Pest Management Plan

Agriculture Sector Modernization Project

Ministry of Primary Industries &
Ministry of Agriculture
April 2016

Table of Contents

Chapte	r 1: Introduction	5
1.1	Introduction to the proposed project	5
1.2	Pest and pesticide management implications of project activities	13
1.3	Common eenvironmental consequences of pesticide use in Sri Lanka	13
1.4	IPM Strategies in Sri Lanka	14
1.5	The need to document and plan out current IPM activities	15
Chapte	r 2: Pesticide Use and Management	17
2.1	Trends in pesticide use and pest control in Sri Lanka	17
2.2	Control of pesticide use in Sri Lanka	18
2.3	Circumstances of pesticide use and competence to handle products in agricultural areas	18
2.4	Assessment of risks	19
2.5 I	Promoting IPM in the context of current pest control practices	19
Chapte	r 3: Policy, Regulatory framework and institutional capacity	20
3.1 1	National Environment Act	20
3.3 (Control of Pesticides Act	20
3.4 I	Process of pesticides control	20
3.5 \$	Services on Pesticide Registration	20
3.6 l	Pesticides Technical and Advisory Committee	21
3.7 I	Effectiveness of legislation	21
Chapte	r 4: Implementation of the Pest Management Plan	22
4.1	Assessment of existing situation and preparation of action plan	22
4.2	Awareness creation via the preparation of strategic communication materials	23
4.3 1	Building technical capacity via training	24
4.4 l	Research and Development	24
4.5 I	Field Demonstrations	24
4.6 l	Proposed implementation action plan	24
4.2 I	Proposed Institutional Arrangement	25
Chapte	r 5: Plan for Monitoring and Evaluation of PMP	27
Ann	ex 1: List of Banned Pesticides in Sri Lanka (Source-Department of Agriculture)	29
Ann	ex 2: Pesticide Classification List – World Health Organization	34
Ann	ex 3: Guidelines for Technical Training on PMP/IPM	36

List of Abbreviations

DOA Department of Agriculture

EAMF Environmental Assessment and Management Framework

FFS Farmer Field School

FAO Food and Agriculture Organization

IPM Intergraded Pest Management

MoA Ministry of Agriculture

MoPI Ministry of Primary Industries

NGO Non-Governmental Organizations

OPR Office of Pesticide Registrar

OP/BP Operational Policy/Bank Policy

PG Producer Groups

PMP Pest Management Plan PMU Project Management Unit

SCPPC Seed Certification and Plant Protection Service (SCPPC)

Chapter 1: Introduction

1.1 Introduction to the proposed project

The Project Development Objective is to *improve agriculture productivity, farmer organizational* arrangements and achieve the adoption of innovative agriculture technologies and marketing practices in the project areas. The project will be implemented over a period of five years. The project design is structured along four components:

Component 1: Agriculture Value Chain Development (Total US\$ 102.73 million, IDA US\$ 58.63 million). The component seeks to promote commercial and export-oriented agriculture through attracting and leveraging investments from farmer producer organizations and agribusinesses for high value agriculture production and value addition. It will provide the enabling environment, incentives, and access to finance for such investments through matching grants, technical assistance support, linkages to the commercial banking sector, and a partial credit guarantee (PCG). It will strengthen farmer producer organizations and promote smallholder—agribusiness partnerships; improve the linkages of smallholders in agricultural value chains; increase their competiveness, business orientation and market position; and making them more attractive business partners in the value chain. The expected component outcomes include: an increased number of farmer producer organizations and agribusinesses investing into higher value agriculture production and value chains; increased benefits derived by farmer producer organizations and rural communities from partnerships through productivity, higher agriculture income, and employment; and increased value of commercial output from value chains.

Component 1 comprises the following sub-components:

(a) Sub-component 1.1: Investment Preparation Support (Total US\$ 7.41 million, IDA US\$ 7.41), supporting: (i) a training program on the principles and procedures of the Matching Grants Program for PMU field officers of MOPI, TRG, the Board of the Matching Grant Program, staff from commercial banks, technical service providers, and other stakeholders; (ii) public advertisements and information workshops at national, provincial and district levels for prospective applicants; as well as annual conferences to review the performance of the Matching Grants Program; (iii) honoraria and incremental operating costs associated with the review and approval of grant applications through the TRG and Board; (iv) international advisory support to operationalize the Matching Grants Program; (v) salaries and associated allowances of a Matching Grants Officer, an Agribusiness Expert and an Office Assistant to be recruited and housed in the Matching Grants Secretariat of the PMU; (vi) salaries and associated allowances for support staff to the Secretariat at provincial or district levels, including a matching grants officer, a matching grants assistant, and a procurement staff in the Department of Export Agriculture in Kandy and in the three regional support offices (Kilinochchi, Ampara, Matara); (vii) office equipment, office rental, vehicle rental and incremental operating cost for the Matching Grants Secretariat and the regional support offices; and (viii) technical assistance support and mentoring for applicants to the Matching Grant Program to assist in the preparation of quality investment proposals; and (ix) technical assistance support to support the project's environmental and social safeguards requirements within the Matching Grants Program.

- (b) Sub-component 1.2: Matching Grants to Producer Organizations and Agro-Businesses (Total US\$ 88.20 million, IDA US\$ 44.10 million), supporting a Matching Grants Program to attract and leverage investments from farmer producer organizations and agribusinesses. Matching grants would be provided under two windows:
 - (i) Matching grants of US\$ 5,000 up to US\$ 75,000 would be provided for investments to be developed and implemented by farmer producer organizations. Matching grants would co-finance investment proposals from such organizations on a 50/50 cost sharing basis. Eligibility criteria for farmer producer organizations to participate in the Matching Grant Program would include: formal registration under Sri Lanka's Company Act, 2007 at the time of application; appointment of an accountant; a minimum cash contribution of 10 percent of the total investment cost to be deposited into a bank account in the name of the organization at the time of application; and availability of commercial financing of up to 40 percent of the total investment. Upon approval of the investment proposal and matching grant, farmer producer organizations would enter into a project agreement with the PMU of MOPI. Disbursement of the approved matching grant amount would be in predefined tranches under a service-based contractual arrangement. management, governance, ownership structure, capitalization, auditing and others of such farmer companies are described in detail in the Operations Manual. Procurement and disbursement procedures are also described in the Operations Manual.

In order to attract and support women-led farmer producers organizations, proposals for matching grant support would receive higher scorings and the ratio matching grant to own contribution could be increased flexible, for example to: 60/40.

(ii) Matching grants of US\$ 75,000 up to US\$ 500,000 would be provided to agribusiness for agriculture value chain investments. Established and new start-up agribusinesses would be eligible to apply for and access the matching grants. Matching grants would be provided on a 50/50 cost sharing basis, with contributions from agribusinesses to be provided through own-sourced or commercial financing. Requirements for higher contributions from own financing sources can be specified for well-established agribusinesses.

Applications for matching grant support would be evaluated on criteria, such as outreach and capacity building to smallholder farmers, regional focus (with higher scorings for proposals in poor lagging regions, as well as criteria of technical quality, innovative potential, business rationale and others. Upon approval, the PMU would enter into a service-based contractual arrangement with the agribusiness that would specify the contractual obligations of partners and the payment terms for the matching grant.

Matching grants would be awarded based on a transparent application, evaluation and selection process that are described in the Operations Manual. Grants can be used flexibly, as described in the respective approved investments plans, for

example, to: expand and/or diversify agriculture production; introduce new production models, technologies and equipment; improve product quality, processing, marketing, and value-added of agricultural products; promote and improve food safety standards; and provide extension and other support services.

Grants provided under both windows would not be used to finance annual inputs (seeds, fertilizer) on a recurrent basis. A detailed negative list of items not to be financed under the matching grants is included in the Operations Manual. It is expected that investment proposals and matching grants would be implemented over a period of no more than two to three years.

(c) Sub-component 1.3: Partial Credit Guarantee (Total US\$ 7.12 million, IDA US\$ 7.12 million), supporting a PCG to share financial risk with PFIs that have expressed interest in lending to beneficiaries of the Matching Grant Program. The PCG would be administered by the Regional Development Department of the CBSL that has demonstrated prior experience with administrating financing schemes for farmers and SME agribusinesses through both public and private financial institutions. The PCG will operate on the basis of the World Bank Group Principles on PCG Schemes, published in December 2014, covering the governance, management, administration, sustainability, and monitoring of PCGs. The applicable principles are described in the PCG in Annex 4. Detailed operating modalities of the PCG will be described in a PCG Operational Manual.

