

Environmental Flow Assessment on Nam Ngiep 1Hydropower Project

Revision Report

Nam Ngiep One Power Company Limited

January 2014

www.erm.com

REVISION REPORT

Nam Ngiep1 Power Co., Ltd

Environmental Flow Assessment on Nam Ngiep 1 Hydropower Project *Revision Report*

January 2014

Environmental Resources Management

179 Bangkok City Tower 24th floor, South Sathorn Road Thungmahamek, Sathon, Bangkok. Thailand Telephone +66 2 6795200 Facsimile +66 2 6795209 www.erm.com

REVISION REPORT

Nam Ngiep1 Power Co., Ltd

Environmental Flow Assessment on Nam Ngiep 1 Hydropower Project *Revision Report*

January 2014

Reference: 0185065 ERM EFA revision.docx

For and on behalf of									
ERM-Hong Ko	ong, Limited								
luor									
Signed:									
Approved by:	Terence Fong								
Position:	Partner								
Date:	20 January 2014								

This report has been prepared by ERM-Hong Kong, Limited with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client.

We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.

This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at their own risk.

ABBREV	/IATIONS	3
1	INTRODUCTION	4
1.1	BACKGROUND	4
1.2	PURPOSE OF THE ENVIRONMENTAL FLOW ASSESSMENT	5
2	PHYSICAL AND HYDROLOGICAL ENVIRONMENT OF NNP RIVER	7
2.1	Topography	7
2.2	NNP River basin	8
2.3	Meteor-hydrology	10
2.4	FIGURE 2.7Hydrology	15
3	EXISTING BIODIVERSITY AND ECOSYSTEM SERVICES OF THE	
	DOWNSTREAM NAM NGEIP RIVER	31
3.1	Downstream Biodiversity	31
3.2	Downstream Ecosystem Services	39
4	CHANGE OF FLOW REGIME DUE TO THE PROJECT	45
4.1	PROJECT DESCRIPTION	45
4.2	CHANGE OF FLOW REGIME	47
5	ENVIRONMENTAL FLOW ASSESSMENT	57
5.1	ENVIRONMENTAL FLOW FOR NNP1 PROJECT	57
5.2	ENVIRONMENTAL FLOW OF OTHER HYDROPOWER PROJECTS IN LAOS	57
5.3	PROPOSED ENVIRONMENTAL FLOW	59
5.4	EVALUATION OF CHANGE IN ENVIRONMENTAL FLOW ON DOWNSTREAM	
	BIODIVERSITY AND ECOSYSTEM SERVICES	61
5.5	WATERSHED MANAGEMENT ACTIVITIES IN THE NAM NIEP WATERSHED	63
6	MONITORING PLAN	65
6.1	WATER QUALITY SIMULATION	65
6.2	WATER TEMPERATURE	65
6.3	DISSOLVED OXYGEN	69
6.4	MONITORING PLAN	71
6.5	WATER QUALITY STANDARD	75

REFERENCES

ANNEXES

Annex A	Water Quality Test Results
Annex B	Fish and Fisheries Survey Locations along the Nam Ngiep River
	in January 2008
Annex C	Non uniform Flow Analysis
Annex D	Release of Environment Flow

- ADB Asian Development Bank
- BOD Biochemical Oxygen Demand
- COD Chemical Oxygen Demand
- DO Disolved Oxygen
- EFA Environmental Flow Assessment
- EGAT Electric Generating Authorities of Thailand International
- KANSAI Kansai Electric Power Co., Inc
- IAP Independent Advisory Panel
- IUCN International Union for Conservation of Nature and Natural Resources
- LHSE Lao Holding State Enterprise
- MSL Height above Mean Sea Level
- NNP Nam Ngiep
- NNP1PC Nam Ngiep 1 Power Company Limited
- TDS Total Dissolved Solids

CHEMICAL ABBREVIATIONS

As	Arsenic
Cd	Cadmium
Cu	Copper
Fe	Iron
Hg	Mercury
Mn	Manganese
Ni	Nickle
Р	Phosphorus
Pb	Lead
PO4 3-	Phosphates
Ν	Nitrogen
NH3	Ammonia
NO3-	Nitrate
Zn	Zinc

1 INTRODUCTION

1.1 BACKGROUND

The Nam Ngiep 1 Hydropower Project (NNP1 Project) involves construction and operation of a 290 megawatt (MW) hydroelectric power generation facility on a build-operate-transfer basis on the Nam Ngiep (NNP) River, Lao PDR. The NNP1 Project site is located on the NNP River (*Figure 1.1*), in the provinces of Vientiane, Xieng Khouang and Bolikhamxay, approximately 145 km northeast from the city of Vientiane or 50 km north from Pakxan District. The NNP1 Project will generate 272 MW of its capacity for export to Thailand and 18 MW for domestic supply.

