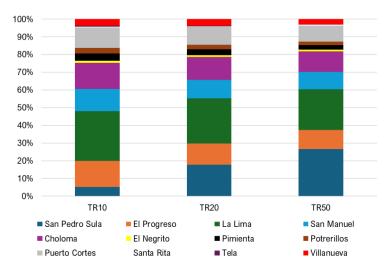


Figura 8.14. Distribución porcentual de viviendas afectadas por municipio en el Valle de Sula.

Los resultados acotados a los 4 municipios con mayor impacto de las obras de mitigación propuestas, para los escenarios A con caudal predominante por la cuenca del río Chamelecón se presentan en la Tabla 8.27, para los escenarios B con caudal predominante por la cuenca del río Ulúa se presentan en la Tabla 8.28 y para los escenarios C con caudal reducido con factor areal en ambos ríos simultáneamente en la Tabla 8.29. De acuerdo con los resultados, se estima un total de 42 mil viviendas afectadas para el escenario más crítico con la inundación producida por una creciente de 50 años de período de retorno.

	ESCENARIO 1A - CHAMELECÓN BASE						
MUNICIPIO	TR2	TR5	TR10	TR20	TR50		
San Pedro Sula	57	564	1641	6903	15729		
El Progreso	1286	2353	4616	4615	6469		
La Lima	653	6346	8775	9897	13632		
San Manuel	1007	3389	3957	4023	5820		
TOTAL	3,003	12,652	18,989	25,438	41,650		

Tabla 8.27. Viviendas afectadas por municipio para el escenario 1A - Chamelecón Base.

	ESCENARIO 1B - ULÚA BASE						
MUNICIPIO	TR2	TR5	TR10	TR20	TR50		
San Pedro Sula	57	564	1641	1648	7022		
El Progreso	1286	2353	4616	6476	8195		
La Lima	653	6346	8775	8849	10260		
San Manuel	1007	3389	3957	5235	5388		
TOTAL	3,003	12,652	18,989	22,208	30,865		

Tabla 8.28. Viviendas afectadas por municipio para el escenario 1B – Ulúa Base.

	ESCENARIO 1C - AMBOS RÍOS BASE						
MUNICIPIO	TR2	TR20	TR50				
San Pedro Sula	40	983	3739				
El Progreso	726	3441	5647				
La Lima	113	8109	9222				
San Manuel	121	3650	5125				
TOTAL	1.000	16.183	23,733				

Tabla 8.29. Viviendas afectadas por municipio para el escenario 1C – Ambos ríos Base.

A partir de estas cantidades y con el precio estimado por vivienda, se calcularon los costos totales por escenario, cuyos resultados se presentan a continuación en dólares estadounidenses (\$USD). De estos resultados, se evidencia que en términos totales de daño económico, el escenario que considera predominantes los caudales del río Ulúa resulta el más crítico para 20 años de periodo de retorno, sin embargo, para 50 años de periodo de retorno se invierte dicha criticidad.

Asimismo, al analizar los valores discretizados por municipio (Figura 8.15), se observa que para los municipios de El Progreso y San Manuel, el escenario que considera predominantes los caudales del río Ulúa resulta más desfavorable para 50 años de periodo de retorno, pasando lo contrario en San Pedro Sula y La Lima.

MUNICIPIO	ESCENARIO 1A - CHAMELECÓN BASE						
MONICIPIO	TR2	TR5	TR10	TR20	TR50		
San Pedro Sula	24559	254141	566668	2873775	7389676		
El Progreso	587315	1415185	3505585	3504601	5268601		
La Lima	391665	6170974	8543431	9574002	12600331		
San Manuel	594795	2643681	3229820	3260546	5121972		
TOTAL	1.598.334	10.483.982	15.845.504	19,212,924	30.380.580		

Tabla 8.30. Consecuencias económicas en viviendas por municipio para el escenario 1A – Chamelecón Base.

MUNICIPIO	ESCENARIO 1B - ULÚA BASE						
MONICIPIO	TR2	TR5	TR10	TR20	TR50		
San Pedro Sula	24559	254141	566668	569174	2944766		
El Progreso	587315	1415185	3505585	5269280	7287883		
La Lima	391665	6170974	8543431	8701993	10150814		
San Manuel	594795	2643681	3229820	4955411	5227241		
TOTAL	1,598,334	10,483,982	15,845,504	19,495,859	25,610,705		

Tabla 8.31. Consecuencias económicas en viviendas por municipio para el escenario 1B - Ulúa Base.

MUNICIPIO	ESCENARIO 1C - AMBOS RÍOS BASE					
MUNICIPIO	TR2	TR20	TR50			
San Pedro Sula	16047	343588	1578026			
El Progreso	295777	2404205	4484004			
La Lima	71089	7668191	9042735			
San Manuel	62143	2927461	4533406			
TOTAL	445,056	13,343,445	19,638,170			

Tabla 8.32. Consecuencias económicas en viviendas por municipio para el escenario 1C - Ambos ríos Base.

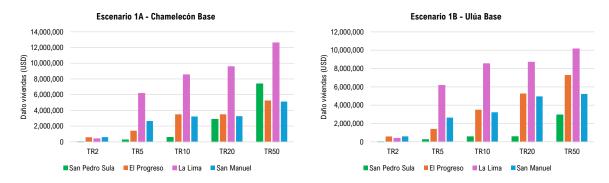


Figura 8.15. Consecuencias económicas en viviendas (\$USD) para los Escenarios Base por municipio.

Las consecuencias económicas para el caso base, en la condición actual del sistema, se estiman con un valor aproximado de 1.6 millones de dólares (M \$USD) para la inundación asociada a 2 años de periodo de retorno y de 30.4 millones de dólares (M \$USD) para la inundación asociada a 50 años de periodo de retorno en el escenario más crítico analizado.

ESCENARIOS 2. OBRAS

Las viviendas afectadas son todas aquellas alcanzadas por la extensión de la mancha de inundación definida para dicho escenario. Los resultados por municipio para los escenarios A con caudal predominante por la cuenca del río Chamelecón se presentan en la Tabla 8.33, para los escenarios B con caudal predominante por la cuenca del río Ulúa se presentan en la Tabla 8.34 y para los escenarios C con caudal reducido con factor areal en ambos ríos simultáneamente en la Tabla 8.35. De acuerdo con los resultados, se estima un total de 34 mil viviendas afectadas para el escenario más crítico con la inundación producida por una creciente de 50 años de período de retorno, lo que supone una reducción del 18% respecto al escenario sin obras, que representa aproximadamente 8 mil viviendas beneficiadas.

	ESCENARIO 2A - CHAMELECÓN CON OBRAS							
MUNICIPIO	TR2	TR5	TR10	TR20	TR50			
San Pedro Sula	41	405	1274	6709	15049			
El Progreso	951	2113	4295	4296	6213			
La Lima	249	1512	2703	3845	7640			
San Manuel	802	3131	3765	3801	5168			
TOTAL	2.043	7.161	12.037	18.651	34.070			

Tabla 8.33. Viviendas afectadas por municipio para el escenario 2A – Chamelecón con obras.

	ESCENARIO 2B - ULÚA CON OBRAS							
MUNICIPIO	TR2	TR5	TR10	TR20	TR50			
San Pedro Sula	41	405	1274	1277	6780			
El Progreso	951	2113	4295	6208	7981			
La Lima	249	1512	2703	2854	4432			
San Manuel	802	3131	3765	5131	5243			
TOTAL	2,043	7,161	12,037	15,470	24,436			

Tabla 8.34. Viviendas afectadas por municipio para el escenario 2B – Ulúa con obras.

	ESCENARIO:	2C - AMBOS RÍO	OS CON OBRAS
MUNICIPIO	TR2	TR20	TR50
San Pedro Sula	25	736	3463
El Progreso	432	3075	5380
La Lima	127	2240	3236
San Manuel	127	3482	4728
TOTAL	711	9,533	16,807

Tabla 8.35. Viviendas afectadas por municipio para el escenario 2C – Ambos ríos con obras.

A partir de estas cantidades y con el precio estimado por vivienda, se calcularon los costos totales por escenario, cuyos resultados se presentan a continuación en la Tabla 8.36, Tabla 8.37 y Tabla 8.38 en dólares estadounidenses (\$USD) y de forma gráfica en la Figura 8.16. De acuerdo con los resultados, las consecuencias económicas para el caso proyectado con la implantación de las obras de mitigación propuestas, se estiman con un valor aproximado de 1 millón de dólares (M \$USD) para la inundación asociada a 2 años de periodo de retorno y de 23 millones de dólares (M \$USD) para la inundación asociada a 50 años de periodo de retorno en el escenario más crítico analizado, lo que supone una reducción del 24% del daño económico a las viviendas, equivalente a 7.2 millones de dólares (M \$USD).

MUNICIPIO	ESCENARIO 2A - CHAMELECÓN CON OBRAS						
MUNICIPIO	TR2	TR5	TR10	TR20	TR50		
San Pedro Sula	15763	188632	432006	2779701	7263458		
El Progreso	413091	1195278	3207846	3209420	5001237		
La Lima	153654	1250961	1984775	2649966	5910513		
San Manuel	514779	2691849	3195096	3221867	4946809		
TOTAL	1,097,287	5,326,720	8,819,723	11,860,954	23,122,017		

Tabla 8.36. Consecuencias económicas en viviendas por municipio para el escenario 2A – Chamelecón con obras.

MUNICIPIO	ESCENARIO 2B - ULÚA CON OBRAS							
MUNICIPIO	TR2	TR5	TR10	TR20	TR50			
San Pedro Sula	15763	188632	432006	431855	2838524			
El Progreso	413091	1195278	3207846	4997099	6939276			
La Lima	153654	1250961	1984775	2236365	3340599			
San Manuel	514779	2691849	3195096	4914824	5167134			
TOTAL	1,097,287	5,326,720	8,819,723	12,580,143	18,285,533			

Tabla 8.37. Consecuencias económicas en viviendas por municipio para el escenario 2B - Ulúa con obras.

MUNICIPIO	ESCENARIO 2C - AMBOS RÍOS CON OBRAS					
MUNICIPIO	TR2	TR20	TR50			
San Pedro Sula	11111	255733	1432098			
El Progreso	174430	2061989	4233009			
La Lima	88039	1684329	2326318			
San Manuel	67086	2968977	4076139			
TOTAL	340,666	6,971,028	12,067,564			

Tabla 8.38. Consecuencias económicas en viviendas por municipio para el escenario 2C - Ambos ríos con obras.

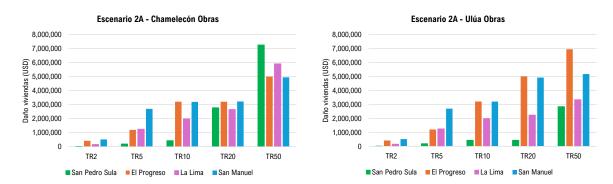


Figura 8.16. Consecuencias económicas en viviendas (M \$USD) para los Escenarios con Obras por municipio.

Al analizar la disminución porcentual de las consecuencias económicas por municipio, comparando los escenarios sin y con obras, para los escenarios A con caudal predominante por la cuenca del río Chamelecón, se obtienen los valores de la Tabla 8.39, en la cual se evidencia una reducción de población afectada entre el 24% y el 49% para las recurrencias analizadas, resaltando que el mayor impacto se observa para un período de retorno de 5 años.

MUNICIPIO	DISMINUCIÓN PORCENTUAL OBRAS/SIN OBRAS CHAMELECÓN				
MUNICIPIO	TR2	TR5	TR10	TR20	TR50
San Pedro Sula	36%	26%	24%	3%	2%
El Progreso	30%	16%	8%	8%	5%
La Lima	61%	80%	77%	72%	53%
San Manuel	13%	-2%	1%	1%	3%
TOTAL	31%	49%	44%	38%	24%

Tabla 8.39. Disminución porcentual de consecuencias económicas por municipio para el escenario 2A – Chamelecón Obras respecto al 1A – Chamelecón Base.

De forma análoga, se presentan los resultados obtenidos para los escenarios B con caudal predominante por la cuenca del río Ulúa en la Tabla 8.40, en la cual se evidencia una reducción de población afectada entre el 29% y el 49% para las recurrencias analizadas. Para todos los escenarios, el municipio de La Lima presenta la mayor reducción porcentual, seguido del municipio de San Pedro Sula.

MUNICIPIO	DISMINUCIÓN PORCENTUAL OBRAS/SIN OBRAS CHAMELECÓN				
MUNICIPIO	TR2	TR5	TR10	TR20	TR50
San Pedro Sula	36%	26%	24%	24%	4%
El Progreso	30%	16%	8%	5%	5%
La Lima	61%	80%	77%	74%	67%
San Manuel	13%	-2%	1%	1%	1%
TOTAL	31%	49%	44%	35%	29%

Tabla 8.40. Disminución porcentual de consecuencias económicas por municipio para el escenario 2B – Ulúa Obras respecto al 2A – Ulúa Base.