PFIs will undergo a pre-qualification process to become eligible for participation in the PCG. Eligibility criteria will be transparent, open to all institutions and based on exceeding the current prudential requirements on capital adequacy, solvency, liquidity, portfolio quality (non-performing loan ratio), as well as credit policies, existence of safeguard policies, and corporate governance standards. Prior experiences in lending to agricultural sector, farmers, producer organizations, agro-businesses and prior experience with similar schemes will also be considered. It is expected that up to 6-7 PFIs will be selected initially and more institutions can be included as the PCG is rolled out. PFIs can be both private banks and public sector banks.

Coverage of the PCG will be partial as per the World Bank Group Principles, covering 50 percent of the loan amount pari-pasu. The PCG will operate on an individual loan basis and pricing will be designed in order to minimize market distortions. Only loan applicants who are benefitting from capacity building and matching grant under the project will be eligible under the PCG scheme. This will help reduce default risk but also ensure that the PCG adheres to the project target group. The PCG, will operate on an individual loan level rather than a portfolio level. During implementation, pricing and recovery models will be further developed so as to minimize market distortions and reflect risks and administrative costs. The proposed maximum loan size eligible for PCG could be US\$500,000, in line with the financing needs beyond the matching grant, with maximum loan maturity of 7 or 8 years. Loan eligibility criteria will be developed to ensure that the loans are for productive purposes within the scope of the matching grants sub-component.

1. Component 2: Productivity Enhancement and Diversification Demonstrations (US\$ 62.31 million, IDA US\$ 58.63 million). The component aims at supporting smallholder farmers

to produce competitive and marketable commodities, improve their ability to respond to market requirements, and move towards increased commercialization. Expected component outcomes include: increased market and orientation of farmers individually and in farmer producer organizations; enhanced agricultural commercialization; and the demonstration and introduction and adoption of innovative technology packages. Component 2 comprises the following subcomponents and activities:

a) Sub-component 2.1: Farmer Training and Capacity Building (Total Cost US\$ 6.20 million, IDA US\$ 6.20 million), supporting knowledge building and capability improvements of smallholder farmers and the establishment of farmer organizations to help them to respond better to market opportunities

Individual farmer capacity building will be implemented through a comprehensive training program through a selected national training service provider in coordination with the national agricultural extension service system and include the: (i) development of detailed curricula building on existing elements of curricula under the theme of farming as a business. This will include training modules on markets and marketing understanding, record keeping at farm levels, preparation of crop and livestock budgets (calculation of production costs and cash flows), use of modern communication technology (SMS, internet, IT based systems, etc.), farm level risk assessment and mitigation, etc.; (ii) preparation of a roll-out strategy for up to 600 villages; (iii) training of some 10 master trainers and some 200 Trainers of Trainers, and (iv) rolling out the training to villages across the country, using a farm business school approach with a combination of classroom and villages on-farm training.

Farmer Producer Organization training and development will include the following activities, which would also be carried out through contracted national service providers: (i) a rapid value chain and farmer producer organization assessments to prioritize the key value chains where farmer organization and joint action is critical for commercialization and value addition. This activity would also assess potential market opportunities; identify existing constraints; devise solutions to address them, and determine the corresponding capacity building needs. The assessment will also include a stock taking of existing farmer producer organizations, their size functions and bottlenecks for business development.

The sub-component would further support: (ii) a training needs assessment of existing and potential farmer producer organizations; (iii) development of detailed curricula development, including training modules on group formation and registration, legal requirements, farmer producer group management (meetings, record keeping, financial planning, market and marketing understanding), commercial lending, use of modern communication technology (SMS, internet, IT based systems, etc.), etc.; (iv) preparation of a roll out strategy for reaching out to some 500 farmer producer groups; (v) training of some 10 master trainers and some 200 Trainers of Trainers; (vi) rolling out the training to some 500 existing and new farmer producer organizations; (vii) the provision of basic office equipment (computer, office furniture) for farmer producer organizations; and (viii) formal legal registration cost.

The activities will be supported by an organizational development specialists (facilitators) to be placed in the provincial agricultural offices. It is expected that most of the trained and established farmer producer organizations would become eligible for application under the Matching Grants Program under Component 1.

(b) Sub-component 2.2: Modern Agriculture Technology Parks (Total Cost US\$ 33.44, IDA US\$ 33.44 million), supporting the introduction, demonstration, and scale-up of innovative agriculture technology packages that are not yet available or practiced by smallholder farmers but would support productivity improvements, diversification, commercialization, more sustainable and climate resilient production patterns (high value products, new varieties, technology, soil, water, fertilization etc.).

The sub-component will support 7 agriculture technology demonstration parks in the selected districts of Jaffna, Mullaitivu, Anuradhapura (Northern Province), Batticaloa (Eastern Province), Monaragla (Uva Provinces), Matale (North-Central Province), and Polonnaruwa (Central Province) which have been identified based on high poverty headcounts and agriculture development potential.

Table 2: Basic Statistics of the Selected Districts for Agriculture Technology Parks

District	Population	Geographical area (km2)	Agricultural land under small holding (Hectares)	Number of land holdings less than 1/4 acres	Number of land holdings above 1/4 acres
Jaffna	597,000	1,025	16,942	66,526	25,303
Mullaitivu	94,000	2,617	16,293	6,349	11,814
Anuradhapura	893,000	7,179	149,590	26,351	150,613
Batticaloa	541,000	2,854	33,989	78,897	20,890
Monaragala	472,000	5,636	91,869	8,603	81,723
Matale	502,000	1993	50,973	21,154	64,806
Polonnaruwa					

These agriculture technology demonstration parks will be established to demonstrate entire value chain approaches for selected crops, involving: farmer mobilization and training, agriculture production, post-harvest handling and/or processing, and marketing. Each park will include at least eight to 10 entire villages. The number of villagers could be higher depending on the nature of the technology package and the necessary scale to support viable processing units or marketing channels. In each district, these parks would seek to establish profitable farmer companies at a larger scale; support employment of local communities; improve food security and diversification; integrate food production and supply chains vertically; and bring most advanced modern technologies and best practices to the value chains. This would also include training on technologies, business operation, and marketing. Examples of such technology demonstrations would, for example, include: fruits and vegetables production and marketing systems combination with sprinkler and drip irrigation systems, organic farming, improved homestead gardening combined with greenhouse and tunnel cultivation, fertigation technologies, diversification of rice production systems, and various small-scale processing technologies and others.

Technology demonstrations could also include other field crops and rice diversification approaches.

The sub-component will also support the organization of two international technology for a/ conference in the first and second year of project implementation, inviting international service providers to discuss and present their agricultural development models successfully implemented and demonstrated in similar agro-ecological and socio-cultural environments. Based on the outcome of these fora/ conference, suitable service providers will be invited to prepare detailed proposals for the introduction, pilot testing, and operationalization of new and innovative technologies, and training following a 'turn-key' approach. The approach will focus on topics requiring innovative solutions not necessarily obvious or yet well- known to the local farming communities or farmer organizations or within the government system. Based on a selection and technical review process, private operators/service providers will be contracted under the project to design, implement, operate and ultimately hand-over the technology demonstration parks to the participating communities and farmer producer organizations.

Selection criteria for such demonstrations will include the following: (i) clear innovative elements in the proposed technology demonstration involved; (ii) market-orientation and expected sustainable financial returns; (iii) activity cannot be implemented by the existing public extension service; (iv) demonstration effects which could lead to and expansion and replication in other locations; and (v) Sri Lanka-based private sector institutions, or the local representatives in case of institutions based outside the country, or domestic service providers can implement the activity in cooperation with farmer organizations.

To ensure technology and knowledge transfer to the public extension service, service providers will be required to involve government extension staff and Agrarian Services Departments in the activity, through partnership arrangements that would be specified in each respective contract between the project and the service provider. The detailed implementation modalities of the technology demonstration approach are described in the Operations Manual [to be finalized by negotiations] and will be included in the Procurement Plan.

(c) Sub-component 2.3: Production and Market Infrastructure (US\$ 18.37 million, IDA US\$ 14.70 million), supporting: (i) the up-grading and rehabilitation of small-scale irrigation infrastructure and existing water tanks and irrigation systems in the selected priority project areas and linked to the agriculture technology demonstrations parks; (ii) the improvement of selected production and market access roads and construction of new field access tracks to improve transportation, access to markets and accessibility for agricultural machinery; and (iii) village level storage and product handling facilities, including drying platforms and sheds, composting facilities of crop residues, storage facilities and others. Infrastructure investment would complement investments in the agriculture technology demonstration parks under sub-component 2.2. Procurement and management of civil works contracts would be under the responsibility the Provincial Councils through the Provincial Project Management Units (PPMUs) and would be implemented in close coordination with the PMU of MOA.