Figure 1.1 Project Location

The Project will be funded predominantly by private sector funds and the Project proponent is Nam Ngiep 1 Power Company Limited (NNP1PC) whose owners include Kansai Electric Power Co., Inc. (KANSAI) of Japan, Electric Generating Authorities of Thailand International (EGAT) of Thailand and Lao Holding State Enterprise (LHSE) of Lao PDR. Therefore three (3) countries will each benefit from the NNP1 Project which also aims to contribute to poverty reduction amongst the local Lao population through provision of infrastructure, employment and compensation, education and electricity (*Figure 1.2*).

An initial Environmental Flow Assessment (EFA) was prepared for the NNP1 Project by KANSAI in August 2012. The Asian Development Bank (ADB) and the Project's Independent Advisory Panel (IAP) made comments on the initial EFA report and requested that NNP1PC revise it. NNP1PC has therefore contracted Environmental Resources Management ERM- Siam Co. Ltd (ERM) to undertake this task to fill gaps in the initial EFA study to the satisfaction of ADB's requirements.

1.2 PURPOSE OF THE ENVIRONMENTAL FLOW ASSESSMENT

Environmental flow is described in "Flow: the essentials of environmental flows" (Dyson, Megan, ed. ; Bergkamp, Ger, ed. ; Scanlon, John, ed. ; IUCN, Water and Nature Initiative, 2003) as:

'An environmental flow is the water regime provided within a river, wetland or coastal zone to maintain ecosystems and their benefits where there are competing water uses and where flows are regulated. Environmental flows provide critical contributions to river health, economic development and poverty alleviation. They ensure the continued availability of the many benefits that healthy river and groundwater systems bring to society.'

The EFA aims to identify the extent of the NNP River system likely to be affected by the NNP1 Project and alert NNP1PC to the likely impacts on biodiversity and ecosystem services that will need to be addressed.

The primary objective of the EFA revision Study is to assess the projected environmental flow rate(s) during operation of the Project that are sufficient to maintain the basic needs of the downstream biodiversity and ecosystem services of the NNP River i.e. that below the re-regulation dam. This revised EFA Report was developed in response to ADB and IAP's comments, based on the initial EFA prepared by KANSAI in 2012 using data and study results provided to ERM by NNP1PC, as well as the biodiversity baseline information collected by ERM in 2013.

Following the introduction, the remainder of the report is set out as follows:

- *Chapter 2* describes the physical environment of the NNP River including the topography along its length and the river basin areas, as well as hydrological aspects including rainfall, natural flows and flood analysis, suspended sediment load and water quality.
- *Chapter 3* describes the existing biodiversity and ecosystem services, particularly in the downstream NNP River.
- *Chapter 4* explains the predicted changes in flow regime due to the Project.
- *Chapter 5* details the Environmental Flow Assessment and how the changes in flow in the downstream NNP River are predicted to affect the existing biodiversity and ecosystem services.
- *Chapter 6* provides a suggested monitoring plan.

2.1 TOPOGRAPHY

The NNP River basin has a total catchment area of 4,680 km² with the NNP River measuring 160 km in length. The NNP River originates near Phonsavan in the upstream area of Xieng Khouang Province and travels south-southeast through the mountain regions of Hom district in Vientiane Province and Bolikhan district in Bolikhamxay Province (*Figure 2.1*). It emerges from the more mountainous region via a narrow gorge approximately 7.7 km upstream of the village of Hat Gniun, where the main NNP1 Project dam will be constructed. While the upstream section of the river is located in a highly mountainous area with some intermittent, narrow, inhabited plains, downstream it follows a relatively flatter river plain as it flows out into the Mekong River at Pakxan.

Figure 2.1 The NNP River Basin

The dam site will be located 145 km northeast of Vientiane city and 50 km north of Pakxan, along the NNP River. The upstream catchment area that drains to the main dam reservoir covers about 3,700 km².

The main reservoir will be quite narrow along most of its length and will cover an area of approximately 67 km². *Figure* 2.2 shows the longitudinal

profile of the river, illustrating that the average river gradient drops from approximately 1 to 515 upstream of the dam to around 1 to 2,141 for the lower river segment before it joins the Mekong River.