En la Figura 8.8 se presentan gráficamente los resultados comparativos de las consecuencias económicas para los escenarios sin y con obras, en la cual, como se había señalado anteriormente, se evidencia que el escenario más crítico corresponde al que predominan las mayores crecientes por el cauce del río Chamelecón.

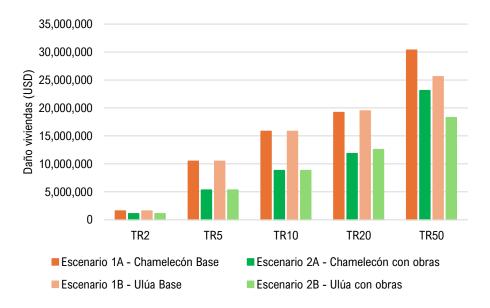


Figura 8.17. Comparativo de consecuencias económicas para los escenarios con y sin obras.

ESCENARIOS 3. CAMBIO CLIMÁTICO

A continuación, se indican las consecuencias económicas a viviendas en la Tabla 8.41 para el caso de cambio climático en el año 2050, con un aumento del 16% en las precipitaciones máximas de acuerdo con el escenario RCP 8.5 y en la Tabla 8.42 para el escenario tendencial al año 2100, con un aumento del 40% en las precipitaciones máximas de acuerdo con el escenario RCP 8.5. La población afectada se establece a partir de la proyección de la población geolocalizada actual al año 2050 y 2100, tal como se expuso en el apartado 8.2.2. La Figura 8.18 presenta los resultados comparativos del escenario con y sin obras para los daños económicos en millones de dólares estadounidenses, donde se evidencia una reducción alrededor del 10% en el valor económico total estimado, con mayor impacto en los municipios de La Lima y San Manuel. De esta manera, se puede establecer que la implantación de las obras de mitigación propuestas tiene un impacto económico positivo aún en los escenarios con cambio climático, en los cuales las condiciones de amenaza y exposición aumentan significativamente.

		scenario Tendo afectadas		i0 ómico vivienda	as (M\$ USD)
MUNICIPIO	TR 50	TR 50	TR 50	TR 50	Reducción
	Sin Obras	Con Obras	Sin Obras	Con Obras	(%)
San Pedro Sula	53588	53162	34.94	34.79	0%
El Progreso	14384	14160	14.03	13.66	3%
La Lima	36225	29347	39.41	32.46	18%
San Manuel	13391	9348	11.79	9.18	22%
TOTAL	117588	106016	100.17	90.09	10%

Tabla 8.41. Viviendas afectadas y daño económicos por municipio para el escenario con cambio climático para T50 en el año 2050.

Escenario Tendencial Año 2100						
	Viviendas afectadas			Daño económico viviendas (M \$USD		
MUNICIPIO	TR 50	TR 50	TR 50	TR 50	Reducción	
	Sin Obras	Con Obras	Sin Obras	Con Obras	(%)	
San Pedro Sula	129477	128446	84.43	84.07	0%	
El Progreso	31809	31314	31.02	30.21	3%	
La Lima	97025	78604	105.55	86.93	18%	
San Manuel	35866	25037	31.59	24.59	22%	
TOTAL	294178	263401	252.59	225.80	11%	

Tabla 8.42. Viviendas afectadas y daño económicos por municipio para el escenario con cambio climático para T50 en el año 2100.

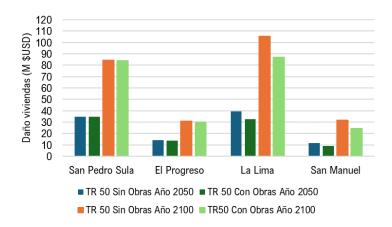


Figura 8.18. Comparativo de consecuencias económicas para los escenarios tendenciales de cambio climático con y sin obras para T50.

8.4.4. Cultivos

El rubro "Cultivos" es una de las categorías más significativas en el análisis de daño económico asociado al riesgo de inundación en el Valle de Sula. Esto, teniendo en cuenta que gran parte del área está ocupada por diferentes especies cultivadas, entre las que se destacan: caña de azúcar, banano, palma africana y agricultura tecnificada; mientras que otra parte importante del área está cubierta por pastos. En el presente proyecto se ha evaluado la afección económica que supondría la inundación de estas áreas.

Las ecuaciones empleadas para el cálculo del daño directo para cada tipo de cultivo se detallan a continuación.

$$extbf{\textit{Da}}$$
ño $extbf{\textit{Cultivo}}_i = \sum_j extbf{\textit{Area}}_{j,i} imes extbf{\textit{Costo}}_j \ imes extbf{\textit{Coef}}_{j,i}$

Donde:

- Longitud_{i,i}: Longitud afectada de los canales de riego j en el escenario i
- Costo_i: Costo de reparación por área de cultivos dañada j
- Coef_{i,i}: Porcentaje de afectación del cultivo tipo j en base al nivel de inundación en el escenario i.

El valor del **costo por área** de cultivo (Tabla 8.43) se ha extraído, usando los rendimientos de Honduras, de la fuente FAOSTAT para los 3 cultivos principales: caña de azúcar, banano y palma africana. Para el caso de agricultura tecnificada y pastos se han realizado supuestos basados en la experiencia previa.

Tipo de cultivo	Valor/Ha (USD)
Azúcar	2,031
Bananos	9,151
Palma africana	710
Pastos	500
Tecnificada	5,000

Tabla 8.43. Valor (USD/ha) por tipo de cultivo.

El **coeficiente de daño** se ha estimado a partir de diferentes funciones daño-altura de agua. En este sentido, la relación es única para cada tipo de cultivo, a fin de obtener unos resultados más particularizados (Figura 8.19).

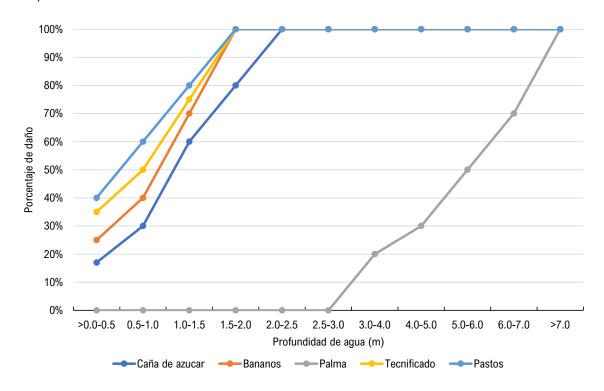


Figura 8.19. Porcentaje de afectación según el nivel de inundación para cada cultivo considerado.

8.4.5. Resultados obtenidos para cultivos

A partir de la metodología descrita anteriormente, se calcularon las pérdidas económicas estimadas por el daño a cultivos, para cada uno de los períodos de retorno en el caso de predominancia hidrológica por el río Chamelecón (caso más desfavorable atendiendo a las estimaciones en pérdida social y daño a viviendas y contrastado con los resultados del modelo de riego). Los resultados se presentan a continuación.

ESCENARIOS 1. BASE

Las áreas de cultivo afectadas son todas aquellas alcanzadas por la extensión de la mancha de inundación definida para dicho escenario. Los resultados por tipo de cultivo para el escenario A con caudal predominante por la cuenca del río Chamelecón se presentan en la Tabla 8.27. De acuerdo con los resultados, se estima un total de 32 mil hectáreas afectadas para el escenario más crítico con la inundación producida por una creciente de 50 años de período de retorno.

CULTIVO	ESCENARIO 1A - CHAMELECÓN BASE				
COLITYO	TR2	TR5	TR10	TR20	TR50
Caña de azúcar	2,913	6,824	8,926	9,203	10,700
Banano	89	423	593	604	894
Palma africana	41	120	252	262	496
Pastos	9,157	13,363	15,297	15,613	17,280
Agr. Tecnificada	1,152	1,972	2,407	2,477	2,828
TOTAL	13,352	22,702	27,475	28,159	32,198

Tabla 8.44. Área de cultivos (ha) afectadas por tipo de cultivo para el escenario 1A - Chamelecón Base.

A partir de estas cantidades y con el precio estimado por cultivo, así como la relación calado-daño, se calcularon los costos totales por escenario, cuyos resultados se presentan a continuación en millones dólares estadounidenses (Tabla 8.30).

Asimismo, al analizar los valores discretizados por cultivo (Figura 8.20), se observa que es la caña de azúcar la que más pérdidas reporta de entre los cultivos, representando para cada escenario la mitad de los daños aproximadamente.

CULTIVO	ESCENARIO 1A - CHAMELECÓN BASE				
COLITYO	TR2	TR5	TR10	TR20	TR50
Caña de azúcar	5.9	13.9	18.1	18.7	21.7
Banano	8.0	3.9	5.4	5.5	8.2
Palma africana	0.0	0.1	0.2	0.2	0.4
Pastos	4.6	6.7	7.6	7.8	8.6
Agr. Tecnificada	5.8	9.9	12.0	12.4	14.1
TOTAL	17.1	34.4	43.4	44.6	53.0

Tabla 8.45. Consecuencias económicas en cultivos para el escenario 1A - Chamelecón Base.

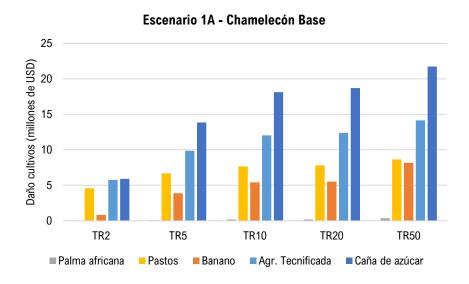


Figura 8.20. Consecuencias económicas en cultivos (M \$USD) para el escenario base por cultivo.

Las consecuencias económicas para el caso base, en la condición actual del sistema, se estiman con un valor aproximado de 17.1 millones de dólares (M \$USD) para la inundación asociada a 2 años de periodo de retorno y de 53 millones de dólares (M \$USD) para la inundación asociada a 50 años de periodo de retorno.

ESCENARIOS 2. OBRAS

Las áreas de cultivo afectadas son todas aquellas alcanzadas por la extensión de la mancha de inundación definida para dicho escenario. Los resultados por tipo de cultivo para el escenario A con caudal predominante por la cuenca del río Chamelecón se presentan en la Tabla 8.46. A partir de estas cantidades y con el precio estimado por cultivo, así como la relación calado-daño, se calcularon los costos totales por escenario, cuyos resultados se presentan a continuación en millones dólares estadounidenses (Tabla 8.47).

CULTIVO	ESCENARIO 2A - CHAMELECÓN CON OBRAS				
COLTIVO	TR2	TR5	TR10	TR20	TR50
Caña de azúcar	2,800	6,753	8,837	9,148	10,650
Banano	14	232	473	495	831
Palma africana	38	101	229	240	482
Pastos	9,261	13,268	15,079	15,366	17,066
Agr. Tecnificada	1,182	1,938	2,389	2,467	2,850
TOTAL	13.295	22,292	27.007	27.716	31.879

Tabla 8.46. Área de cultivos (ha) afectadas por tipo de cultivo para el escenario 2A - Chamelecón Obras.

CULTIVO		ESCENARIO 2/	A - CHAMELECÓ	N CON OBRAS	
COLITYO	TR2	TR5	TR10	TR20	TR50
Caña de azúcar	5.7	13.7	17.9	18.6	21.6
Banano	0.1	2.1	4.3	4.5	7.6
Palma africana	0.0	0.1	0.2	0.2	0.3
Pastos	4.6	6.6	7.5	7.7	8.5
Agr. Tecnificada	5.9	9.7	11.9	12.3	14.3
TOTAL	16.4	32.2	41.9	43.3	52.4

Tabla 8.47. Consecuencias económicas en cultivos para el escenario 2A – Chamelecón Obras.

De acuerdo con los resultados, las consecuencias económicas para el caso proyectado con la implantación de las obras de mitigación propuestas se estiman con un valor aproximado de 17.1 millones de dólares (M \$USD) para la inundación asociada a 2 años de periodo de retorno y de 52.4 millones de dólares (M \$USD) para la inundación asociada a 50 años de periodo de retorno en el escenario más crítico analizado, lo que supone una reducción limitada del daño económico a los cultivos. Esto es así puesto que las obras están enfocadas a la protección de las poblaciones. No obstante, aunque de manera muy limitada, el incremento del drenaje también ayuda a proteger en cierto modo a las áreas cultivadas (Figura 8.21).

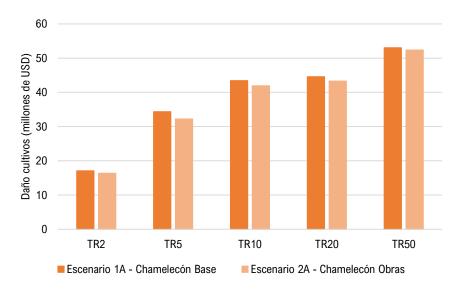


Figura 8.21. Comparativo de consecuencias económicas en cultivos para los escenarios con y sin obras.