(d) Sub-component 2.4: Analytical and Policy Advisory Support (Total Cost US\$ 4.30 million, IDA US\$ 4.30 million). The component will provide support to: develop an evidence-based policy, legal and regulatory framework; address knowledge gaps as well as policy and regulatory inconsistencies as they may arise from time to time with policy decisions emanating from different parts of the government; and formulate sector and sub-sectoral strategies to provide the suitable enabling environment for a sustainable and competitive modern agriculture and food system. The expected outcomes of this component include: policy analysis integrated into the government's policy decision making process; a strengthened socio-economic analytical foundation in the formulation of long-term sector and sub-sector development strategies; improved coordination across various parts of the government on economic policies and regulations affecting the enabling environment for private investment in the agriculture and food sector.

The sub-component will be implemented by the Center for Agriculture Research Policy (CARP). Day-to-day activities will be managed by a small policy unit to be established in CARP with project support. The unit would report to the Chairman of CARP, a position held by a highly-respected person with convening power across Ministries and disciplines to affect proper coordination and link with the higher level economic and political decision-making processes.

The sub-component will facilitate access by key government decision makers to the best available analytical expertise and policy advice to: (i) evaluate policies and regulations and recommend adjustments, reforms or new policies needed to make agriculture more competitive, responsive to market demand, sustainable, and resilient; (ii) undertake strategic market analysis for promoting new and high value exports, and analyze the changes needed in the policy, regulatory and institutional framework, or public investments needed to address the binding constraints to the evolution of high impact value chains; (iii) evaluate the social and economic impact of policies and public expenditures and make recommendations on course corrections to improve the efficiency and effectiveness of public expenditures; and (iv) undertake external and independent monitoring and evaluation functions, including formal impact evaluations of government programs and investments, to provide the critical learning and feedback loop into the ministries' decision making processes.

The specific responsibilities of CARP will be to: (i) develop an annual program of studies and analytical work at the start of each year; (ii) based on study findings guide the technical and policy level consultations and discussions of the CPCU and the participating ministries; (iii) monitor the consistency of economic policies across various parts of the government; and (iv) host an annual conference on Sri Lanka's agricultural policy with the participation of top policy makers in various concerned ministries and departments, academics and researchers, private sector representatives engaged in agriculture and food business (both domestic, imports and exports), and other stakeholders participating. The conference would bring together available knowledge on topical subjects and identify priority analytical and policy research topics that would constitute the component's annual work program for the following year. The policy analysis and research program would be implemented through a multi-year framework agreement with a competitively selected consortium of domestic and international researchers to provide independent and objective

analysis. Competition will be open to both local and international agencies/consortia with the proviso that local bidders would have to partner with a reputable and well recognized international research organization, and that the international bidders will have local institutional collaboration with a University or researcher organization or a local consortia of researchers.

This sub-component may also provide some limited support for equipment to MOA proposed Center of Excellence and some start-up support to conceptualize a *National Information System for Agriculture*, with the medium-term objective to build capacity for data collection and management in support of policy formulation, enhanced public service provision, and improved risk monitoring in agriculture. The system would promote the coordinated organization, standardization and integration of data and information, supported by remote sensing and meteorological data and analysis capacity, and enhance communication and interoperability between the various agencies and accessibility to the public and private sectors.

Component 3: Project Management, Monitoring and Evaluation (Total Cost US\$ 8.02 million, IDA US\$ 7.74 million). This component will support the PMUs of MOPI and MOA in project management and coordination, technical supervision, financial management, procurement, social and environmental safeguards, and monitoring and evaluation (M&E). The component will support: (a) project orientation workshops, training and study tours; (b) engagement of technical assistance and short term experts for overall project management; (c) design and installation of a project M&E and Management Information System; (d) M&E surveys and reviews (baseline, midterm and end of project impact evaluation through an external agency/ institute); (e) the regular supervision of environmental and social safeguards implementation; (e) procurement of office equipment, office renovation or rental, and vehicles; and (f) incremental operating costs. The component will provide support to the Provincial Project Management Units (Northern, North-Central, Central, Eastern, Uva) to recruit PPMU staff and for training in project management and operational expenses.

1.2 Pest and pesticide management implications of project activities

While the project is expected to bring positive environmental benefits to the project areas through the introduction and expansion of modern technology that promotes sustainable practice and applications that help improve current cropping patterns and farming methods, increase efficiency in the management of water resources, protect agriculture soils, and roll out integrated pest management. The diversification and intensification of agricultural activities under the project could to lead to changes in the application of pesticides for pest and disease control. As per the World Bank safeguard policy Pest Management (OP 4.09, this standalone Pest Management Plans (PMP) has been prepared for the project based on Integrated Pest Management (IPM) principles. The PMP describes the relevant national regulatory framework, current status of pest and disease control, monitoring and supervision mechanism, major experience and problems, and lessons learnt from past projects. It specifies a means of assessing and documenting the range of non-chemical methods used for pest management in the form of IPM across the country, the preparation of a detailed action plan and a training and monitoring program to facilitate implementation. A list of all chemicals needed for the project that meet Bank requirements, which also comply with the World Health Organization's recommended categories, have been included in the PMP. The project will not partake in the procurement of pesticides or pesticide application devices.

The following Pest Management Plan (PMP) has been prepared in order to address the concerns related to the risks associated with the envisioned possible increase in the use of pesticides that will result from project as a whole and roll out Integrated Pest Management within the project in a strategic manner, while meeting safeguards requirements.

Under the Matching Grant Program (MGP), presented in Component 1 and implemented by the MoPI, sub project specific pesticide management aspects will be captured via the environmental screening and management due diligence mechanisms outlined in the Environmental Assessment and Management Framework of the project

The following PMP also identifies stakeholders and the institutional arrangements via which it is to be implemented.

1.3 Common eenvironmental consequences of pesticide use in Sri Lanka

In all instances where pesticides-dependent pest control practices are adopted Island Wide, pesticide misuse is known to be common and results in a number of environmental consequences that can threaten the subsidence of agriculture and life itself in localities they are used. Some of the key consequences that have been eminent are listed below.

- Destruction of pollinators of crop plants leading to poor crop yields
- Elimination of the natural enemies of pests and consequent loss of natural pest control that keeps the population of crop pests very low.
- Development of pest resistance to pesticides, encouraging further increases in the use of chemical pesticides
- Contamination of the soil and water bodies
- Pesticide poisoning of farmers and deleterious effects on human health □ Loss of bio-diversity in the environment, particularly of aquatic species.

Considerable attention must therefore be paid to the environmental consequences of current pest management practices adopted within the agriculture sector. Key mitigation measures are therefore required to address those concerns, these are highlighted in **Table 1** below.

Table 1-Key Mitigation Measures to be Included in the proposed PMP to combat major issues identified

Major Issues	Actions required
1.Increased use and reliance on chemical pesticides	Promote adoption of IPM practices through farmer education and training via agriculture extension services
	Move farmers away from pesticide dependent pest control practices and promote use of botanical pesticides and biological controls.
2.Change current pest management practices	Allocate adequate resources to implement National Plant Protection policy, Increase IPM awareness among policy makers and farming community
3.IPM research and Extension	Strengthen IPM research at National level and strengthen IPM extension
4.Environmental hazards of pesticide misuse	Create public awareness of the hazards of pesticide misuse through public awareness campaigns
	Regular assessment of pesticide residuals in irrigated agricultural production systems and in harvested produce
	Monitoring of pesticide poisoning in farming and rural communities

1.4 IPM Strategies in Sri Lanka

IPM was introduced as the most appropriate strategy for pest control in the agriculture policy prepared by the Government of Sri Lanka in 1995. The DOA plays a vital role in the promotion and preparation of the country's IPM programs and are responsible for conducting research, training and transfer of technology via their existing extension services island wide. Local nongovernmental organizations such as the 'Sarvodaya Movement' also provide training on IPM practices to rural farming communities. In 1984, the DOA launched the Rice IPM Program, with the assistance of FAO. Termed the Integrated Pest Control (IPC) program, at its inception, it focused on applied research in the field and conventional approaches to extension. Demonstration plots were prepared and used to educate farmers on the various components of

IPC. This included the use of resistant varieties of paddy and use of native biological controls against common pests. Over a 100,000 farmers were trained under the IPC program over a course of five years up to 1990. The IPC also used Strategic Extension Campaigns (SEC) via a national level multimedia campaign for rice IPC addressing specific issues identified during the field research stage, which was designed specifically to address. Even though the IPC program was successful at its inception subsequent evaluations on the impact of IPC on the farmers indicated that it was difficult for IPC trained farmers to arrive at correct decisions on what action to take when they were faced with pest problems in the field. They depended on extension officers for these decisions, creating a setback in its adoption.