Figure 2.2 Longitudinal Profile of the Main Reservoir

Source: Kansai and EGAT, Technical Report, 2011

2.2 NNP RIVER BASIN

NNP River basin is divided into 33 sub-basins as shown in *Figure 2.3*. Most of the sub-basins are rather small with only 10 of them being bigger than 100 km². The new Department of Water Resources in Lao PDR, which is responsible for river basin planning and management, has reduced the number of sub-basins to 15 but their details have not been released yet. Therefore the original 33 sub-basins are presented in this report.

The contribution of flow from each sub-basin is calculated using the information of sub-basin area and the isohyte generated from the average annual rainfall from existing stations inside and around the basin. In addition the estimated water yield is also used in the calculation. The sub-basin areas, contribution of flow discharge, and annual volume of each sub-basin are summarized in *Table 2.1*. The contribution of each sub-basin to the river in terms of annual volume shows a wide range, with the biggest contribution being 542 mcm (million cubic meters) (Nam Phouan) and the smallest one only 10 mcm (North Nam Hok).

Table 2.1Sub-basins of NNP River and Their Flow Contribution

No	Name of sub-basin	Area		Flow Contribution	Annual Volume	
		km ²	%	(m³/s)	(mcm)	

ENVIRONMENTAL RESOURCES MANAGEMENT 0185065 ERM EFA revision.docx

No	Name of sub-basin	Area		Flow Contribution	Annual Volume	
		km ²	%	(m³/s)	(mcm)	
1	Nam Ngiou	93.7	2.51	2.7	84.8	
2	Nam Linsoung	159.5	4.28	4.6	144.4	
3	N.W. Nam Chiat	28.8	0.77	0.9	29.0	
4	N.E. Nam Chiat	51.5	1.38	1.6	51.8	
5	Nam Sen	299.5	8.04	9.6	301.3	
6	Longmat Internal	56.6	1.52	2.0	62.6	
	Drainages					
7	Nam Palan	53.5	1.44	1.9	59.2	
8	Nam Phou Xao	53.5	1.44	1.9	59.2	
9	N. Nam Siem	25.7	0.69	0.9	28.5	
10	Nam Siem	433.3	11.63	16.6	523.0	
11	S. Nam Siem	30.9	0.83	1.2	37.3	
12	Nam Thong	104.0	2.79	4.1	130.7	
13	Nam Phadoy	115.3	3.09	4.4	139.1	
14	Nam pang	81.3	2.18	3.4	106.3	
15	Nam Chian	461.1	12.38	16.9	533.4	
16	N. Nam Hok	7.2	0.19	0.3	9.4	
17	Nam Hok	89.5	2.40	3.9	121.6	
18	Nam Mang	57.6	1.55	2.5	78.3	
19	Houay Sam Liou	75.1	2.02	3.4	105.8	
20	Nam Phouan	399.4	10.72	17.2	542.3	
21	S. Nam Phouan	17.5	0.47	0.8	24.6	
22	Nam Sou	187.3	5.03	8.7	273.2	
23	Nam Ngok	150.3	4.03	6.7	211.6	
24	Nam Pamom	40.1	1.08	1.9	58.5	
25	Houay Katha	36.0	0.97	1.7	52.5	
26	Houay Soup	23.7	0.64	1.1	35.7	
27	Nam Xao	273.8	7.35	13.1	413.1	
28	Houay Khinguak	49.4	1.33	2.3	72.1	
29	Houay Kokkhen	96.8	2.60	4.6	146.0	
30	Houay Poungxang	18.5	0.50	0.9	27.0	
31	Nam Pa	76.2	2.04	3.4	107.3	
32	S. Nam Pa	15.4	0.41	0.7	21.7	
33	Nam Tek	62.8	1.69	2.8	88.4	
All	Nam Ngiep	3,725	100	148.4	4,680	

2.3 METEOR-HYDROLOGY

2.3.1 Climate Condition

The construction area and downstream area for the NNP1 Project is located in the Bolikhamxay Province, Lao PDR, which is influenced by a southwest monsoon tropical climate regime. The weather there is dominated by monsoons which divide the year into clearly defined wet and dry seasons. The wet season begins from May and extends until October, while the dry season runs from November to April. The NNP River basin generally experiences better weather conditions than elsewhere in the Lao PDR, with less extremes of temperature.

Precipitation (mm), air and river water temperature (°C), and humidity (%) have been measured at B. Hat Gniun since April 2011, location shown in *Figure 2.4* and *Table 2.2*. These data found that air temperature ranged from 12°C to 38°C. In the middle of the wet season, from the beginning of June to the end of September, air temperature ranged from approximately 22°C to 36°C and from December to February (considered to be the high dry season)

temperatures ranged from approximately 12°C to 38°C. *Figure 2.5* shows climate data from B. Hat Gniun meteorological station, Bolikhamxay Province.