8.4.6. Conclusiones principales de la estimación de consecuencias

Del análisis de las consecuencias sociales y económicas expuestas anteriormente, es importante resaltar que dadas las condiciones de las inundaciones en la zonas de estudio, donde las zonas anegadas tienen una duración significativa, las consecuencias más significativas están asociadas directamente al número de viviendas afectadas, que perjudica tanto la calidad de vida de las personas, como sus medios. Los principales resultados son:

- Para el escenario base se estima una población total afectada de 166 mil personas en los municipios analizados, para el escenario más crítico, con la inundación producida por una creciente de 50 años de período de retorno. Una vez se considera la implementación de las obras de mitigación propuestas, se estima una reducción del 18% de la población afectada con un valor aproximado de 136 mil personas.
- Al analizar la disminución porcentual de población afectada por municipio para un período de retorno de 10 años, comparando los escenarios sin y con obras, se evidencia una reducción del 22% para el municipio de San Pedro Sula, del 7% para el municipio del Progreso, del 69% para el municipio de La Lima y del 5% para el municipio de San Manuel.
- Para el escenario de cambio climático se evidencia una reducción del 11% tanto en las víctimas fatales estimadas como en el daño económico a viviendas, con mayor impacto en los municipios de La Lima y San Manuel. De esta manera, se puede establecer que la implantación de las obras de mitigación propuestas tiene un impacto socioeconómico positivo aún en el escenario con cambio climático, en el cual las condiciones de amenaza y exposición aumentan significativamente.
- Para el escenario base se estima un total de 42 mil viviendas afectadas en los municipios analizados, para el escenario más crítico, con la inundación producida por una creciente de 50 años de período de retorno. Una vez se considera la implementación de las obras de mitigación propuestas, se estima una reducción del 18% de la población afectada con un valor aproximado de 34 mil viviendas afectadas.
- Las consecuencias económicas en viviendas para el escenario con obras se estiman con un valor aproximado de 1.1 millones de dólares (M \$USD) para una recurrencia de 2 años y de 23.1 millones de dólares (M \$USD) para la inundación asociada a 50 años de periodo de retorno, en el escenario más crítico analizado con caudal predominante por el río Chamelecón, lo que supone una reducción del 24% del daño económico a las viviendas, equivalente a 7.6 millones de dólares (M \$USD).
- Al analizar la disminución porcentual de consecuencias económicas en viviendas por municipio para un período de retorno de 10 años, comparando los escenarios sin y con obras, se evidencia una reducción del 24% para el municipio de San Pedro Sula, del 8% para el municipio del Progreso y del 77% para el municipio de La Lima.
- En lo relativo a la pérdida de cultivos, se destacan que son muchas las hectáreas que se ven inundades ya desde el escenario más frecuente analizado: más de 13,000 hectáreas para la crecida de 2.33 años. Esto da cuenta de la alta exposición presente en el Valle también en materia de áreas agrícolas.
- Al convertir en pérdidas económicas las afecciones a los campos de cultivos, las pérdidas por cultivos son entre 1.7 y 10 veces superiores a las pérdidas que se estimaron para las viviendas, dependiendo del escenario analizado. En el escenario menos frecuente (50 años) las pérdidas se elevan hasta superar los 50 millones de \$USD.

 La comparativa entre el escenario sin obras respecto al de obras no presenta diferencias significativas, si bien el escenario con obras, para todos los caudales, siempre repercute en unas consecuencias económicas algo inferiores. Lo anterior pone de manifiesto que, aunque el objetivo de las obras no sea proteger a los campos de cultivo, la mejora en las condiciones de drenaje repercute de forma beneficiosa también a estos.

9. EVALUACIÓN CUANTITATIVA DEL RIESGO

Con el propósito de poder cuantificar el riesgo en situación actual y conocer el impacto en el riesgo que tendrían las obras de control de inundaciones planteadas a lo largo del Valle de Sula (ejecutadas de manera conjunta), se ha desarrollado un análisis de riesgo cuantitativo a través de un modelo de riesgo. Para ello se ha hecho uso del software *iPresas*⁷.

En el siguiente subapartado se explica la arquitectura del modelo de riesgo desarrollado y también se recogen los datos de entrada considerados y necesarios para el modelo. En el *subapartado 6.2* se recogen los principales resultados de riesgo social y económico que se han obtenido para cada uno de los escenarios considerados.

9.1. Arquitectura del modelo de riesgo

Partiendo de los modos de fallo identificados en estudios anteriores, del conocimiento hidráulico del sistema tras la revisión de información y visita técnica, así como de su modelización hidráulica y resultados de esta última, se ha desarrollado la arquitectura del modelo de riesgo para permitir obtener los resultados de riesgo económico y social en situación actual. Además, el modelo permite obtener también los valores de riesgo en situación tendencial en escenarios futuros con cambios en las solicitaciones (efecto del cambio climático) y en las condiciones de exposición (proyecciones de población). De esta forma se puede conocer de manera cuantificada el efecto de considerar determinadas obras de control de inundaciones en la zona de estudio, pudiéndose justificar así la ejecución de estas siempre y cuando ayuden a reducir el riesgo y no haya traslado del mismo a terceros.

La arquitectura del modelo de riesgo ha sido desarrollada mediante la estructura de cálculo del software iPresas, que permite calcular el riesgo de inundación fluvial en zonas urbanas. Esta arquitectura representa un árbol de eventos, construcción matemática lógica que incluye las posibles cadenas de eventos que pueden llevar a inundaciones y calcula la probabilidad y consecuencias de cada una de sus ramas.

La Figura 9.1 muestra la arquitectura del modelo de riesgo utilizado para calcular el riesgo de inundación en el Valle de Sula. Para calcular el riesgo, este modelo combina la probabilidad de que se presenten avenidas en un rango de períodos de retorno determinado (nodo azul), los caudales asociados a cada período de retorno como la suma de los caudales de entrada en el Valle por ambos ríos (nodo rojo) y las consecuencias que produciría la inundación en las diferentes zonas pobladas donde principalmente radica el riesgo (nodos verdes), expresadas en población afectada, potencial pérdida de vida y daños económicos.

Figura 9.1. Arquitectura del modelo de riesgo.

-

⁷ Software iPresas, www.ipresas.com

Los datos que se han introducido en cada uno de estos nodos se detallan en cada uno de los subapartados correspondientes, así como los procedimientos e hipótesis que se han tenido en cuenta para arribar a los mismos.

Merece la pena mencionar la separación que se ha aplicado en los nodos de consecuencia (verdes) para caracterizar las consecuencias en cuatro zonas de forma independiente: San Pedro Sula, La Lima, San Manuel y El Progreso. Esta división en diferentes nodos permite desglosar, analizar y evaluar el riesgo por zona y ver la influencia en cada una de ellas tanto de los análisis que se van a llevar a cabo como de las medidas de reducción de riesgo a contemplar.

9.1.1. Nodo Crecidas

En este nodo se introducen los períodos de retorno mínimo y máximo de las crecidas consideradas en el análisis del régimen natural de los ríos que pueden derivar en inundaciones en el Valle de Sula. A partir de la inversa de los valores del periodo de retorno, el programa estima la probabilidad anual de excedencia, que es la variable de salida de este nodo.

A partir de los valores de máximo y mínimo período de retorno introducidos, el software realiza una división del rango de períodos de retorno en ramas, realizando los cálculos de los siguientes nodos en cada una de ellas. Para este caso, la división se realiza en 50 ramas siguiendo los conceptos que se muestra en la Figura 9.2.

En los cálculos de riesgo descritos en el presente documento, los eventos considerados se han calculado para periodos de retorno de 1 a 50 años.

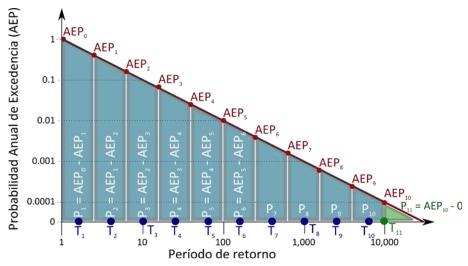


Figura 9.2. Discretización del rango de períodos de retorno realizada en el nodo Crecidas.

9.1.2. Nodo Caudal ríos Ulua y Chamelecón

En este nodo se introducen las relaciones entre los periodos de retorno de los eventos de precipitación en la cuenca, que dan lugar a crecidas en los cauces, y la suma de los caudales pico de los hidrogramas resultantes en la sección de entrada al Valle de los ríos Ulua y Chamelecón. Por tanto, cada evento de precipitación en la cuenca (asociado a un periodo de retorno) se asocia a un valor máximo del hidrograma que identifica el evento de inundación en el área de estudio. Este valor máximo se emplea en nodos posteriores para vincular las consecuencias potenciales de la inundación a cada evento considerado.

Conviene mencionar que, de acuerdo con lo explicado en el *Apartado 5.1*, se han considerado tres escenarios base según se produzcan las lluvias en las cuencas de los ríos.

Los datos de entrada a este nodo se han obtenido a partir del estudio hidrológico-hidráulico actualizado durante el presente estudio, ya detallado a su vez en apartados anteriores. A modo de resumen de este

proceso, a partir de los datos pluviométricos disponibles en la zona se definieron tormentas de diseño para diferentes períodos de retorno (de 2,33 a 50 años). Estas tormentas se han introducido en un modelo hidrológico realizado con un modelo HEC-HMS y se han obtenido los hidrogramas de aporte de cada subcuenca en la sección de entrada al Valle de cada uno de los ríos.

Los resultados introducidos para cada escenario y período de retorno se muestran en la Tabla 9.1. A su vez, para los escenarios de proyección a futuro considerando los efectos del cambio climático en las solicitaciones se ha considerado calcular el riesgo asociado al escenario de predominancia de precipitación en la cuenca del río Chamelecón por ser el más crítico de entre los tres estudiados (Tabla 9.2).

Rio	T (años)	Q (m ³ /s)
Ulua	50	12670
Ulua	20	9956
Ulua	10	8284
Ulua	5	6192
Ulua	2.33	3363
Ulua	1	165
Chamelecon	50	11025
Chamelecon	20	8738
Chamelecon	10	8284
Chamelecon	5	6192
Chamelecon	2.33	3363
Chamelecon	1	165
Ambos	50	9433
Ambos	20	7391
Ambos	10	5884
Ambos	5	4397
Ambos	2.33	2388
Ambos	1	165

Tabla 9.1. Datos de caudales introducidos en el modelo de riesgo para diferentes escenarios de solicitaciones.

Rio	T (años)	Q (m ³ /s)
Chamelecon_CC_2050	50	12789
Chamelecon_CC_2050	20	10136
Chamelecon_CC_2050	10	9610
Chamelecon_CC_2050	5	7182
Chamelecon_CC_2050	2.33	3901
Chamelecon_CC_2050	1	165
Chamelecon_CC_2100	50	15435
Chamelecon_CC_2100	20	12233
Chamelecon_CC_2100	10	11598
Chamelecon_CC_2100	5	8668
Chamelecon_CC_2100	2.33	4708
Chamelecon_CC_2100	1	165

Tabla 9.2. Datos de caudales introducidos en el modelo de riesgo para el escenario tendencial considerando cambio climático con predominancia de lluvias en el río Ulúa.

9.1.3. Nodos Población afectada

En estos nodos se incorporan los resultados de la estimación de consecuencias sociales (en términos de población afectada). Los datos de entrada incluyen los valores de personas afectadas en cada municipio

asociados a la inundación para cada crecida considerada, en este caso, identificadas por la suma de los caudales máximos de los hidrogramas de entrada al Valle por el río Ulua y Chamelecón.

Por último, con la intención de discretizar las consecuencias, y posteriormente los resultados de riesgo, se ha diferenciado entre la población que se vería afectada en cada uno de los cuatro municipios analizados. La Tabla 9.3 y Tabla 9.4 muestran los datos que se han introducido en el modelo, correspondientes al caso base (situación previa a las obras) y el caso con obras (situación tras la ejecución de todas las obras de control de inundaciones propuestas). El primer valor de caudal se corresponde con el valor estimado con el modelo hidráulico a partir del cual se empezarían a iniciar afecciones en los municipios.