However, in 1994 the IPC program was renewed with a revised objective. It made an emphasis on improving the quality of training with the objective of making farmers independent decision-makers for their own cultivation practices. Farmer Field Schools were established and up until 1998 and, 76 master trainers and over 300 extension officers from the government sectors and 90 officers from the private sector NGOs along with about 10,000 farmers were exposed to this approach according to the FAO. Thus this program currently runs via the extension services that run island wide. A number of donor funded projects, such as the FARM project implemented pilot Programs for Food Security has included IPM in their program and FFS as the training approach. In 1998 The Ministry of Agriculture and Lands also launched a program to increase the production of rice through large tract demonstration. This program targeted to obtain a yield of over 6 tons/ha. The government provides seed and fertilizer on loan. IPM is taught through FFS, thereby making those farmers good managers of their crop. It was post 1998 that the DOA began extending IPM practices to other field crops, predominantly to high value crops such as Chilli. At present, Research Division of DOA has developed IPM technology packages for vegetables such as bitter gourd, snake gourd, luffa, okra, brinjal, capsicum, tomato and radish. These packages have been put into practice in farmer fields in Hambanthota district during the Yala Harvesting period from 1998-2000 and yielded good results.

Support services for IPM does exists in Sri Lanka, even though a particularly planned strategy is yet not in place, Traditional IMP knowledge as well as via programs run by the DOA and other organizations farmers do use IPM practices in the field. However no studies have been conducted to deduced the extent to which IPM is practiced nationwide. The DOA documents that IPM is gaining increasing popularity among the local farming community since the adoption of experimental learning approach of FFS. The trained farmers are more knowledgeable about both the environment and agriculture. Pesticide use has changed with farmers adopting a more rational approach it its use. Follow-up studies in 1999 showed that the IPM-FFS program has created a clearly discernible impact with desirable consequences. This can be taken as a positive indicator that the DOAs attempts to implement IPM has succeeded to a certain degree and can be further strengthened.

1.5 The need to document and plan out current IPM activities

At present the DOA demonstrates some IPM practices only for paddy cultivation outside the project area, details on IPM activities and potential are discusses in the following sections. IPM was heavily promoted across the country via community driven development programs funded by doner agencies over the last decade. Extensive training Very little resources are currently invested for IPM research and development as well.

The project area spans across the country, where a range of agricultural practices are adopted based on a diverse array of agro-ecological conditions of each district. On the whole major crop species cultivated by farmers in Sri Lanka are paddy, tea, rubber coarse grains, vegetables, and fruits. Spices are included under

the category of minor export crops. The main agricultural products produced, and volumes harvested annually over the last decade are presented in. Crops are grown in private plots, owned by local farmers and range between 1-2 acres.

A study conducted by the Department of Agriculture (DOA) in four major vegetable growing Districts in Sri Lanka showed that 85% of farmers in the Badulla district applied pesticides to their crops before the appearance of any pests or symptoms. In the Nuwara Eliya this was recorded at 66%. This shows that even though chemical controls are used even before pest damage has exceeded economic threshold levels and the use of pesticides as a precautionary measure has become common.

While such small scale studies have been conducted via different projects and programs, there is a dire need for a national assessment of current pesticide use mechanisms. There is a large gap in considerable information assessing the current pest management practices as well as the success of the government's current IPM program in the country on a national scale, thus the first step in the implementation of the PMP under the project will be to fill all existing knowledge gaps and undertake priority planning to be executed during the project period.

Chapter 2: Pesticide Use and Management

2.1 Trends in pesticide use and pest control in Sri Lanka

Pesticides have been in use in agricultural practices in Sri Lanka since the 1950s, yet pesticides are not manufactured in Sri Lanka to date. Due to the positive trends observed via the scope and use of pesticides their import has grown over the years. All pesticides are imported as finished or formulated products or as technical grade materials for local formulation. There is very little solid statistical data available in the country to deduce the amounts and variations based on geography of pesticide use. Statistics on pesticide imports are among the few reliable indicators of quantities of pesticides used in agriculture. The DOA has conducted studies on pesticide use and attempt to monitor their use as well. In 1977, liberalized policies lead to an increase in the import of pesticides, favoring direct importation of finished products rather than intermediaries required for local formulations. According to the DOA, annual pesticide imports comprise mainly of herbicides, insecticides and fungicides and their use has shown a notable increase during the 1990s. It is clear that pesticide consumption has risen over time and continues to fluctuate with changes in planted acreage, infestation levels and other factors such as farm product prices. Herbicide consumption fluctuates around 2,300 tons per year. Insecticide consumption had increased by 25 per cent in 1999 (2,428 tons) compared to the previous year (1,942 tons), as per the data collected by the DOA. A list of banned pesticides is maintained by the DOA and made available to the public as well (Annex 1). However the DOA has not sorted and compiled different lists for herbicides.

The DOA also records that insecticide use in rice declined as a result of the Integrated Pest Management (IPM) Program, but increased on vegetables and other field crops like chili and onion. Vegetable growers most commonly depend on insecticides, typically used in heavy doses, followed by fungicides. Weedicide is not used to a great extent in vegetable production, except by farmers who cultivate onions. An array of insecticides is adopted and very little attention is paid to conforming to application frequencies, quantities and health and safety indications. Local farmers commonly misuse pesticides, mixing different varieties and striving to over application for better results, unaware that toxicity levels often increase and misuse facilitates greater environmental and health hazards. According to pesticide consumption data from 1995 to 2000, collected by the Food and Agriculture Organization (FAO), organophosphates were the highest used pesticide category within insecticides, amides in herbicides and dithiocarbamates in fungicides, within Sri Lanka.

Locally, pest control depends mostly on the use of synthetic pesticides. Ready-to-use products that can easily be procured from local vendors and applied when and where required. Abuse and misapplication of pesticides is a common phenomenon in Sri Lanka. Farmers often totally disregard recommendations and strive to indiscriminate use of pesticides based on their own experience. Some farmers do not have sufficient information and knowledge on the safe and efficient use of pesticides also. Even though many farmers are aware of the detrimental effects of pesticide use, due to the economic gains involved it still remains the most popular method of pest control. Awareness on implications to human health, the environment and crop ecosystems have still not been able to drive a strong push towards alternatives to exclusive chemical pest control, like varietal resistance and IPM. Thus awareness and transfer of technical knowledge structured over the economic benefits of green/sustainable agriculture plays a key part in altering existing trends in pesticide use and pest control.

2.2 Control of pesticide use in Sri Lanka

According to the FAO continuous dependence on use of pesticides had brought a dramatic increase of imports since the enactment of the Pesticide 31 Law, from 2 309 metric tons in 1980 to 5 120 metric tons in 2003 A comprehensive pesticide control procedure is in existence within the country yet enforcement is low. The process includes; the registration of products, risk/benefit analysis, field monitoring and enforcement, laboratory testing, imports regulations and banning and restricting. Over the years, the use of 4 pesticides has been prohibited and these products have been banned. Only registered pesticides can be imported in to the country and they are also classified under the customs ordinances. A stringent process that allows only limited trial quantities of 10lites/kilograms and requirement of written approvals by relevant officials is in place. However even with controls and awareness facilitation programs are in place they are not exercised at the user level fully, the long term consequence of misuse are often overlooked.

2.3 Circumstances of pesticide use and competence to handle products in agricultural areas

Presently, farmers have been noted to use pesticides more as a precautionary and/or typical practice rather than as a requirement. Types of pesticides commonly used are; Admire, Imdacloprid, Thamethofam, Acetamiprip, Sulphur and Abamecgin. All these pesticides are systemic substances. The frequency of application recommended is 3 to 4 times depending on the crop period. However consultations with local farmers indicate that frequency of pesticide application in the area exceeds the times recommended. In the long run this can create pest resistance towards pesticides.

Even though awareness programs on the handling, proper attire and safe practice associated with pesticide use is conducted via training and media campaigns, it is observed less in the field. Protective gear is expensive and not worn in most cases due to the high cost. Thus pesticide users are not sufficiently protected during use. Proper storage of pesticides is also not conducted in a safe manner. Half full pesticide bottles are often disposed at the sites or with municipal solid waste, leading to contamination of water ways. 90% of farmers use knapsack sprayers while only 10% use power sprayers. The major issue in the project area encountered in terms of pesticide application is the nozzle used. The recommended nozzle is hollow cone and most of the farmers use flat fan nozzle where outflow is doubled when compared, according to the DOA. The cost incurred for this is doubled creating a lot of environmental issues as well as toxins are directly sprayed in to the air contaminating the surrounding environments as well.

Both local electronic and print media, in collaboration with Non-Governmental Organizations (NGOs) and/or the DOA conduct campaigns to inform the public and farmers if consequences of indiscriminate use of pesticides. Technical information if disseminated via extension services and district agriculture officers as well. Demonstration programs, agricultural radio/television programs on the detrimental effects of pesticide misuse and proper means of use are conducted. There is also an increasing lobby by the public and NGOs for stringent control of pesticide use and a growing market for organic produce.

The project will focus on strengthening awareness and education via comprehensive trainings and continuous support. The project expects via its PMP to train farmers on the safe handling of pesticides, proper storage ,selection of appropriate application equipment, enhance farmers knowledge and understanding the hazards and risks of pesticides and safe removal of containers etc. One of the main aims is to help strengthen the existing agricultural extension services in the project areas on pesticide

management to ensure the sustainability of the existing system and that farmers have support post the project activities.