Escenario	Rio	Q (m ³ /s)	San Pedro Sula	El Progreso	La Lima	San Manuel
Base	Ulua	2703	0	0	0	0
Base	Ulua	3363	228	5144	2612	4028
Base	Ulua	6192	2256	9412	25384	13556
Base	Ulua	8284	6564	18464	35100	15828
Base	Ulua	9956	6592	25904	35396	20940
Base	Ulua	12670	28088	32780	41040	21552
Base	Ulua	18600	133120	37480	85116	31464
Base	Chamelecon	2703	0	0	0	0
Base	Chamelecon	3363	228	5144	2612	4028
Base	Chamelecon	6192	2256	9412	25384	13556
Base	Chamelecon	8284	6564	18464	35100	15828
Base	Chamelecon	8738	27612	18460	39588	16092
Base	Chamelecon	11025	62916	25876	54528	23280
Base	Chamelecon	18600	133120	37480	85116	31464
Base	Ambos	2100	0	0	0	0
Base	Ambos	2388	160	2904	452	484
Base	Ambos	4397	1675	7267	13301	6155
Base	Ambos	5884	2796	10493	22803	10348
Base	Ambos	7391	3932	13764	32436	14600
Base	Ambos	9433	14956	22588	36888	20500
Base	Ambos	18600	133120	37480	85116	31464
Base	Chamelecon_CC_2050	2703	0	0	0	0
Base	Chamelecon_CC_2050	3363	367	17463	4447	6857
Base	Chamelecon_CC_2050	6192	3633	31952	43213	23077
Base	Chamelecon_CC_2050	8284	10570	62682	59753	26945
Base	Chamelecon_CC_2050	8738	44461	62668	67394	27395
Base	Chamelecon_CC_2050	11025	101309	87844	92827	39631
Base	Chamelecon_CC_2050	18600	214353	127237	144899	53563
Base	Chamelecon_CC_2100	2703	0	0	0	0
Base	Chamelecon_CC_2100	3363	887	7896	11910	18366
Base	Chamelecon_CC_2100	6192	8777	14448	115743	61811
Base	Chamelecon_CC_2100	8284	25537	28344	160045	72171
Base	Chamelecon_CC_2100	8738	107425	28338	180509	73374
Base	Chamelecon_CC_2100	11025	244776	39722	248630	106149
Base	Chamelecon_CC_2100	18600	517907	57535	388102	143466

Tabla 9.3. Datos introducidos en los nodos de Población Afectada (número de habitantes) para el caso base para cada escenario y municipio.

Escenario	Rio	Q (m ³ /s)	San Pedro Sula	El Progreso	La Lima	San Manuel
Obras	Ulua	2703	0	0	0	0
Obras	Ulua	3363	164	3804	996	3208
Obras	Ulua	6192	1620	8452	6048	12524
Obras	Ulua	8284	5096	17180	10812	15060
Obras	Ulua	9956	5108	24832	11416	20524
Obras	Ulua	12670	27120	31924	17728	20972
Obras	Ulua	18600	132060	36896	68956	21964
Obras	Chamelecon	2703	0	0	0	0
Obras	Chamelecon	3363	164	3804	996	3208
Obras	Chamelecon	6192	1620	8452	6048	12524
Obras	Chamelecon	8284	5096	17180	10812	15060
Obras	Chamelecon	8738	26836	17184	15380	15204
Obras	Chamelecon	11025	60196	24852	30560	20672
Obras	Chamelecon	18600	132060	36896	68956	21964
Obras	Ambos	2100	0	0	0	0
Obras	Ambos	2388	100	1728	508	508
Obras	Ambos	4397	1243	5975	3903	5899
Obras	Ambos	5884	2087	9116	6414	9886
Obras	Ambos	7391	2944	12300	8960	13928
Obras	Ambos	9433	13852	21520	12944	18912
Obras	Ambos	18600	132060	36896	68956	21964
Obras	Chamelecon_CC_2050	2703	0	0	0	0
Obras	Chamelecon_CC_2050	3363	264	5839	1696	5461
Obras	Chamelecon_CC_2050	6192	2609	12974	10296	21321
Obras	Chamelecon_CC_2050	8284	8206	26373	18406	25638
Obras	Chamelecon_CC_2050	8738	43212	26379	26183	25883
Obras	Chamelecon_CC_2050	11025	96929	38150	52025	35191
Obras	Chamelecon_CC_2050	18600	212646	56638	117389	37391
Obras	Chamelecon_CC_2100	2703	0	0	0	0
Obras	Chamelecon_CC_2100	3363	638	12914	4541	14627
Obras	Chamelecon_CC_2100	6192	6303	28693	27577	57105
Obras	Chamelecon_CC_2100	8284	19826	58323	49299	68669
Obras	Chamelecon_CC_2100	8738	104406	58336	70128	69325
Obras	Chamelecon_CC_2100	11025	234194	84368	139344	94258
Obras	Chamelecon_CC_2100	18600	513783	125255	314417	100149

Tabla 9.4. Datos introducidos en los nodos de Población Afectada (número de habitantes) para el caso con obras para cada escenario y municipio.

9.1.4. Nodo Población afectada Total

Este nodo sirve para combinar las consecuencias sociales en términos de población afectada de los cuatro nodos anteriores. Para ello se utiliza una expresión matemática que posibilite contabilizar el total de personas afectadas. Es decir, la suma entre los habitantes afectados en los cuatro municipios estudiados.

9.1.5. Nodos Pérdida de vida

En estos nodos se incorporan los resultados de la estimación de consecuencias sociales (en términos de pérdida de vida potencial). Los datos de entrada incluyen los valores de pérdida de vida en cada municipio asociados a la inundación para cada crecida considerada, en este caso, identificadas por la suma de los caudales máximos de los hidrogramas de entrada al Valle por el río Ulua y Chamelecón.

Por último, con la intención de discretizar las consecuencias, y posteriormente los resultados de riesgo, se ha diferenciado la potencial pérdida de vida que tendría lugar en cada uno de los cuatro municipios analizados. La Tabla 9.3 y Tabla 9.4 muestran los datos que se han introducido en el modelo, correspondientes al caso base (situación previa a las obras) y el caso con obras (situación tras la ejecución de todas las obras de

control de inundaciones propuestas). El primer valor de caudal se corresponde con el valor estimado con el modelo hidráulico a partir del cual se empezarían a iniciar afecciones en los municipios.

Escenario	Rio	Q (m³/s)	San Pedro Sula	El Progreso	La Lima	San Manuel
Base	Ulua	2703	0	0	0	0
Base	Ulua	3363	0	1	0	0
Base	Ulua	6192	0	1	3	1
Base	Ulua	8284	1	2	4	2
Base	Ulua	9956	1	3	4	2
Base	Ulua	12670	3	3	4	2
Base	Ulua	18600	13	4	9	3
Base	Chamelecon	2703	0	0	0	0
Base	Chamelecon	3363	0	1	0	0
Base	Chamelecon	6192	0	1	3	1
Base	Chamelecon	8284	1	2	4	2
Base	Chamelecon	8738	3	3	4	2
Base	Chamelecon	11025	6	3	5	2
Base	Chamelecon	18600	13	4	9	3
Base	Ambos	2100	0	0	0	0
Base	Ambos	2388	0	0	0	0
Base	Ambos	4397	0	1	1	1
Base	Ambos	5884	0	1	2	1
Base	Ambos	7391	0	1	3	1
Base	Ambos	9433	2	2	4	2
Base	Ambos	18600	13	4	9	3
Base	Chamelecon_CC_2050	2703	0	0	0	0
Base	Chamelecon_CC_2050	3363	0	1	0	1
Base	Chamelecon_CC_2050	6192	0	1	4	2
Base	Chamelecon_CC_2050	8284	1	3	6	3
Base	Chamelecon_CC_2050	8738	4	3	7	3
Base	Chamelecon_CC_2050	11025	10	4	9	4
Base	Chamelecon_CC_2050	18600	21	6	15	6
Base	Chamelecon_CC_2100	2703	0	0	0	0
Base	Chamelecon_CC_2100	3363	0	2	1	2
Base	Chamelecon_CC_2100	6192	1	3	12	6
Base	Chamelecon_CC_2100	8284	3	6	16	7
Base	Chamelecon_CC_2100	8738	11	6	18	7
Base	Chamelecon_CC_2100	11025	25	9	25	11
Base	Chamelecon_CC_2100	18600	52	13	40	15

Tabla 9.5. Datos introducidos en los nodos de Pérdida de vida para el caso base para cada escenario y municipio.

Escenario	Rio	Q (m ³ /s)	San Pedro Sula	El Progreso	La Lima	San Manuel
Obras	Ulua	2703	0	0	0	0
Obras	Ulua	3363	0	0	0	0
Obras	Ulua	6192	0	1	1	1
Obras	Ulua	8284	1	2	1	2
Obras	Ulua	9956	1	3	1	2
Obras	Ulua	12670	3	3	2	2
Obras	Ulua	18600	13	4	7	2
Obras	Chamelecon	2703	0	0	0	0
Obras	Chamelecon	3363	0	0	0	0
Obras	Chamelecon	6192	0	1	1	1
Obras	Chamelecon	8284	1	2	1	2
Obras	Chamelecon	8738	3	2	2	2
Obras	Chamelecon	11025	6	3	3	2
Obras	Chamelecon	18600	13	4	7	2
Obras	Ambos	2100	0	0	0	0
Obras	Ambos	2388	0	0	0	0
Obras	Ambos	4397	0	1	0	1
Obras	Ambos	5884	0	1	1	1
Obras	Ambos	7391	0	1	1	1
Obras	Ambos	9433	1	2	1	2
Obras	Ambos	18600	13	4	7	2
Obras	Chamelecon_CC_2050	2703	0	0	0	0
Obras	Chamelecon_CC_2050	3363	0	1	0	1
Obras	Chamelecon_CC_2050	6192	0	1	1	2
Obras	Chamelecon_CC_2050	8284	1	3	2	3
Obras	Chamelecon_CC_2050	8738	4	3	3	3
Obras	Chamelecon_CC_2050	11025	10	4	5	4
Obras	Chamelecon_CC_2050	18600	21	6	12	4
Obras	Chamelecon_CC_2100	2703	0	0	0	0
Obras	Chamelecon_CC_2100	3363	0	1	0	1
Obras	Chamelecon_CC_2100	6192	1	3	3	6
Obras	Chamelecon_CC_2100	8284	2	6	5	7
Obras	Chamelecon_CC_2100	8738	10	6	7	7
Obras	Chamelecon_CC_2100	11025	23	8	14	10
Obras	Chamelecon_CC_2100	18600	52	13	32	10

Tabla 9.6. Datos introducidos en los nodos de Pérdida de vida para el caso con obras para cada escenario y municipio.

9.1.6. Nodo Pérdida de vida Total

Este nodo sirve para combinar las consecuencias sociales en términos de pérdida de vida de los cuatro nodos anteriores. Para ello se utiliza una expresión matemática que posibilite contabilizar la pérdida de vida potencial total. Es decir, la suma en pérdida de vida entre los cuatro municipios estudiados.

9.1.7. Nodos Daño económico

En estos nodos se incorporan los resultados de la estimación de consecuencias económicas (en millones de \$USD). Los datos de entrada incluyen el valor de los daños económicos en cada municipio asociado a la inundación de viviendas para cada crecida considerada, en este caso, identificadas por la suma de los caudales máximos de los hidrogramas de entrada al Valle por el río Ulua y Chamelecón. También se contabiliza el daño a los cultivos.

Por último, con la intención de discretizar las consecuencias, y posteriormente los resultados de riesgo, se ha diferenciado entre los daños económicos a viviendas que se producirían en cada uno de los cuatro municipios analizados. La Tabla 9.3 y Tabla 9.4 muestran los datos que se han introducido en el modelo, correspondientes al caso base (situación previa a las obras) y el caso con obras (situación tras la ejecución

de todas las obras de control de inundaciones propuestas). El primer valor de caudal se corresponde con el valor estimado con el modelo hidráulico a partir del cual se empezarían a iniciar afecciones en los municipios.

Escenario	Rio	Q (m³/s)	San Pedro Sula	El Progreso	La Lima	San Manuel	Cultivos
Base	Ulua	2703	0	0	0	0	0
Base	Ulua	3363	0	1	0	1	17
Base	Ulua	6192	0	1	6	3	34
Base	Ulua	8284	1	4	9	3	43
Base	Ulua	9956	1	5	9	5	51
Base	Ulua	12670	3	7	10	5	64
Base	Ulua	18600	22	9	23	7	89
Base	Chamelecon	2703	0	0	0	0	0
Base	Chamelecon	3363	0	1	0	1	17
Base	Chamelecon	6192	0	1	6	3	34
Base	Chamelecon	8284	1	4	9	3	43
Base	Chamelecon	8738	3	4	10	3	45
Base	Chamelecon	11025	7	5	13	5	53
Base	Chamelecon	18600	22	9	23	7	89
Base	Ambos	2100	0	0	0	0	0
Base	Ambos	2388	0	0	0	0	15
Base	Ambos	4397	0	1	0	1	25
Base	Ambos	5884	0	2	0	2	32
Base	Ambos	7391	0	2	0	3	39
Base	Ambos	9433	2	4	9	5	49
Base	Ambos	18600	22	9	23	7	89
Base	Chamelecon_CC_2050	2703	0	0	0	0	0
Base	Chamelecon_CC_2050	3363	0	1	1	1	17
Base	Chamelecon_CC_2050	6192	0	2	11	5	34
Base	Chamelecon_CC_2050	8284	1	5	15	5	43
Base	Chamelecon_CC_2050	8738	5	5	16	6	45
Base	Chamelecon_CC_2050	11025	12	8	21	9	53
Base	Chamelecon_CC_2050	18600	35	14	39	12	89
Base	Chamelecon_CC_2100	2703	0	0	0	0	0
Base	Chamelecon_CC_2100	3363	0	2	2	3	17
Base	Chamelecon_CC_2100	6192	1	5	28	12	34
Base	Chamelecon_CC_2100	8284	2	12	39	15	43
Base	Chamelecon_CC_2100	8738	11	12	44	15	45
Base	Chamelecon_CC_2100	11025	29	18	57	23	53
Base	Chamelecon_CC_2100	18600	84	31	106	32	89

Tabla 9.7. Datos introducidos en los nodos de Daño económico (millones de \$USD) para el caso base para cada escenario y municipio, considerando también cultivos.

Escenario	Rio	Q (m ³ /s)	San Pedro Sula	El Progreso	La Lima	San Manuel	Cultivos
Obras	Ulua	2703	0	0	0	0	0
Obras	Ulua	3363	0	0	0	1	16
Obras	Ulua	6192	0	1	1	3	32
Obras	Ulua	8284	0	3	2	3	42
Obras	Ulua	9956	0	5	2	5	48
Obras	Ulua	12670	3	7	3	5	61
Obras	Ulua	18600	22	9	19	5	88
Obras	Chamelecon	2703	0	0	0	0	0
Obras	Chamelecon	3363	0	0	0	1	16
Obras	Chamelecon	6192	0	1	1	3	32
Obras	Chamelecon	8284	0	3	2	3	42
Obras	Chamelecon	8738	3	3	3	3	43
Obras	Chamelecon	11025	7	5	6	5	52
Obras	Chamelecon	18600	22	9	19	5	88
Obras	Ambos	2100	0	0	0	0	0
Obras	Ambos	2388	0	0	0	0	12
Obras	Ambos	4397	0	1	1	1	21
Obras	Ambos	5884	0	1	1	2	29
Obras	Ambos	7391	0	2	2	3	36
Obras	Ambos	9433	1	4	2	4	46
Obras	Ambos	18600	22	9	19	5	88
Obras	Chamelecon_CC_2050	2703	0	0	0	0	0
Obras	Chamelecon_CC_2050	3363	0	1	0	1	16
Obras	Chamelecon CC 2050	6192	0	2	2	5	32
Obras	Chamelecon CC 2050	8284	1	5	3	5	42
Obras	Chamelecon_CC_2050	8738	4	5	5	5	43
Obras	Chamelecon CC 2050	11025	12	8	10	8	52
Obras	Chamelecon CC 2050	18600	35	14	32	9	88
Obras	Chamelecon CC 2100	2703	0	0	0	0	0
Obras	Chamelecon CC 2100	3363	0	1	1	2	16
Obras	Chamelecon_CC_2100	6192	1	4	6	12	32
Obras	Chamelecon CC 2100	8284	2	11	9	15	42
Obras	Chamelecon_CC_2100	8738	11	11	12	15	43
Obras	Chamelecon CC 2100	11025	28	17	27	23	52
Obras	Chamelecon CC 2100	18600	84	30	87	25	88

Tabla 9.8. Datos introducidos en los nodos de Daño económico (millones de \$USD) para el caso con obras para cada escenario y municipio, considerando también cultivos.

9.1.8. Nodo Daño Total

Del mismo modo que se unificaron los daños sociales, este nodo aúna las consecuencias económicas sumando para ello los daños que tienen lugar en San Pedro Sula, La Lima, San Manuel y El Progreso, y sobre los cultivos.

9.2. Resultados de riesgo

Una vez generados todos los datos necesarios para el **cálculo del riesgo**, y luego incorporados en la arquitectura del modelo estructurado, se ha procedido a la obtención de los valores de riesgo social (tanto en términos de población afectada como en pérdida de vida potencial) y económico para cada uno de los escenarios. El riesgo económico muestra las pérdidas económicas anualizadas equivalentes en millones de \$USD/año; el riesgo social, en términos de población afectada, representa los daños sociales anuales promedio en población afectada; mientras que el riesgo social, en términos de pérdida de vida, representa también los daños sociales anuales promedio en pérdida de vida. Cabe destacar que las afecciones y el riesgo han sido divididas entre las cuatro zonas de estudios: San Pedro Sula, La Lima, San Manuel y El Progreso.

Los valores de riesgo que se presentan a continuación se corresponden en todo caso con **resultados preliminares**, que pueden ser ajustados y refinados en futuras fases del proyecto.

9.2.1.Riesgo en situación actual

En primer lugar, se ha cuantificado el riesgo en situación actual (previa a cualquier tipo de actuación/obra). En la Tabla 9.9 se muestran los valores de riesgo social y económico en el Valle de Sula. Debido a que se han tenido en cuenta tres escenarios hidrológicos de partida diferentes, los valores de riesgo se han obtenido para dichos tres casos, lo que permite conocer el riesgo asociado a cada una de las condiciones hidrológicas estudiadas para el Valle de Sula.

Escenario Base	Riesgo social (vidas/año)	Riesgo social (afectados/año)	Riesgo económico (M\$USD/año)
Chamelecón	2.7	26,187	21.4
Ulúa	2.5	24,614	22.0
Ambos	1.5	14,669	13.7

Tabla 9.9. Resultados de riesgo para el caso base (sin obras) según predominancia hidrológica de ríos.

Además, con el fin de representar estos resultados de riesgo gráficamente se utilizan los gráficos FN y FD. En los gráficos FN, la situación de riesgo es representada mediante una curva donde el eje horizontal representa la población afectada o pérdida de vida potencial (N) y el eje vertical representa la probabilidad de que se superen dichas consecuencias (F). Los gráficos FN son monótonamente decrecientes, lo cual se deriva del hecho de que es un gráfico de probabilidad de excedencia acumulada. Cuando en el eje X se representan los daños económicos en lugar de la población afectada, estos gráficos se denominan gráficos FD. En la Figura 9.3 se muestra el gráfico FN de población afectada para el escenario actual (con los tres casos de condición hidrológica); en la Figura 9.4 se muestra el gráfico FN de pérdida de vida para el escenario actual; mientras que en la Figura 9.5 se muestra el gráfico FD para el mismo escenario actual.

Cabe destacar que este tipo de gráficos permite visualizar las consecuencias producidas por escenarios más probables (y mayor probabilidad anual de excedencia) y por otros más extremos (con menor probabilidad). El área bajo estas curvas es equivalente a los resultados de riesgo mostrados en la Tabla 9.9.

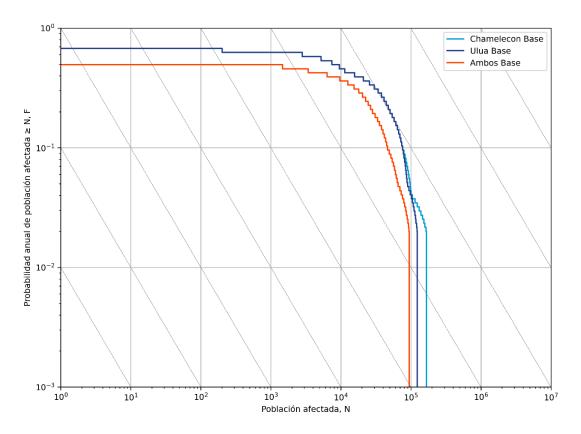


Figura 9.3. Gráfico FN de población afectada para el escenario actual y las tres condiciones hidrológicas.

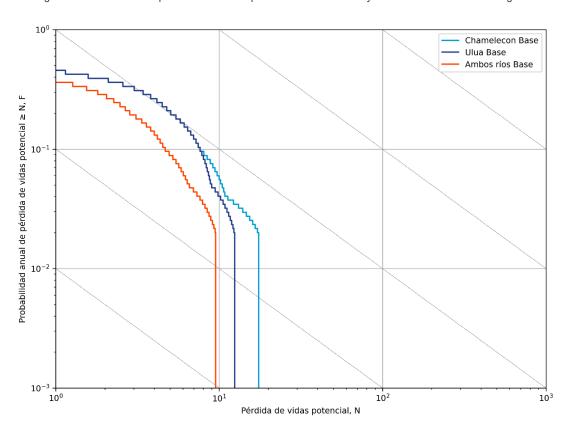


Figura 9.4. Gráfico FN de pérdida de vida para el escenario actual y las tres condiciones hidrológicas.

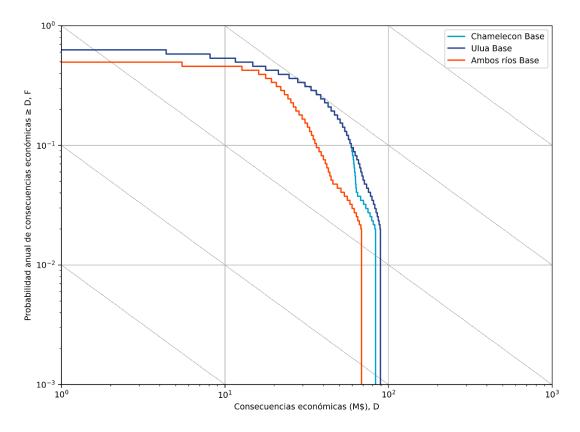


Figura 9.5. Gráfico FD de consecuencias económicas para el escenario actual y las tres condiciones hidrológicas.

De acuerdo con los resultados obtenidos y teniendo en cuenta las hipótesis adoptadas en la definición de los escenarios hidrológicos explicadas en el *subapartado 7.1*, no existe una condición hidrológica crítica clara. Pues a pesar de que la cuenca del río Ulua es capaz de introducir al Valle un volumen superior de agua respecto a la cuenca del río Chamelecón para el mismo período de retorno, la mayor exposición de la población en la cuenca baja del río Chamelecón respecto a la cuenca baja del río Ulua compensa esta diferencia hasta prácticamente obtener valores de riesgo muy similares entre ambos escenarios. Los valores de riesgo para estos escenarios indican que en situación actual la pérdida potencial de vida es de alrededor de 2.7 personas al año, mientras que se ven afectadas alrededor de unas 26,000 personas anualmente. Por último, el riesgo económico, teniendo en cuenta las afecciones a viviendas y cultivos, asciende hasta aproximadamente 22 millones de \$USD al año.

No obstante, el riesgo asociado a condiciones hidrológicas con predominancia en el **rio Chamelecón** resulta ser el que más riesgo social conlleva, tanto en pérdida de vida como en número de afectados, y presenta un valor de riesgo económico similar al escenario de predominancia hidrológica en la cuenca del río Ulúa. Por tanto, se considera el **escenario crítico** de entre los tres analizados.

El escenario que presenta menores valores de riesgo en situación actual es cuando los eventos de precipitación se dan en ambas cuencas de manera simultánea con el mismo periodo de retorno. Y esto es así puesto que este hecho presentaría en principio una probabilidad más baja de ocurrencia por considerar que el mismo evento de precipitación se extiende a un área mayor (aplicación de un factor de reducción areal en las hipótesis de formulación del escenario).

9.2.2. Riesgo en situación con obras

En segundo lugar, se ha cuantificado el riesgo en situación con obras (tras la ejecución de las obras propuestas y descritas brevemente en el *Apartado 5*). En este caso, la Tabla 9.10 muestra los valores de

riesgo social y económico para el escenario con obras. Como se puede observar por comparación con los valores de riesgo para la situación actual, y así se refleja en la Tabla 9.11, la ejecución de las obras ayuda a reducir el riesgo social alrededor de un 35% respecto al escenario actual y un 12% el riesgo económico. Estos valores permiten afirmar que la ejecución en bloque de las obras propuestas consigue reducir el riesgo actual de inundaciones existente en el Valle de Sula.

Escenario con Obras	Riesgo social (vidas/año)	Riesgo social (afectados/año)	Riesgo económico (M\$USD/año)
Chamelecón	1.8	17483	18.7
Ulúa	1.6	16066	19.1
Ambos	0.9	9169	12.1

Tabla 9.10. Resultados de riesgo para el escenario con obras según predominancia hidrológica de ríos.

Diferencia de riesgo porcentual							
Escenario con Obras	Pérdida de vidas (%)	Personas afectadas (%)	Riesgo económico (%)				
Chamelecón	34%	33%	13%				
Ulúa	35%	35%	13%				
Ambos	37%	37%	12%				

Tabla 9.11. Reducción porcentual del riesgo al ejecutar las obras respecto al escenario sin obras.

Además, con el fin de representar estos resultados de riesgo gráficamente se utilizaron nuevamente los gráficos FN y FD, comparando la situación actual respecto la situación tras la ejecución de las obras. Como se visualiza, las obras ayudan a reducir el riesgo actual existente.

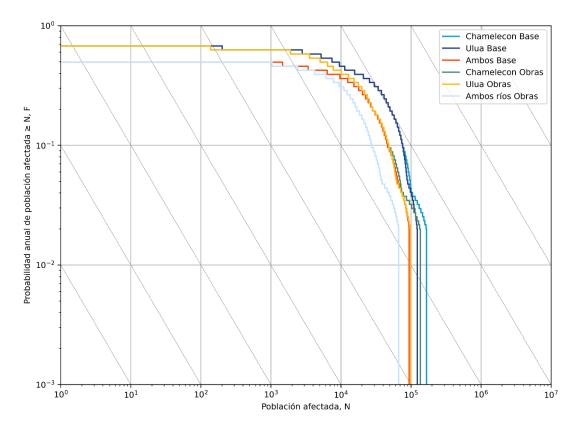


Figura 9.6. Gráfico FN de población afectada para el escenario actual y las tres condiciones hidrológicas.