2.4 Assessment of risks

Studies and data on pesticide poisoning and environmental contamination caused by pesticides are hard to come about in Sri Lanka. There are no systems in place that regularly monitor the risks associated with the use of pesticides. There are reports of health problems such a liver disorders, cancers often attributed to long term exposure to pesticides as well as lung disorders and skin disorders associated with short term exposure, recorded by local health clinics. However no validated and statistically analyzed data is available. The only quantified human health risk related data with regard to pesticides is on suicide rates. Studies have identified Sri Lanka as having one of the highest suicide rates in the world with 80% of this being attributed to Pesticides. Training that is to be provided to farming communities via this project will therefore focus some attention on risks associated with pesticide use and methods of minimizing and managing pesticide poisoning when they occur.

2.5 Promoting IPM in the context of current pest control practices

A small number of farmers also use IPM but along with nominal amounts of pesticides in poly tunnels and home gardens. The project already promotes IPM as part of its environmental management practices among communities in the project area. Activities such as awareness, training and technical guidance are provided to those who partake in agriculture. According to the project IPM has been able to reduce dependency on pesticides to a small extent. It was recorded that via IPM implementation farmers were able to benefit by 25-30 % saving/profit in an acre. The prevailing situation where pesticides are readily available at nominal prices affordable to farmers encourages "unreliable quick-fix pest control approach" which very apparent throughout Sri Lanka. This also creates a major disincentive for farmers to adopt integrated pest management practices which is the most sustainable and environmentally sound strategy for pest management. Even though the government promotes IPM within the paddy agriculture, neither the Department of Agriculture nor any other organization has focused implementing IPM as a national program in vegetable and other crop production. Some farmers do have an indigenous and traditional knowledge for pest control but rarely implement these strategies. There is a general awareness on the benefits of adopting IPM but farmers require much more awareness and education in this arena as well as technical support throughout to help them make the switch in a sustainable manner.

It is proposed to encourage and introduce bio-pesticides as a part of IPM. The project expects to work closely with Department of Agriculture and Registrar of Pesticides to strengthen IPM activities in a manner that will sustain. Over the last decade extensive training on IPM and the adverse effects of pest management have been conducted via projects and programs in the community driven development sector, yet the sustainability of these initiatives are still not known fully.

Chapter 3: Policy, Regulatory framework and institutional capacity

3.1 National Environment Act

Sri Lanka's National Environmental Act of 1980's controls the discharge and disposal of pesticides in to the environment. Based on the limits set by Australia, European Commission countries, India, Malaysia and the Codex Committee on Pesticide Residues, the maximum permitted residue levels of pesticides in food have been set by the Sri Lanka Standards Institution.

3.3 Control of Pesticides Act

The Control of Pesticides Act No. 33 was enacted in 1980 for the licensing of pesticides, in order to impose controls on the pesticide industry. The regulatory framework looks at the import, packing, labeling, storage, formulation, transport, sale and use of pesticides. It also deals with the criteria for the appointment of a licensing authority for pesticides, for the establishment of a pesticide technical and advisory committee and for matters connected therewith or incidental thereto. All regulations with regard to pesticide products, including those used in agriculture, public health, domestic, industrial and veterinary etc. come under the purview of the Act.

3.4 Process of pesticides control

Sri Lanka has set up a comprehensive pesticide control process which includes the registration of produces, risk/benefit analysis, field monitoring and enforcement, laboratory testing, imports regulations, and banning and restricting of pesticides. Up to 41 pesticides have banned and their use prohibited and the use of 11 insecticides has also been restricted. Support is to be provided via extension services run by DOA as well.

3.5 Services Provided by Seed Certification and Plant Protection Service (SCPPC)

Currently the SCPPC of the MoA has been involved with work with regrade to the control of pesticide use and promotion of IPM services. Specific areas that the SCPPC works on have been presented below. Formal tasks under taken by the Office of Pesticide Registrar as outlined below are no handled by the SCPPC.

- Introduction of integrated pest management (IPM) program to leafy vegetables
- Registration of Pesticides
- Certification for Pesticides dealers
- Certification for seller
- Field compliant on pesticides
- Awareness/ Training on Safe & effective use/handling of Pesticides
- Pesticide Analysis

3.5 Services on Pesticide Registration

The former Office of Pesticide Registrar (OPR), which is now under the SCPPC was established in 1983, with the authority to set regulations and standards for pesticides in Sri Lanka. The OPR deals with a number of complicated issues when controlling pesticides, aspects such as the use of less toxic chemicals, and the economic implications-for the country and for individual farmers when imposing limits on the availability

of certain pesticides. The public health implications of the Registrar's decisions are obviously of great import. The office of the Registrar of Pesticide has the national responsibility to ensure that only pesticides of the highest quality and are least hazardous to human health and the environment are available in the local market. The following activities are those that are currently conducted by the OPR.

- 1. Registration of pesticides: A pesticide can be registered as valid for use for a period of 3 years. For re-registration, every pesticide is re-assessed based on new standards and information on safety and efficient use in relation to human health and environmental aspects.
- 2. Field enforcement: The pesticide dealer certification scheme is carried out in collaboration with the provincial field enforcement staff and the Mahaweli Authority of Sri Lanka. The certificate mandated to a particular pesticide dealer has a validation period of a year, unless otherwise cancelled for specific reasons.
- 3. Inventory of Persistent Organic Pollutants: To execute the National Implementation Plan under the Stockholm Convention, an inventory of POP was prepared in collaboration with the Ministry of Environment and Natural Resources. Although the nine pesticides designated under the convention have already been banned, adverse effects on human health and the environment could occur due to residues from past use as this group of pesticides is long persistent and bioaccumulated.
- 4. Pesticide quality: Quality of a pesticide is a major factor determining its efficacy and impact on the environment and human health. Quality pesticides should have the correct active ingredients, other adjutants and solvents with required physical and chemical standards as set out by the FAO and World Health Organization. The quality is also monitored and noted by the OPR.

3.6 Pesticides Technical and Advisory Committee

The Pesticides Technical and Advisory Committee is the statutory body of the Control of Pesticides Act that makes national policy related to pesticides and assists the Registrar of pesticides on technical issues related to enforcement of the Act. This committee consists of experts and ex-officio members of relevant institutes. These members include the General of Agriculture (Chairman), Registrar of Pesticides (Secretary), Director General of Health Services, Director General Sri Lanka Standards Institute, Director General Central Environmental Authority, Commissioner of Labor (Occupational Health), Government Analyst, Director of Tea Research Institute, Director of Rubber Research Institute, Director of Coconut Research Institute, a representative of the Attorney General, and five expertise in related discipline

3.7 Effectiveness of legislation

In spite of the legislations and institutional mechanisms in places, pesticides are heavily misused posing both environmental and health hazards. It is estimated that annually about 16,000 pesticides related poisonings are reported in Sri Lanka. Approximately 700,000 kilograms of pesticides are imported annually. Almost every rural grocery store has shelves full of many brands of pesticides and over 100 chemicals, including Malathion in more than 200 formulations, are sold. Liquid preparations of pesticides can be lethal in minute doses. Enforcement of these regulations and strengthening of the existing institutional structure is essential to ensure pesticide management is conducted in a manner sustainable and the detrimental effected they have are controlled.

Chapter 4: Implementation of the Pest Management Plan

The activities proposed for implementation under the Pest Management Plan are based on the following objectives; to promote and support safe, effective, and environmentally sound pest management in agricultural interventions undertaken under the ASMP. The Plan further presents components to strengthen such capacity. The activities promotes the use of biological and environmental control methods and the reduction in reliance on synthetic chemical pesticides and they addresses pest management issues in the context of the project's key interventions.

4.1 Assessment of existing situation and preparation of action plan

There is a large gap in considerable information assessing the current pest management practices as well as the success of the government's current IPM program in the country on a national scale. Therefore, the PMP proposes that a detailed assessment of the pest management practices that are currently ongoing are conducted. The results of this assessment are then to be used in the preparation of an action plan to be implemented via the SCPPC focusing on the following actions. The action plan should outline and recommend measures with regard to the following areas.

- Strengthening pest forecasting.
- Promotion Agronomic Control
- Promotion Physical Control
- Promotion of Biological Controls
- Chemical Control

The general norm of the action plan should be once pest or disease occurs in cultivation areas, agricultural control measure should be firstly considered, physical and biological measures secondly considered. Chemical drugs shall be lastly adopted only when all other control measures have failed and the pest/disease damage exceeds the economic threshold. When chemical drugs are applied, attention shall be made to select pollution-free drugs to reduce the drug resistance of the pests and avoid pollution to the environment.