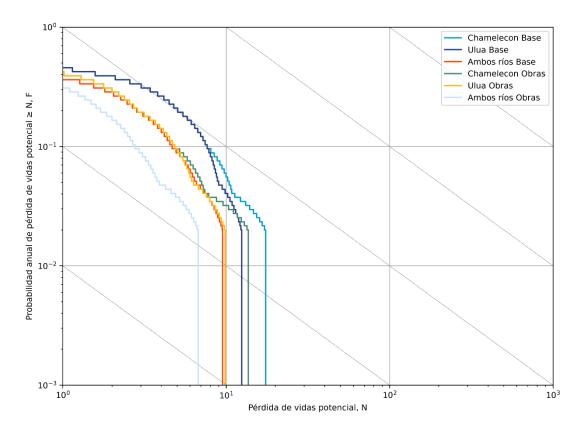


Figura 9.7. Gráfico FN de pérdida de vida para el escenario actual y las tres condiciones hidrológicas.

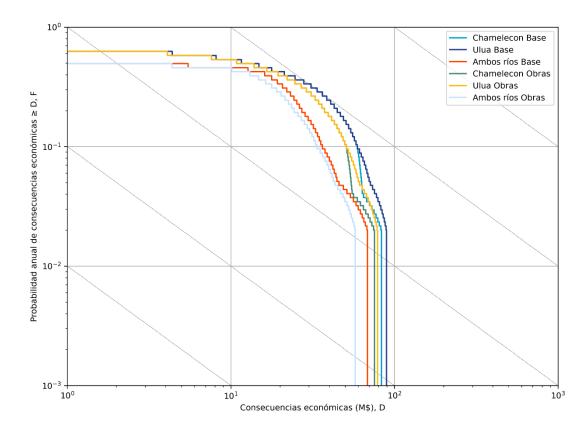


Figura 9.8. Gráfico FD de consecuencias económicas para el escenario actual y las tres condiciones hidrológicas.

Los resultados anteriores han sido, a su vez, discretizados para cada uno de los cuatro municipio que han formado parte del análisis. Los mismos se ven en la Tabla 9.12 (vidas/año), la Tabla 9.13 (afectados/año) y la Tabla 9.14 (millones de \$USD/año). De estos últimos resultados se destaca que se ha contabilizado únicamente el daño a las viviendas para cada municipio, pues el daño a los cultivos no se ha discretizado por municipio. Parte de estos valores se han representado en diagramas de barras, tal y como se observa en la Figura 9.9, Figura 9.10 y Figura 9.11.

	Riesgo social (vidas /año)					
Municipio	Chamelecon Base	Chamelecon Obras	Ulúa Base	Ulúa Obras	Ambos Base	Ambos Obras
La Lima	1.1	0.4	1.0	0.3	0.7	0.2
San Manuel	0.6	0.5	0.6	0.6	0.3	0.3
San Pedro Sula	0.4	0.4	0.2	0.2	0.1	0.1
El Progreso	0.6	0.5	0.6	0.6	0.4	0.3
Total	2.7	1.8	2.5	1.6	1.5	0.9

Tabla 9.12. Riesgo social en vidas/año para cada uno de los municipios en función de cada uno de los escenarios considerados.

	Riesgo social (afectados/año)						
Municipio	Chamelecon Base	Chamelecon Obras	Ulúa Base	Ulúa Obras	Ambos Base	Ambos Obras	
La Lima	10795	3617	10252	3108	6554	2011	
San Manuel	5751	5220	5921	5471	3163	3007	
San Pedro Sula	3937	3588	2161	1838	1190	978	
El Progreso	5704	5058	6279	5649	3763	3173	
Total	26187	17483	24614	16066	14669	9169	

Tabla 9.13. Riesgo social en personas afectadas/año para cada uno de los municipios en función de cada uno de los escenarios considerados.

	Riesgo económico (M\$USD/año)					
Municipio	Chamelecon Base	Chamelecon Obras	Ulúa Base	Ulúa Obras	Ambos Base	Ambos Obras
La Lima	2.5	0.7	2.4	0.6	0.4	0.4
San Manuel	1.1	1.1	1.2	1.2	0.6	0.6
San Pedro Sula	0.4	0.4	0.2	0.2	0.1	0.1
El Progreso	0.9	0.8	1.1	1.0	0.6	0.5
Total	5.0	3.0	5.0	2.9	1.8	1.6

Tabla 9.14. Riesgo económico en millones de \$USD/año para cada uno de los municipios en función de cada uno de los escenarios considerados.

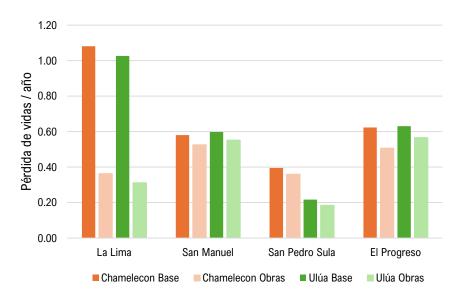


Figura 9.9. Riesgo social en vidas/año para cada uno de los municipios en función de cada uno de los escenarios considerados.

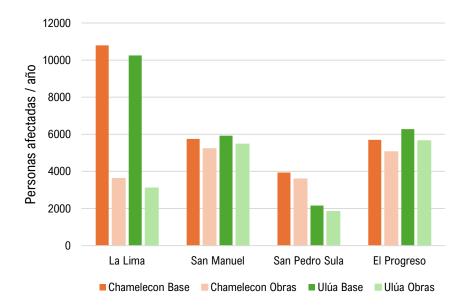


Figura 9.10. Riesgo social en personas afectadas/año para cada uno de los municipios en función de cada uno de los escenarios considerados.

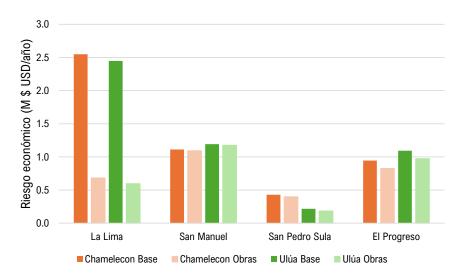


Figura 9.11. Riesgo económico en millones de \$USD/año para cada uno de los municipios en función de cada uno de los escenarios considerados.

En las tablas y gráficos anteriores se muestra que las obras ayudan a reducir el riesgo social (en sus dos componentes) así como el riesgo económico en los cuatro municipios. El caso donde más se reduce el riesgo es en La Lima (se reduce alrededor de un 74% el riesgo económico en viviendas y un 68% en riesgo social), que es a su vez el municipio que presenta mayor riesgo en situación actual. La reducción del riesgo que ofrecen las obras de protección se cuantifica de alrededor de un 25%.

9.2.3. Riesgo en escenarios tendenciales

Para el caso hidrológico donde predomina la cuenca del río Chamelecón, por considerarse le escenario más crítico, se ha realizado un análisis extra para considerar escenarios tendenciales a largo plazo (2050 y 2100). El mismo tiene en cuenta un aumento de las solicitaciones hidrológicas (efecto del cambio climático) y también una estimación a futuro de la población (la misma se prevé que aumentará en el tiempo de acuerdo

con las tendencias demográficas actuales de cada municipio). Los gráficos desde la Figura 9.12 a la Figura 9.14 muestran los gráficos FN y FD de los escenarios tendenciales evaluados en contraste con el escenario actual, en ambos casos sin y con obras.

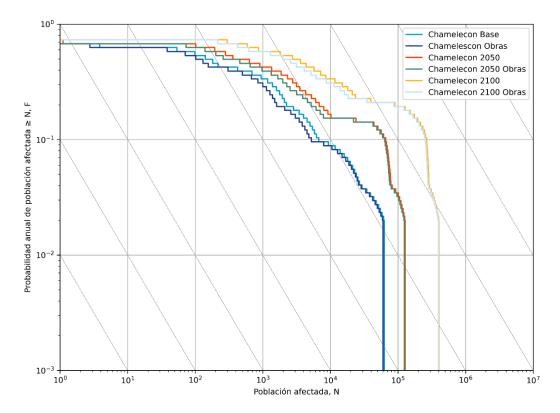


Figura 9.12. Gráfico FN de población afectada para el escenario tendencial (cambio climático y proyección de población) con predominancia del río Chamelecón y el escenario actual. En ambos escenarios sin y con obras.

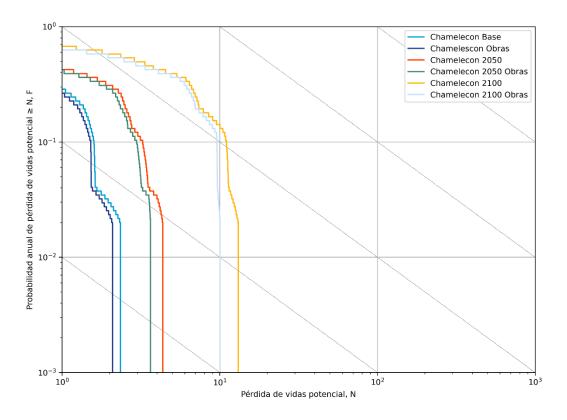


Figura 9.13. Gráfico FN de pérdida de vida para el escenario tendencial (cambio climático y proyección de población) con predominancia del río Chamelecón y el escenario actual. En ambos escenarios sin y con obras.

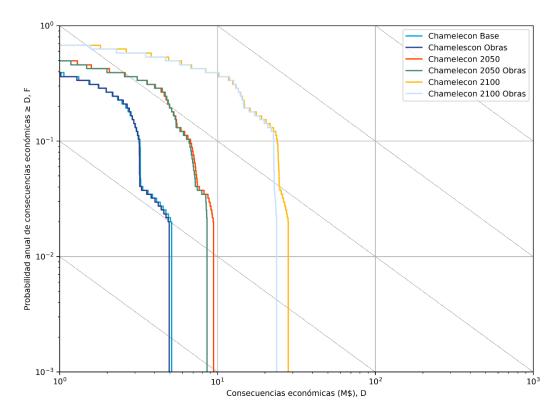


Figura 9.14. Gráfico FD de consecuencias económicas para el escenario tendencial (cambio climático y proyección de población) con predominancia del río Chamelecón y el escenario actual. En ambos escenarios sin y con obras.

En la Tabla 9.15 se muestran los resultados numéricos tendenciales en el caso sin obras y tras la ejecución de las mismas. De estos resultados se extraen dos conclusiones claras. La primera es que el riesgo a largo plazo aumentará considerablemente respecto a la situación actual (2023). Esto se debe a los dos factores ya comentados: se prevé que aumentarán las precipitaciones máximas y, además, aumentará la exposición a las inundaciones fruto del ascenso demográfico. La segunda conclusión es que las obras, también en escenario futuro, ayudan a reducir el riesgo en buena medida respecto al escenario tendencial sin obras.

Escenarios tendenciales	Riesgo social (vidas/año)	Riesgo social (afectados/año)	Riesgo económico (M\$USD/año)
2050_Sin Obras	6.0	59,709	31.1
2050_Con Obras	4.2	42,187	26.2
2100_Sin Obras	21.5	214,038	66.1
2100_Con Obras	15.9	157,811	52.0

Tabla 9.15. Resultados de riesgo para el escenario tendencial (cambio climático y proyección de población) con predominancia del río Ulua.

A partir del análisis de resultados del análisis cuantitativo del riesgo, se obtiene que en la condición proyectada con las obras de mitigación, el beneficio social en términos del número de personas que en promedio no se afectarán por inundación es de alrededor de 17,500 personas al año para 2050 y de 56,000 personas al año para 2100. Por su parte el beneficio económico previsto en promedio es de aproximadamente 4.9 millones de dólares al año para 2050 y de 14.1 para el año 2100, valor teórico que se ahorrará de las pérdidas económicas estimadas en los escenarios tendenciales sin la implantación de obras.

9.2.4.Riesgo tras construcción de la presa "El Tablón" – Análisis de sensibilidad

Debido a la existencia del proyecto de estudio de factibilidad para la construcción de una presa sobre el río Chamelecón a la altura de la estación hidrométrica El Tablón, se ha decidido conocer el efecto que dicha obra tendría en términos de riesgo de inundación en el Valle de Sula haciendo uso para ello del modelo de riesgo.

De acuerdo con el documento de *Actualización del estudio de factibilidad de la presa El Tablón* (SNC Lavalin International, 2007), se trata de una presa de usos múltiples (entre ellos regulación de crecidas) sobre el río Chamelecón, aproximadamente a 30 km al suroeste de San Pedro Sula y 2.5 km aguas abajo de la confluencia con la Quebrada La Mina.

Se conocen los estimados de reducción de caudales y volúmenes fruto de la laminación de las diferentes crecientes en el embalse (Tabla 9.16). Con ello, se han reducido los caudales de entrada en el modelo de riesgo (Tabla 9.17) a fin de conocer los beneficios en riesgo social y económico que la construcción de la presa aportaría. La reducción de los caudales asociados a 2 y 5 años de período de retorno se ha realizado por interpolación lineal.