The main goal of the action plan is to carry out integrated pest and disease control which is targeted to control harmful creatures, improve safety level of agri-products, protect ecological environment, and improve farmers' quality, reduce the reliance on chemical pesticides and keep the pest damage under economic limit. Its core contents are (1) Control pests but not kill pests; (2) try to use non-chemical measures to keep the pest quantity at low level; (3) when chemical drugs are unavoidable, try to keep the impact of the pesticide to environment and human being at minimum level; (4) Establish standard IPM technical system based on the local conditions, combining agricultural, biological, ecological, physical control measures and pest trapping techniques to maximally substitute or reduce the use of chemical drugs and avoid killing pest predators and environment pollution so as to keep the pest/disease damage under durable level.

In addition the action plan will also identify knowledge gaps and outline mechanisms to strengthen these gaps, in building the capacity of the SCPPC in implementing the tasks mandated to them.

This exercise will be undertaken by the project PMU simultaneously to other activities such as technical capacity building and awareness programs which will be conducted in the field to strengthen existing initiatives in Pest Management.

Sectoral Guidelines Applicable to the Project

The World Bank group's industrial sector environmental health and safety guidelines developed for the agriculture sector, present detailed guidelines on the management of pesticides within agricultural activities. The following sub-sectoral guidelines need to be followed in detail during PMP implementation and the key guidance documents for best practices.

1. Perennial Crop Production

These guidelines includes information relevant to large-scale plantation crops and out grower systems and focuses on the primary production and harvesting through farming and plantation forestry of major multi-year food, fiber, energy, ornamental, and pharmaceutical crops, located in both temperate and tropical regions. It includes tree crops (such as olives, citrus, coffee, rubber, eucalypts, and cacao) as well as banana, sugarcane, and palm oil. It does not include the processing of raw materials into semi-finished and finished products.

2. Annual Crop production

These guidelines includes information relevant to large-scale production, harvesting, post harvesting processing and storage of major annual crops, including cereals, pulses, roots and tubers, oil-bearing crops, fiber crops, vegetables, and fodder crops, located in both temperate and tropical regions. It does not include the processing of raw materials into semi-finished and finished products.

All guidelines highlighted above may be downloaded via the following link:

 $http://www.ifc.org/wps/wcm/connect/topics_ext_content/ifc_external_corporate_site/ifc+sustainability/our+approach/risk+management/ehsguidelines$

4.2 Awareness creation via the preparation of strategic communication materials

Awareness creation on the ill effects of pesticides there will be done targeting applicants of the Matching Grants Program and the project areas covered under Component 2. These programs will include along with project beneficiaries, various stakeholders residing in the project area, including the community, government officers, project staff and local politicians. Awareness materials include posters, flyers, brochures, etc. These will be made available via the SCPPC and Agriculture extension offices. The following key areas will be covered via the material prepared.

- Integrated Crop Management
- Integrated diseases management
- Integrated weed management
- Health issues of pesticide application
- Safe use of agrochemicals
- Steps in integrated pest management

Awareness material developed will be technically sound, comprehensive and made legible for layman in order to disseminate the message effectively. These will be prepared in the native languages, either Tamil/Sinhala, based on the project area.

4.3 Building technical capacity via training

Training of beneficiaries and relevant stakeholders on pesticide management and safe use of pesticides will be conducted with the following areas in mind. (Annex 3 presents Guidelines for Technical Training on PMP/IPM)

- Detrimental effects of pesticide use to human health/environment
- Decision making in use pesticides
- Transport, storage ,handling and distribution of pesticides
- Safe application of pesticides
- Risks on handling and use of pesticides
- Managing risks and pesticide poisoning via green mechanisms
- Intergraded Pest Management

Training programs will first be conducted among the project beneficiaries, successful applicants of the MGP, project/field staff and will also target local DOA officers, stationed in the project area. It is proposed that this program be conducted by reputed pest management specialists with experience working in Sri Lanka. This will thus provide the existing project staff with the capacity to conduct training programs in the field. Training material will be prepared comprehensively and cover the key areas highlighted prior, fashioned as a guidance book for long term use and support post training.

4.4 Research and Development

Research and innovations are important to test new IPM practices especially for vegetable and potatoes cultivations which are major crops cultivated in the project area. The DOA is yet to implement IPM practices for these crops. The project will support IPM research and development through Farmer participatory IPM research to be funded from competitive research grants that are available locally and internationally. Research opportunities can either be given to students from local universities studying agriculture or DOA staff members.

4.5 Field Demonstrations

Field demonstrations are the practical way of convincing farmers on IPM practices, establishment of a Farmer Field School (FFS). FSSs can actually show farmers the successful crop yields that can be expected by IPM implementation and demonstrate user friendly mechanisms. This will assist in changing set mindsets and educate farmers on the programs, driving them to implement them as well.

4.6 Proposed implementation action plan

Activity/Sub activity	Number	Timeframe	Estimated Budget (SLRs.)
Initial Assessment and preparation of national level pest management action plan	1 Report	Prior to 6months from the project effectiveness date.	500,000

1.Awareness creation and	preparation of	f communication n	naterials
1.1National level program with participation of high level officials, including the Director General/Agriculture Department, Registrar of Pesticides, Project Director and other relevant institutional heads		Every 2 years	400,000
1.2 Awareness program for the field level project staff and field level MoA and DoA staff and		Beginning and Midterm of project	200,000
1.3 Preparation of communication materials on IPM, safe use of agrochemicals, risk and hazardous impacts of pesticides	1 Video 10,000 brochures		800,000
1.4 Preparation of guidance booklet on IPM practices	01		150,000
2.Training			
2.1 Training of project staff and MoA on IPM	4		400,000
2.2 General awareness programs for farmers of the project area and successful applicants of the Matching Grant Program environmental impacts of pesticide application and IPM	20	5 targeted programs per annum	1,000,000
3.Rese	arch and Devel	opment	
3.1 Study areas to be identified post the assessment	02		150,000.00
4.Fi	eld Demonstra	tions	
4.1 Field demonstration on Vegetable (Farmer Field Schools)	05		200,000
4.2 Field demonstration on Rice (Farmer Field Schools)	05		200,000

4.2 Proposed Institutional Arrangement

Project implementation will entail the creation of project management unit (PMU) at both the MoA and the MoPI. The PMU of the MoA will take the lead in rolling out the pest management plan, due to the prior

experience and mandate of the MoA of agriculture within this thematic area. Both PMUs will work in close collaboration in ensuring that all awareness program campaigns and technical trainings services are fully extended out the applicants of the MGP managed under the PMU of MoPI.

The Environmental Officer at the PMU in MoA; will be responsible for the implementation of all steps presented under the Pest Management Plan and will establish the following technical groups to facilitate the Initial Assessment and preparation of national level pest management action plan to be implemented via the SCPPC, under their current mandate as well as seek their technical guidance and concurrent in the preparation of a detailed training plan to roll out the technical training component of the PMP and on the preparation and dissemination mechanisms of awareness material.

- A Pest Management Committee (IPM Committee) will be appointed in order to monitor and implement the PMP via the PMU. The PMU IPM committee will be represented by the Environmental Officer of the PMU of the MoA, Environmental officer of the PMU of the MoPI, An Agriculture Instructor of the DOA, and key personal from the Plant protection Services of the MoA and other key MoA officials. This IPM Committee will meet once every month to review activities and make decisions with regard to PMP implementation. They will also review and clear documents produced for awareness, communication and
- National Level Strategic Committee The National Level Strategic committee will be represented by the Additional secretary of the DOA, Project Directors and Environmental Officers of both PMUs, registrar of Pesticides, Assistant Directors. The main role of the National Level Strategic Committee is to convergence on the best practices on IPM among stakeholders and to develop policy guidelines that will strengthen nationwide pest management practices.

The Environmental Officer at the PMU in MoPI will be responsible for the collaboration with the Environmental Officer of the MoA to ensure that successful applicants of the MGP are included in the awareness building and technical training.

Chapter 5: Plan for Monitoring and Evaluation of PMP

Successful implementation of the PMP requires regular monitoring and evaluation of activities undertaken. The focus of monitoring and evaluation will be to assess the buildup of PMP/IPM capacity in the VOs and the extent to which IPM techniques are being adopted in crop production, and the economic benefits that farmers derive by adopting IPM in the villages.

The inclusion of an IPM specialist in project supervision missions is strongly recommended.

Activities that require regular monitoring, documentation and evaluation during project supervision include the following areas in order to note the success rates of awareness programs and technical capacity building programs:

- Numbers of farmers who have successfully received IPM training in IPM methods; evaluate the training content, methodology and trainee response to training through feedback.
- In how many crop production systems is IPM applied?
- Are the numbers increasing and at what rate?
- How has the adoption of IPM improved the production performance of farmers?
- What are the major benefits that farmers derive by adopting IPM?
- Extent to which pesticides are used for crop production?
- Efficiency of pesticide use and handling
- Level of reduction of pesticide purchase and use by the PGs for crop production.
- Number of IPM sub-projects successfully funded from competitive grants
- Number of IPM participatory research projects have been completed.
- Influence of the results of IPM participatory research on implementation of IPM and crop production.
- Overall assessment of (i) activities that are going well (ii) activities that need improvements and (iii) remedial actions required.

Monitoring and supervision plan

During the first year of project implementation, the project Environmental Officer, based in the PMU at the MoA, will design the instruments to be used in evaluation of the activities described in the pest management plan. This will be done with the projects monitoring and evaluation team and in collaboration with World Bank environmental specialist.

Annexes

Annex 1: List of Banned Pesticides in Sri Lanka (Source-Department of Agriculture)

Active Ingredient	CAS Registry Number	Chemical Family	Chemical Name (IUPAC)
2,4,5-T	93-76-5	phenox	2,4,5-trichlorophenoxy acetic acid
arsenic (arsenites and arsenates)	7440-38-2	inorganic	arsenic
binapacryl	485-31-4	nitrophenol	2-sec-butyl-4,6-dinitrophynyl 3methylcrotonate
bromacil	314-40-9	uracil	5-bromo-3-sec-butyl-6-methyluracil
captafol	6/1/2425	thalimide	1,2,3,6-tetrahydro-N- (1,1,2,2tetrachloroethylthio)phthalimide
chlordane	57-74-9	organochlorine	1,2,4,5,6,7,8,8-octachloro- 2,3,3alpha,4,7,7 alpha-hexahydro-4,7- methanoindene
chlorobenzilate	510-15-6	organochlorine	ethyl 4,4 -dichlorobenzilate
DDT	50-29-3	organochlorine	1,1,1-trichloro-2,2-bis (4chlorophenyl)ethane
dibromoethane (EDB)	106-93-4	-	1,2 dibromoethane
dichloropropane	542-75-6	-	1,3 dichloropropane

dieldrin	60-57-1	organochlorine	2,7,3,6-dimethanonaphth-2,3-b/oxirene, 3,4,5,6,9,9-hexachloro- 1a,2,2a,3,6,6a,7,7a- octahydro- (1a.alpha,2.beta,2a.alpha,3.beta,
			6.beta,6a.alpha,7.beta,7a.alpha)

dinoseb/dinoseb salts	88-87-7	dinitrophenol	2-sec-butyl-4,6-dinitrophenol
ethyl parathion	56-38-2	organophosphate	O,O-diethyl O-4-nitrophenyl phosphorothioate
ethylene dichloride	107-06-2	-	1,2-dichloroethane
ethylene oxide	75-21-8	epoxide	dimethylene oxide
fluoroacetamide	640-19-7	luoroacetamide	2-fluoroacetamide
HCH (mixed isomers)	608-73-1	organochlorine	hexachlorocyclohexane
hantaghlar	76-44-8	organochlorine	1,4,5,6,7,8,8-heptachloro- 3alpha,4,7,7alpha-
heptachlor	70-44-0		tetrahydro-4,7-methanoindene

hexachlorobenzene (HCB)	118-74-1	organochlorine	hexachlorobenzene
Legge	21,000,000,5		phosphonothioic acid phenyl-O-
leptophos	21609-90-5	organophosphate	(4-bromo-2,5-dichlorophenyl) O- methyl ester
lindane	58-89-9	ougono shlorino	1alpha,2alpha,3,b4alpha,5alpha,6B-
inidane	36-69-9	organochlorine	hexachlorocyclohexane
maleic hydrazide	123-33-1	pyridazine	6-hydroxy-2H-pyridazine-3-one
mercuric chloride	7487-94-7	inorganic	mercuric chloride
mercuric oxide	21908-53-2	inorganic	mercury(11) oxide
marcury	7439-97-6	inorganic	marquey
mercury	7439-97-0	morganic	mercury
mercury chloride	7546-30-7	inorganic	mercury chloride
methamidophos	10265-92-6	organophosphate	O,S-dimethyl phosphoramidothioate

methyl parathion	298-00-0	organophosphate	O,O-dimethyl O-4-nitrophenyl phosphorothioate
pentachlorophenol	87-86-5	organochlorine	pentachlorophenol
hosphamidon	13171-21-6	organophosphate	2-chloro-2-diethylcarbamoyl-1-
nospitamidon	13171-21-0	organophosphate	methylvinyldimethylphosphate
quintozene (PCNB)	82-68-8	organochlorine	pentachloronitrobenzene
	72-20-8	organochlorine	2,7,3,6-dimethanonaphth-2,3-b/oxirene, 3,4,5,6,9,9-hexachloro- 1a,2,2a,3,6,6a,7,7a-
endrin			octahydro- (1a.alpha,2.beta,2a.beta,3.alpha,6.
			alpha,6a.beta,7.beta,7a.alpha)
			1,4,5,8- dimethanonaphthalene,1,2,3,4,10,10-
aldrin	309-00-2	organochlorine	hexachloro-1,4,4a,5,8,8a-hexahydro-
			(1.alpha,4.alpha,4a.beta,5.alpha,

			8.alpha,8a.beta)
mirex	2385-85-5	-	-
toxaphene	8001-35-2	organochlorine	toxaphene
aldicarb	116-06-3	carbamate	2-methyl-2- (methylthio)propionaldehyde O-methylcarbamoyloxime
chlordimeform	6164-98-3	organochlorine	N -(4-chloro-2-methylphenyl)- N,Ndimethyl-
Cinorumetorm	0104-70-3		methanimidamide
dibromochloropropane (DBCP)	96-12-8	-	1,2-dibromo-3-chloropropane
thalium sulphate	7446-18-6	inorganic	thalium sulphate

Annex 2: Pesticide Classification List – World Health Organization

Table 1. Extremely hazardous (Class Ia) technical grade active ingredients of pesticides (common name) - not permissible in the project

Aldicarb Difethialone Parathion-methyl Brodifacoum Diphacinone Phenylmercury acetate Bromadiolone Disulfoton Phorate Bromethalin Ethoprophos Phosphamidon Calcium cyanide Flocoumafen Sodium fluoroacetate Captafol Fonofos Sulfotep Chlorethoxyfos Hexachlorobenzene Tebupirimfos Chlormephos Mercuric chloride Terbufos Chlorophacinone Mevinphos Difenacoum Parathion

Table 2. Highly hazardous (Class Ib) technical grade active ingredients of pesticides (Common name) – not permissible in the project

Acrolein Ethiofencarb Omethoate Allyl alcohol Famphur Oxamyl Azinphos-ethyl Oxydemeton-methyl Fenamiphos Azinphos-methyl Flucythrinate Paris green [C] Blasticidin-S Fluoroacetamide Pentachlorophenol Butocarboxim Formetanate Pindone Butoxycarboxim Furathiocarb Pirimiphos-ethyl Cadusafos Heptenophos Propaphos Calcium arsenate Isazofos Propetamphos Carbofuran Isofenphos Sodium arsenite Chlorfenvinphos Isoxathion Sodium cyanide 3-Chloro-1,2-propanediol Strychnine Lead arsenate Coumaphos Mecarbam Tefluthrin Coumatetralyl Mercuric oxide Thallium sulfate Zeta-cypermethrin Methamidophos Thiofanox Demeton-S-methyl Methidathion Thiometon Dichlorvos Methiocarb Triazophos Dicrotophos Methomyl Vamidothion Dinoterb Monocrotophos Warfarin Edifenphos Nicotine Zinc phosphide

Table 3. Moderately hazardous (Class II) technical grade active ingredients of pesticides (Common name) – not permissible in the project

Alanycarb Bioallethrin Chloralose Anilofos Bromoxynil Chlordane Azaconazole Bromuconazole Chlorfenapyr Azocyclotin Bronopol Chlorphonium chloride Bendiocarb Butamifos Chlorpyrifos Benfuracarb Butylamine Clomazone Carbaryl Bensulide Copper sulfate Bifenthrin Carbosulfan Cuprous oxide Bilanafos Cartap Cyanazine

Cyanophos Gamma-HCH Cyfluthrin Guazatine Beta-cyfluthrin Haloxyfop Cyhalothrin Heptachlor Cypermethrin Imazalil Alpha-cypermethrin Imidacloprid Cyphenothrin Iminoctadine Deltamethrin **Ioxynil** Diazinon Ioxynil octanoate Difenzoquat Isoprocarb Dimethoate Lambda-cyhalothrin Dinobuton Mercurous chloride Diquat Metaldehyde Endosulfan Metam-sodium Endothal-sodium Methacrifos Esfenvalerate Methasulfocarb Ethion Methyl isothiocyanate Etrimfos Metolcarb Fenazaquin Metribuzin Fenitrothion Molinate Fenobucarb Nabam Fenpropidin Naled Fenpropathrin Paraquat Fenthion Pebulate Fentin acetate Permethrin Fentin hydroxide Phenthoate Fenvalerate Phosalone Fipronil Phosmet Fluxofenim Phoxim Formothion Piperophos Fuberidazole Pirimicarb