Tiempo de Retorno	Avenida Pico	Nivel de Embalse	Descarga Pico
Años	m³/s	msnm	m³/s
10	1000	158.93	538
20	1330	159.65	767
50	1880	160.61	1122
100	2370	161.39	1450
200	2960	162.29	1870
1000	4740	164.77	3240
10000	8690	168.15	7130
PMF	11300	169.46	10090

Tabla 9.16. Amortiguamiento de crecientes en el embalse El Tablón. Fuente: Estimados Laminación El Tablón (2017).

Rio	T (años)	Q (m ³ /s)
Ulua	50	11690
Ulua	20	9095
Ulua	10	7424
Ulua	5	5510
Ulua	2.33	2993
Chamelecon	50	9843
Chamelecon	20	7758
Chamelecon	10	7424
Chamelecon	5	5510
Chamelecon	2.33	2993

Tabla 9.17. Caudales introducidos en el modelo de riesgo teniendo en cuenta el hipotético efecto de la presa El Tablón de reducción de caudal en el río Chamelecón.

Los resultados del modelo de riesgo se pueden ver en la Tabla 9.18, así como en los diferentes gráficos FN incluidos en la Figura 9.15 y Figura 9.16. De los mismos se concluye que la construcción de la presa ayudaría a reducir el riesgo actual existente en el Valle de Sula, tanto social como económico.

En contraste con el efecto de las obras, se conoce que la construcción de la presa es capaz de disminuir más el riesgo económico que las obras planteadas, pues reduce los caudales y volúmenes de entrada al Valle y con ello el área inundada. No obstante, las obras son capaces de disminuir de manera más efectiva el riesgo social en sus dos componentes, pues están centradas en la protección de la población.

Escenario	Riesgo social (vidas/año)	Riesgo social (afectados/año)	Riesgo económico (M\$USD/año)
Chamelecón Base	2.7	26,187	21.4
Chamelecón Obras	1.8	17,483	18.7
Chamelecón Tablón	2.1	20,406	18.0
Chamelecón Tablón + Obras	1.3	13,051	15.6
Ulúa Base	2.5	24,614	22.0
Ulúa Obras	1.6	16,066	19.1
Ulúa Tablón	2.1	20,501	18.8
Ulúa Tablón + Obras	1.3	13,144	16.3

Tabla 9.18. Resultados de riesgo para diferentes escenarios, incluyendo el efecto de la presa de El Tablón sobre el río Chamelecón.

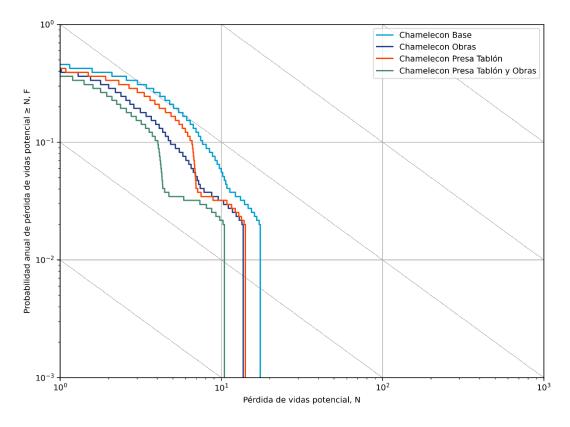


Figura 9.15. Gráfico FN de pérdida de vida para el escenario actual, con obras, con la presa de El Tablón y con presa y obras con predominancia del río Chamelecón.

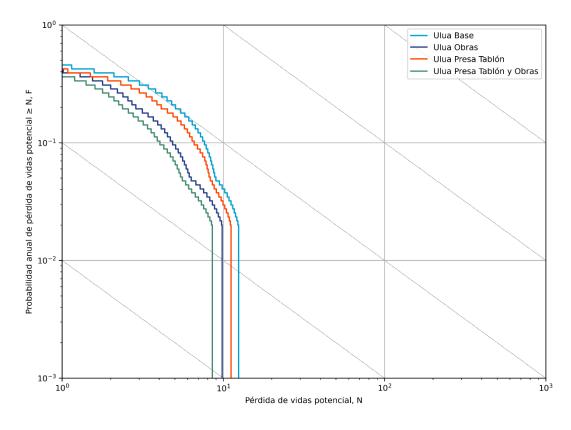


Figura 9.16. Gráfico FN de pérdida de vida para el escenario actual, con obras, con la presa de El Tablón y con presa y obras con predominancia del río Ulúa.

De acuerdo con el documento *Actualización del estudio de factibilidad de la presa El Tablón* (SNC Lavalin International, 2007), la presa tendría un coste total de algo más de 83 millones de dólares estadounidenses (M \$USD). Actualizando a 2023 según los valores del IPC, en la actualidad el costo se elevaría hasta los 193.15 M \$USD.

10. <u>A</u>

NÁLISIS DE ALTERNATIVAS

Haciendo uso de los resultados de riesgo obtenidos en los escenarios de ejecución de las obras propuestas, se ha valorado el costo de implementación de cada una de las posibles alternativas de mitigación descritas en el apartado 7, a fin de conseguir un valor de riesgo equivalente a este. Es decir, se ha dimensionado cada una de las alternativas a fin de conseguir una protección similar a la que ofrece las obras hidráulicas planteadas. De esta manera, la comparación directa del costo (para un beneficio similar en términos de pérdidas evitadas) se entiende suficiente para poder valorar qué alternativa es la que presenta mejor relación costo-beneficio.

En ambos casos, por la implicación de cada una de las alternativas, y conociendo que el riesgo social y económico no guardan una relación lineal, se ha hecho uso del valor de riesgo económico (en término de los daños a los contenidos de las viviendas) en escenario con obras, como un valor referente a la hora de dimensionar las alternativas. No obstante, se ha contrastado que el valor del riesgo social para cada alternativa se mantenga cercano al valor para la situación con obras. Además, se entiende que junto a la ejecución de las obras se llevarán una serie de medidas que mejorarán el entendimiento de las inundaciones y el efecto de las obras en la comunidad, tal y como se estableció en el PGRD, aspecto que podría reducir el riesgo social tras obras.

10.1. Reforestación de la cuenca

Esta alternativa consiste en cambiar el uso (cobertura) de suelo en algunas zonas de las cuencas. Este tipo de medidas se entienden principalmente desde un punto de vista medioambiental (rehabilitación del medio natural en cuencas), así como estrategia de reducción de la erosión superficial de las cuencas, su susceptibilidad a procesos de remoción en masa y su consecuente aporte de sedimentos a los cauces. En este caso, con esta medida se busca reducir los caudales de entrada al Valle, atenuando el caudal pico de los eventos de creciente, siendo este también una ventaja adicional de su implementación.

En el caso de reforestación de la cuenca, a fin de dimensionar el proyecto se ha realizado lo siguiente:

- La reforestación de parte de la cuenca ayuda a reducir los caudales. En este sentido se ha estimado cuál sería la reducción, en términos porcentuales, que habría que aplicar a los caudales de entrada al Valle de Sula para conseguir un riesgo económico en viviendas similar a la situación con obras. Este paso se ha completado haciendo uso del modelo de riesgo, y la reducción estimada de caudal se encuentra alrededor de un 23%.
- Conociendo el valor de reducción de los caudales, se ha modificado los valores asignados al modelo hidrológico a fin de conseguir dicha reducción. Para ello se ha actuado sobre el proceso de pérdidas de la precipitación utilizado, que es el método de la curva número del SCS. Para tal fin, se ha analizado cómo debe cambiar dicho valor a escala de cuenca para conseguir semejante reducción en caudal. En este sentido, el valor promedio de la curva número en las cuencas era de 73. El mismo debería reducirse a 62 para que los caudales se reduzcan un 22%.
- El tercer y último paso consistió en establecer el área de intervención necesaria, suponiendo el cambio de uso de cobertura a bosque latifoliado (cobertura ya existente en la cuenca, que menor escorrentía produce, aunque esta depende principalmente de la capacidad agrológica del suelo más que de la cobertura). El área sobre el que habría que actuar se ha estimado en alrededor de 15,000 Km², que corresponde al 60% del área total de las cuencas del río Chamelecón y del río Uúa. En la Figura 10.1 se observa la distribución espacial actual de bosque latifoliado en las cuencas aportantes al Valle de Sula.

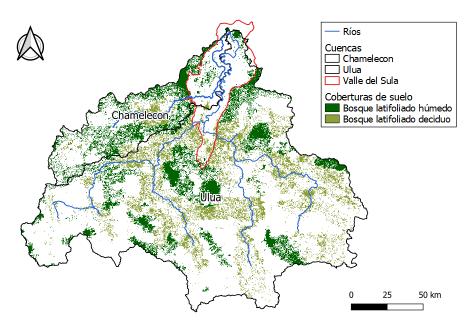


Figura 10.1. Cobertura de suelo actual asociado a bosque latifoliado en las cuencas del río Ulúa y Chamelecón.

A fin de estimar el presupuesto de esta medida, es necesario conocer el costo de cambio de cobertura del suelo a agroforestal. Para ello se ha hecho uso de los costos recogidos en el documento *Análisis para la identificación de alternativas para diferentes alturas que generan servicios ecosistémicos similares a los bosques cafetaleros* (BID, 2019). En el mismo se recoge un costo de renovación de un sistema agroforestal con maderables por hectárea (0.01 Km²) de 3,890.04 \$USD. Por lo tanto, el costo estimado de la medida de reforestación sería de 5,835.06 M \$USD.

10.2. Reasentamiento y reubicación poblacional

Esta alternativa consiste en movilizar población y viviendas ubicadas en zonas bajo riesgo de inundación con tal de disminuir la exposición a ésta, aumentando así la protección a la población y viviendas.

En el caso del reasentamiento y reubicación poblacional, a fin de dimensionar el proyecto se ha realizado lo siguiente:

- La reubicación de la población expuesta ayuda a reducir el riesgo social y económico. En este sentido se ha estimado cuál sería la reducción que habría que aplicar a los costos en el contenido de viviendas, en términos totales, para conseguir un riesgo económico en viviendas similar a la situación con obras.
- Para estimar la reducción del costo, teniendo en cuenta que las viviendas que se ven afectadas ya para el primer escenario (TR= 2.33 años) se ven también afectadas para el resto de los escenarios más severos, se deben reducir las consecuencias económicas en viviendas desde el primer escenario, aplicando esa reducción al resto de escenarios (desde T5 años en adelante).
- Una vez se consigue reducir tanto el costo, como para igualar el riesgo económico en contenido en viviendas respecto a la situación tras obra, se relaciona la reducción de las consecuencias a número total de viviendas. Se ha estimado que sería necesario reubicar un total de 7,200 viviendas.

A fin de estimar el presupuesto de esta medida, es necesario conocer el costo de reposición de las viviendas a reubicar. El precio unitario de la vivienda se adoptó a partir del promedio de los valores estimados para las viviendas urbanas en el documento *Línea de base para los municipios La Lima y El Progreso de Honduras* (CEPAL, 2024), donde se llevó un análisis detallado para las viviendas existentes en los municipios de La

Lima y El Progreso. El valor promedio adoptado es de 228,545 HNL (9,245 \$USD), por lo que el presupuesto estimado para esta medida ascendería hasta los 66.6 M \$USD.

10.3.Comparativa en costo entre alternativas para protección equivalente

Como se ha comentado en párrafos anteriores, en este subapartado se compara el costo de cada una de las alternativas estudiadas, previamente dimensionadas, para obtener en cada una de ellas un riesgo económico equivalente (o grado de protección similar) al del presente proyecto, estableciendo un comparativo económico de inversión para obtener la misma reducción del riesgo económico.

A tal fin se presentan los resultados obtenidos en la Tabla 10.1 y en el gráfico de barras de la Figura 10.2 (con aumento de escala en la Figura 10.3). De acuerdo con estos resultados, se concluye que la construcción de las obras planteadas (ampliación de algunos canales de drenaje y dragado de un tramo del río Chamelecón) es la alternativa más costo-eficiente en términos de riesgo, pues ofrece el mismo nivel de protección a un costo mucho más reducido respecto al resto de alternativas.

Alternativa	Presupuesto (M \$USD)	
Obras de protección	15.5	
Reubicación población	66.6	
Reforestación cuenca	5835.1	

Tabla 10.1. Presupuesto de las diferentes alternativas para similar valor de riesgo de inundación.

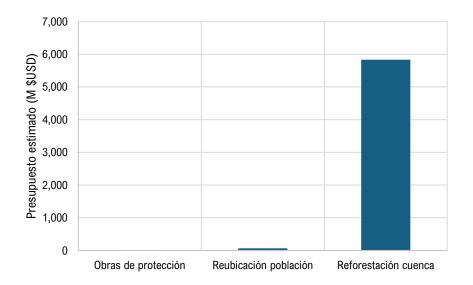


Figura 10.2. Presupuesto de las diferentes alternativas para similar valor de riesgo de inundación.