Table 4. Slightly hazardous (Class III) technical grade ingredients of pesticides (Common name) – permissible under IPM

Prallethrin

Profenofos

Propoxur

Prothiofos

Pyraclofos

Pyrazophos

Pyrethrins

Pyroquilon

Quinalphos

Rotenone

Quizalofop-p-tefuryl

Sodium hexafluorosilicate

Sodium fluoride

Spiroxamine

Terbumeton

Thiacloprid

Thiobencarb

Thiocyclam

Thiodicarb

Triazamate

Trichlorfon

Tricyclazole

Tridemorph

Vernolate

Xylylcarb

Tetraconazole

Sulprofos

Prosulfocarb

Propiconazole

Acephate Copper oxychloride Dimethachlor Acetochlor Cycloate Dimethametryn Acifluorfen Cybexatin Dimethipin Alachlor Cymoxanil Dimethylarsinic acid Allethrin Cyproconazole Diniconazole Ametryn Dazomet Dinocap Amitraz Desmetryn Diphenamid Azamethiphos Dicamba Dithianon Bensultan Dichlormid Dodine Bentazone Dichlorobenzene Empenthrin Bromofenoxim Dichlorophen Esprocarb Butroxydim Dichlorprop Etridiazole Chinomethionat Diclofop Fenothiocarb Chlormequat (chloride) Dienochlor Ferimzone Chloroacetic acid Diethyltoluamide Fluazifop-p-butyl Chlorthiamid Difenoconazole Fluchloralin Copper hydroxide Dimepiperate Flufenacet

Fluoroglycofen Methylarsonic acid Pyrifenox Flurprimidol Metolachlor Quinoclamine Flusilazole Myclobutanil Ouizalofop Flutriafol 2-Napthyloxyacetic acid Resmethrin Fomesafen Nitrapyrin Sethoxydim Furalaxyl Nuarimol Simetryn Octhilinone Glufosinate Sodium chlorate N-octylbicycloheptene Hexazinone Sulfluramid Hydramethylnon dicarboximide Tebuconazole Iprobenfos Oxadixyl Tebufenpyrad Isoprothiolane Paclobutrazol Tebuthiuron Isoproturon Pendimethalin Thiram Isouron Pimaricin Tralkoxydim Malathion Triadimefon Pirimiphos-methyl MCPA-thioethyl Prochloraz Triadimenol Mecoprop Propachlor Tri-allate Mecoprop-P Propanil Triclopyr Mefluidide Propargite Triflumizole Mepiquat Pyrazoxyfen Undecan-2-one Metalaxyl Pyridaben Uniconazole Metamitron Pyridaphenthion Ziram Metconazole Pyridate

Table 5. Technical grade active ingredients of pesticides unlikely to present acute hazard in normal use (Common name) - permissible

Aclonifen Bromopropylate Cinosulfuron Bupirimate Acrinathrin Clofentezine Buprofezin Alloxydim Clomeprop Amitrole Butachlor Clopyralid Ammonium sulfamate Butralin Cloxyfonac Ancymidol Butylate Cryolite ICI Anthraquinone Captan Cycloprothrin Asulam Carbendazim Cyclosulfamuron Atrazine Carbetamide Cycloxydim Azimsulfuron Carboxin Cyhalofop Azoxystrobine Carpropamid Cyromazine Benalaxyl Chlomethoxyfen Daimuron Benazolin Chloramben Dalapon Benfluralin Chloransulam methyl Daminozide Benfuresate Chlorbromuron Desmedipham Benomyl Chlorfluazuron Diafenthiuron Benoxacor Chloridazon Dichlobenil Bensulfuron-methyl Chlorimuron Dichlofluanid Chlorothalonil Bifenox Diclomezine Bioresmethrin Chlorotoluron Dicloran Biphenyl Chlorpropham Diclosulam Bispyribac Chlorpyrifos methyl Diethofencarb Bitertanol Chlorsulfuron Diflubenzuron Borax Chlorthal-dimethyl Diflufenican Bromacil Chlozolinate Dikegulac Bromobutide Cinmethylin Dimefuron

Imazamethabenzmethyl Phthalide Dimethomorph Imazapyr Picloram Dimethyl phthalate Imazaguin Piperonyl butoxide Imazethapyr Dinitramine Pretilachlor Dipropyl isocinchomerate Imibenconazole Primisulfuron Dithiopyr Inabenfide Probenazole Diuron Iprodione Procymidone Dodemorph Iprovalicarb Prodiamine Ethalfluralin Isoxaben Prometon Ethephon Kasugamycin Prometryn Ethirimol Lenacil Propamocarb Ethofumesate Linuron Propaquizafop Etofenprox Maleic hydrazide Propazine Famoxadone Mancozeb Propham Fenarimol Maneb Propineb Fenbutatin oxide Mefenacet Propyzamide Fenchlorazole Mepanipyrim Pyrazolynate Fenclorim Mepronil Pyrazosulfuron Fenfuram Metazachlor Pyrimethanil Fenhexamid Methabenzthiazuron Pyriminobac Fenoxycarb Methoprene Pyriproxyfen Fenniclonil Methoxychlor Pyrithiobac sodium Fenpropimorph Methyldymron Quinclorac Fenuron Metiram Quinmerac Fenuron-TCA Metobromuron Quinoxyfen Ferbam Metosulam Ouintozene Flamprop Metoxuron Rimsulfuron Flucarbazone-sodium Metsulfuron methyl Siduron Flucycloxuron Monolinuron Simazine Flufenoxuron 2-(1-Naphthyl) acetamide Spinosad Flumetralin 1-Naphthylacetic acid Sulfometuron Flumetsulam Napropamide Sulphur Fluometuron Naptalam Tebutam Flupropanate Neburon Tecnazene Flupyrsulfuron Niclosamide Teflubenzuron Flurenol Nicosulfuron Temephos Fluridone Nitrothal-isopropyl Terbacil Flurochloridone Norflurazon Terbuthylazine Fluroxypyr Ofurace Terbutryn Fluthiacet Oryzalin Tetrachlorvinphos Flutolanil Oxabetrinil Tetradifon tau-Fluvalinate Oxadiazon Tetramethrin Folpet Oxine-copper Thiabendazole Fosamine Oxycarboxin Thidiazuron Fosetyl Oxyfluorfen Thifensulfuron-methyl Gibberellic acid Penconazole Thiophanate-methyl Glyphosate Pencycuron Tiocarbazil Hexaconazole Pentanochlor Tolclofos-methyl Hexaflumuron Phenmedipham Tolylfluanid Hexythiazox Phenothrin Transfluthrin Hydroprene Phenylphenol Triasulfuron Hymexazol Phosphorus acid Tribenuron Trietazine Triflusulfuron-methyl Validamycin Triflumuron Triforine Vinclozolin

Triticonazole

Dimethirimol

Trifluralin

Zine

Annex 3: Guidelines for Technical Training on PMP/IPM

Training is an important approach to strengthen pest/disease management capability via IPM. According to the job division and levels of the people involved from various departments, training will be given to the technicians at provincial, city, county and township level under the training scheme. The pest/disease management training will include the following aspects:

- Periodical pest and disease control training to the technicians at county and township level, including PMP method against specific crop/pest and disease to ensure the effective implementation of pesticide management regulations.
- PMP training to farmer on pest/disease control new methods for specific crops through field school on time and on regular basis.
- Compile and distribute PMP training material. It should be written with simple words and supported by audio/video materials.
- Encourage women to participate in PMP activities

Training to farmers aims to enhance their capability of mastering the biological control skills for common pests and controlling pests and diseases in cost-effective way. The training covers how to identify the pest and diseases, how to make correct control decision and how to take appropriate preventive and control measures.

Farmers will be given training for 3-4 times during the pest control period (each time for one day and train 30-40 households at a time

Training should ideally covers the following area:

- morphological characteristics and identification of pests and diseases
- damage and loss from different pests and diseases
- identification of major natural enemies to the pests
- occurrence of major pests and diseases;
- field sampling and outbreak density estimation of pests;
- pest control threshold;
- pest and disease control measures, including agricultural, physical, biological and chemical control methods;
- pesticide selection and use safety skills;
- safe storage of agricultural chemicals and disposal of their packaging waste
- field survey method
- control specifications

- integrated control measures combining agricultural, physical, biological and chemical control methods, safe storage and management of pesticide and disposal of pesticide waste and packaging container
- Chemical drug application method and protection requirements during application

Trainers should be comprised of:

- Trained agricultural technology promotion personnel
- Trained experts on Integrated pest management practices
- Demonstrators of IPM practices in the field