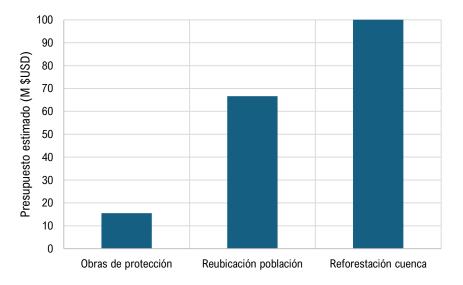


Figura 10.3. Presupuesto de las diferentes alternativas para similar valor de riesgo de inundación, ampliando la escala para poder visualizar mejor el valor de las dos primeras alternativas.

11. CONCLUSIONES

A partir de los resultados del modelo hidráulico descrito en el *Producto 3.1 Actualización del estudio hidráulico y mapas de inundación* para distintos escenarios, se han calculado las **consecuencias** que se producirían, en términos sociales y económicos. Para ello, se emplearon herramientas SIG, utilizando información georreferenciada de la localización de la infraestructura y población en el Valle de Sula.

Para el análisis se han establecido tres escenarios:

- Escenarios Base (2023): estos escenarios consideran el tránsito de los caudales modelizados bajo las condiciones de exposición actuales (año 2023), para el caso sin obras.
- Escenarios con Obras (2023): estos escenarios consideran el tránsito de los caudales modelizados bajo las condiciones de exposición actuales (año 2023), para el caso con las obras de mitigación propuestas.
- Escenarios Futuros (2100): estos escenarios consideran el tránsito de los caudales modelizados en situación futura, considerando el Cambio Climático para el escenario más pesimista (RCP 8.5) considerando un aumento del 40% en las precipitaciones de la zona de estudio, bajo las condiciones de exposición futuras (año 2100), para el caso sin y con obras.

Las principales conclusiones que se obtienen de la estimación de consecuencias sociales son las siguientes:

- En el Valle de Sula se estima una población de 2.6 millones de habitantes, equivalentes a 660 mil viviendas, de las cuales el 40% corresponde al municipio de San Pedro Sula, el 15% a El Progreso, el 5% a La Lima y el 4% a San Manuel.
- Para el escenario base se estima una población total afectada de 166 mil personas en los municipios analizados, para el escenario más crítico, con la inundación producida por una creciente de 50 años de período de retorno. Una vez se considera la implementación de las obras de mitigación propuestas, se estima una reducción del 18% de la población afectada con un valor aproximado de 136 mil personas.
- Para el escenario base con la inundación asociada a 10 años de periodo de retorno se estima un total de 76 mil personas afectadas, valor que será reducido en un 37% para el mismo escenario con la implementación de las obras, es decir 48 mil personas afectadas.
- En términos de población afectada total, el escenario que considera predominantes los caudales del río Chamelecón resulta el más crítico a partir de 20 años de periodo de retorno, sin embargo, al analizar los valores discretizados por municipio, se observa que para los municipios de El Progreso y San Manuel, el escenario que considera predominantes los caudales del río Ulúa resulta más desfavorable.
- Al analizar la disminución porcentual de población afectada por municipio, comparando los escenarios sin y con obras, para los escenarios A con caudal predominante por la cuenca del río Chamelecón, se evidencia una reducción de la población afectada entre el 18% y el 43% para las recurrencias analizadas, resaltando que el mayor impacto se observa para un período de retorno de 5 años. Para todos los escenarios, el municipio de La Lima presenta la mayor reducción porcentual, con valores entre 57% y 76% para los períodos de retorno analizados.
- De acuerdo con la metodología implementada para la estimación de pérdida de vidas, la severidad resultante del producto de calado máximo por su velocidad en las viviendas expuestas, en la mayoría de los casos resulta de Categoría Baja, que en conjunción con los tiempos de aviso, resulta en tasas de mortalidad muy bajas, con las que se estima un valor alrededor de 20 víctimas fatales en

los municipios de análisis, para la condición actual con el tránsito de la creciente de 50 años de período de retorno. En el escenario con obras, este valor se reduce a 14 personas.

Para el escenario de cambio climático se evidencia una reducción del 11% en las víctimas fatales estimadas, con mayor impacto en los municipios de La Lima y San Manuel. De esta manera, se puede establecer que la implantación de las obras de mitigación propuestas tiene un impacto social positivo aún en el escenario con cambio climático, en el cual las condiciones de amenaza y exposición aumentan significativamente.

Las principales conclusiones que se obtienen de la estimación de consecuencias económicas en el contenido de las viviendas son las siguientes:

- Para el escenario base se estima un total de 42 mil viviendas afectadas en los municipios analizados, para el escenario más crítico, con la inundación producida por una creciente de 50 años de período de retorno. Una vez se considera la implementación de las obras de mitigación propuestas, se estima una reducción del 18% de la población afectada con un valor aproximado de 34 mil viviendas afectadas.
- Las consecuencias económicas para el escenario con obras se estiman con un valor aproximado de 1.1 millones de dólares (M \$USD) para una recurrencia de 2 años y de 23.1 millones de dólares (M \$USD) para la inundación asociada a 50 años de periodo de retorno, en el escenario más crítico analizado con caudal predominante por el río Chamelecón, lo que supone una reducción del 24% del daño económico a las viviendas, equivalente a 7.6 millones de dólares (M \$USD).
- Para el escenario de cambio climático se evidencia una reducción tras obras del 11% en el daño económico a viviendas, con mayor impacto en los municipios de La Lima y San Manuel. De esta manera, se puede establecer que la implantación de las obras de mitigación propuestas tiene un impacto económico positivo aún en el escenario con cambio climático, en el cual las condiciones de amenaza y exposición aumentan significativamente.

Las principales conclusiones que se obtienen de la estimación de consecuencias económicas en el sector agrícola son las siguientes:

- En lo relativo a la pérdida de cultivos, se destacan que son muchas las hectáreas que se ven inundades ya desde el escenario más frecuente analizado: más de 13,000 hectáreas para la crecida de 2.33 años. Esto da cuenta de la alta exposición presente en el Valle también en materia de áreas agrícolas.
- Para el escenario base se estima un total de más de 32 mil hectáreas de cultivo afectadas a lo largo del Valle de Sula, para el escenario más crítico, con la inundación producida por una creciente de 50 años de período de retorno. Una vez se considera la implementación de las obras de mitigación propuestas, se estima una reducción limitada de las áreas de cultivo afectadas. Lo anterior significa que, pesa a que las obras tienen el foco en la protección de la población, también tiene un efecto beneficioso al contribuir en reducir las pérdidas esperables en relación con los cultivos.
- Al convertir en pérdidas económicas las afecciones a los campos de cultivos, las pérdidas por cultivos son entre 1.7 y 10 veces superiores a las pérdidas que se estimaron para las viviendas, dependiendo del escenario analizado. En el escenario menos frecuente (50 años) las pérdidas se elevan hasta superar los 50 millones de \$USD.

A partir de los valores de consecuencias sociales y económicas se procedió al análisis cuantitativo de riesgo por inundación en el Valle de Sula. Las principales conclusiones son:

- De acuerdo con los resultados de riesgo obtenidos y teniendo en cuenta las hipótesis adoptadas en la definición de los escenarios hidrológicos explicadas en el subapartado 5.1, no existe una condición hidrológica crítica clara. Pues a pesar de que la cuenca del río Ulua es capaz de introducir al Valle un volumen superior de agua respecto a la cuenca del río Chamelecón, para el mismo período de retorno, la mayor exposición de la población en la cuenca baja del río Chamelecón respecto a la cuenca baja del río Ulúa compensa esta diferencia hasta prácticamente obtener valores de riesgo muy similares entre ambos escenarios. No obstante lo anterior, el escenario con predominancia hidrológica del río Chamelecón es el que reporta mayor riesgo social en las dos vertientes analizadas (población afectada y pérdida de vida), originando además un riesgo económico prácticamente similar al que se obtiene para el escenario de predominancia de la cuenca del río Ulúa.
- Los valores de riesgo indican que en situación actual la pérdida potencial de vida es de alrededor de 2.7 personas al año, con una población afectada promedio de alrededor de unas 26,000 personas anualmente. Por último, el riesgo económico, teniendo en cuenta las afecciones a las viviendas y a los cultivos, asciende hasta aproximadamente 22 millones de \$USD al año.
- La ejecución de las obras de mitigación propuestas contribuye a reducir el riesgo social alrededor de un 35% y el riesgo económico alrededor de un 13% respecto al escenario actual. El valor de pérdida de vidas se reduce a 1.6 personas al año, con una población afectada promedio de alrededor de unas 17,000 personas anualmente, mientras que el riesgo económico se reduce a un valor aproximado de 19 millones de \$USD al año.
- De los escenarios con cambio climático se concluye que el riesgo a largo plazo (medio plazo año 2050 o largo plazo 2100 -) aumentará considerablemente respecto a la situación actual (año 2023). Esto se debe a que aumentarán las precipitaciones máximas en la zona de estudio y además, aumentará la exposición a las inundaciones, producido por el ascenso demográfico. Las obras propuestas, también en escenario futuro, ayudan a reducir el riesgo social en un 50% y en un 35% respecto al escenario tendencial sin obras de 2050 y 2100, respectivamente. Propiamente, también reduce el riesgo económico en un 20 y 25% a medio plazo (2050) y largo plazo (2100), respectivamente.
- Haciendo uso del análisis de riesgo también se ha cuantificado el riesgo en el Valle suponiendo la
 construcción de la presa El Tablón sobre el río Chamelecón, en fase inicial de prefactibilidad. De la
 evaluación del efecto de la presa, se concluye que la presa aporta un beneficio claro de reducción
 del riesgo, tanto económico como social, en el Valle de Sula.
- En contraste con el efecto de las obras, se conoce que la construcción de la presa es capaz de
 disminuir más el riesgo económico que las obras planteadas, pues reduce los caudales y volúmenes
 de entrada al Valle y con ello el área inundada. No obstante, las obras son capaces de disminuir de
 manera más efectiva el riesgo social en sus dos componentes, pues están centradas en la
 protección de la población.

Se han hecho uso de los resultados de riesgo, y por ende del modelo de riesgo, para poder dimensionar alternativas diferentes a las obras planteadas, a fin de conseguir el mismo beneficio en términos de riesgo logrado por la ejecución de las obras planteadas. Estas dos alternativas se corresponden con la reforestación de parte de la cuenca (disminución de los caudales de entrada al Valle) y la reubicación de parte de la población. Dimensionadas para conseguir un riesgo equivalente, la comparación más directa entre las alternativas es la económica en términos de presupuesto, a fin de poder seleccionar aquella alternativa más costo-eficiente reduciendo el riesgo actual del Valle de Sula.

Tras dimensionar ambas alternativas adicionales a fin de obtener un nivel de riesgo equivalente al que habría tras la ejecución de las obras planteadas, se ha estimado el presupuesto para todas ellas para comparar. De

la misma se concluye que la alternativa de reforestación es, con creces, la que supondría un presupuesto más elevado (varios ordenes de magnitud superior a las otras dos alternativas. Y es que de acuerdo con los resultados, se tendría que reforestar más de la mitad de las cuencas en términos de área.

Por otro lado, el hecho de que sean bastante viviendas las que habría que **reubicar** a fin de reducir el riesgo en situación actual y equipararlo a la situación con obras, reporta en un presupuesto estimado de 66.6 M \$USD, presupuesto **4.3 veces superior al presupuesto de las obras planteadas** (15.5 M \$USD) de acuerdo con las estimaciones realizadas desde la SIT.

Del anterior análisis se deduce que, la construcción de las obras planteadas en bloque no solo consigue reducir considerablemente el riesgo en situación actual sino que, además, es claramente la alternativa más costo-eficiente en términos de reducción de riesgo en el Valle de Sula de entre todas las analizadas.

Es importante señalar que los resultados y conclusiones expuestas en el presente informe constituyen un resultado preliminar del avance y desarrollo del proyecto, que será actualizado con el modelo de elevación digital del terreno actual (2023), así como con la debida caracterización socioeconómica del área de estudio para consolidar la Base de Datos Espacial, que permita mejorar la estimación de las consecuencias en cada uno de los escenarios comparados. Aun así, los resultados expuestos en el presente informe constituyen una aproximación técnicamente apropiada y relevante para la justificación y priorización de obras de mitigación de la amenaza por inundación en el sistema hidráulico del Valle de Sula.

12. REFERENCIAS

- BID CEPAL. (2021). Evaluación de los efectos e impactos de la tormenta tropical Eta y el huracán lota en Honduras.
- BID. (2017). Baseline analysis. Estimation of damage functions for Belize City.
- BID. (2019). Análisis para la identificación de alternativas para diferentes alturas que generan servicios ecosistémicos similares a los bosques cafetaleros.
- CEPAL. (2024). Línea de base para los municipios La Lima y El Progreso de Honduras.
- COPECO . (2020). Informe de asistencia humanitaria atención a la emergencia de ETA & IOTA. San pedro Sula.
- INE Honduras. (2021). Hogares en Situación de Pobreza.
- PROSPERiA. (2022). Análisis Multiriesgo de Honduras. Climate Change and Catastrophe Risk.
- SNC Lavalin International. (2007). Actualización del estudio de factibilidad de la presa El Tablón.
- W. Sirko, S. K. (2021). Continental-scale building detection from high resolution satellite imagery. .