Figure 2.4 Location of Hydrological Gauging Locations within and Peripheral to the Project Basin Area

Table 2.2List of Hydrological Gauging Stations within and Peripheral to the Project
Basin Area

Gauging Sta	tion	Elevation (m)	
Rainfall			
R1	B. Nakham (B. Pakthouei)	159	
R2	Pakxan	155	
R3	Muong Mai	158	
R4	Muong Kao (Bolikhan)	158	
R5	M. Khoun (B. Thoun)	1,110	
R6	Xieng Khouang	1,050	
R7	M. Phaxay (B.Hokai)	1,100	
R8	B. Naluang	460	
R9	Houayleuk (Tadleuk)	220	
R10	B. Thabok	160	
R11	Vientiane	170	
R12	Vangvieng	215	

ENVIRONMENTAL RESOURCES MANAGEMENT 0185065 ERM EFA revision.docx NAM NGIEP 1 POWER CO., LTD 21 January 2014

Gauging	Station	Elevation (m)
R13	Muong Mork	900
R14	B. Thaviang	370
Discharge	e/River water level	
_	B. Hat Gniun	-
	Muong Mai	153
River wat	ter level	
	Pakxan	142

Figure 2.5 Air Temperature and Humidity Data at B. Hat Gniun Station, Bolikhamxay Province

2.3.2 Rainfall

Rainfall data were collected from three (3) gauging stations near Houay Soup along the NNP River – Pakxan (R2), Muong Mai (R3) and B. Hat Gniun. The rainfall station at B. Hat Gniun has collected data since 2011. Average annual rainfall in these locations is: Pakxan (3,000 mm), Muong Mai (3,700 mm), B. Hat Gniun (2,950 mm). Monthly rainfall at each of these locations is shown in *Figure 2.6*.

According to the meteorological data from Pakxan, the seasonal variation of monthly rainfall follows the general pattern of the Southeast Asia monsoon, with about 90% of rainfall during the six month wet season from May to October. In the dry season from November to April, the monthly precipitation levels are quite low, ranging from 3.7 mm to 150.0 mm, equating to approximately 10% of the annual precipitation for this region over the whole dry season.

These rainfall data available for areas within the basin and from peripheral areas were used in the Thiessen method to obtain the mean basin rainfall for the NNP River Basin. Missing data during the measurement period is derived using correlations.

Table 2.3 presents calculated mean basin rainfall in the NNP River Basin, as well as the annual inflow and runoff coefficient every year respectively. In the basin, annual rainfall fluctuates from a minimum of 1,342 mm at to a maximum of 2,653 mm. This is equivalent to approximately 71% and 141% of the mean annual rainfall (1,873 mm). The rainfall during a wet season in a preceding year basically affects a minimum inflow during a dry season in the following year.

The mean rainfall of NNP River basin was assumed to be 1,870 mm/year. This value is considerably less than the annual rainfall of Pakxan (3,000 mm).

Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual raindall	Annual inflow (m^{3}/a)	Runoff coefficient
1071	0	65	56	120	200	122	551	202	164	20	0	10	(mm) 2.010	(111 / 8)	0.67
19/1	0	00	30 27	120	200	452	216	250	75	107	16	10	2,019	158.5	0.67
1972	0	2	16	120	192	292 270	210	330	206	107	10	2	1,003	104.9	0.56
1973	0	11	10	111	244	2/0	402	404	290	15	16	0	1,034	110.5	0.58
1974	2 22	11	15	27	204	4210	405	240	132	110	10	0	1,042	112.1	0.58
1975	23	12	21	52	210	421	205	340	265	119	3	0	1,732	137.2	0.67
1976	0		4	33 72	122	250	202	427	230	1/0	0	0	1,785	140.5	0.67
1977	10	12	12	122	122	209 519	402	242	260	9 70	0	0	1,342	104.8	0.67
1978	10	12	10	51	30 404	252	224	190	146	0/	5	0	1,904	146.2	0.65
1979	1	29	20	51	404 226	415	122	267	256	20	0	0	1,433	121.8	0.72
1980	0	/	29	0/	230	415	433	246	230	106	0	0	1,049	154.0	0.71
1981	0	0	נ רד	119	214	292	262	540	508	190	21	0	1,913	101.0	0.72
1982		63	52	1.04	185	263	303	500	200	121	45	0	2,220	191.8	0.73
1983	26	22	10	141	105	203	251	256	220	74	43	0	1,777	1/1.2	0.73
1984	20	33 2	10	100	508	363	404	276	182	25	24	22	1,000	143.7	0.73
1985	0	21	42	129	133	303	250	270	220	55	25	0	1,528	1/1.0	0.76
1980	0	11	42	130	155	355	200	556	180	107	23	0	1,001	146.0	0.08
1987	85	0	120	123	215	460	523	285	320	172	5	5	2 270	140.0	0.05
1900	12	0	120	145	189	400	382	313	220	117	0	0	1 942	177.4	0.07
1969	12	36	66	00	173		717	305	267	311	30	0	2 653	200.0	0.08
1990	2	0	33	115	164	359	379	438	207	30	50	4	1 762	137.3	0.04
1991	35	28	1	41	104	315	354	263	140	26	0	35	1,762	03.0	0.00
1003	0	5	35	94	262	448	464	337	198	15	0	3	1,505	126.0	0.59
1004	9	32	106	118	171	401	413	330	219	115	38	9	1,000	147.7	0.58
1995	1	0	8	94	222	398	567	552	119	54	14	0	2.029	179.6	0.75
1996	0	8	41	107	251	337	451	555	215	29	84	3	2.080	179.0	0.73
1997	9	4	85	220	250	302	485	416	243	94	4	0	2.111	182.6	0.74
1998	0	11	17	86	231	295	364	282	156	45	9	8	1.503	118.3	0.74
1999	7	3	60	119	521	426	320	537	293	125	26	8	2.445	182.8	0.64
2000	4	46	7	178	296	359	293	382	312	93	2	0	1 972	167.0	0.72
Maximum	85	65	120	220	521	644	717	556	508	311	84	35	2.653	200	0.76
Minimum	0	0	1	25	38	216	189	189	75	9	0	0	1,342	94	0.56
Average	8	17	38	104	231	361	402	380	230	86	13	4	1,873	148.4	0.68

Table 2.3Calculated Monthly Mean Basin Rainfall (1971-2000) (mm)

2.4.1 Inflow

The NNP River basin does not have long term and well maintained hydrological data. There are only two kinds of river flow (inflow) data available for the NNP1 Project:

- Analyzed data from the past 30 years(1971-2000) by "Tank model" runoff analysis based on rainfall data in the NNP River basin; and
- Measured data at B. Hat Gniun from 2007 to 2011.

Tank Model Analysis

Inflow is computed based on basin rainfall data by using "Tank Model" runoff analysis. A Tank Model is a simple concept that uses one or more tanks illustrated as reservoirs in a watershed, that considers rainfall as the input and generates the output as the surface runoff, subsurface flow, intermediate flow, sub-base flow and base flow. In addition, various phenomena such as infiltration, percolation, deep percolation and water storages in the tank can be explained by the model. Many researchers have reported that the Tank Model has demonstrated its ability to model the hydrologic response of a wide range of watersheds (Sugawara *et al.*, 1984; Sugawara, 1961; Basri *et al.*, 1998; Kuroda *et al* 1999; Basri *et al*, 1999; Jayadi *et al.*, 1999, Fukuda *et al.*, 1999; Sutoyo *et al.*, 2003; Basri *et al.*, 2002; Setiawan, 2003; Kuok *et al.*, 2010; Azmeri *et al.*, 2012).

The results of the inflow analysis by Tank Model (using data from 1971 to 2000) at the NNP1 main powerhouse is summarised in *Table 2.4,* and presented in *Figure 2.7* (estimated annual rainfall and discharge) and *Figure 2.8* (seasonal inflow change). The key findings are:

- Annual average discharge (inflow): 148.4 m³/s
- Minimum monthly inflow: 26.4 m³/s (in April 1973)
- Minimum daily flow: 23.5 m³/s (on 4 May 1973, full dataset not presented in this report)

It should be noted that Tank Model analysis is introduced to estimate longterm inflow and therefore might not best reflect momentary values, although the model was checked against measured data. The difference between measured discharge and calculated discharge was minimized through trialand-error method based on years of actual measurement of discharge at different gauge stations.

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave
1971	76.2	67.6	83.4	65.4	119.1	233.8	418.9	275.0	226.9	136.4	108.7	90.7	158.5
1972	75.1	62.7	52.6	64.1	71.3	198.2	178.5	242.5	106.7	86.8	66.0	54.4	104.9
1973	45.1	37.8	31.6	26.4	66.0	119.3	158.8	247.9	313.1	117.3	89.0	74.1	110.5
1974	61.5	51.6	43.1	38.6	55.3	116.1	196.7	303.1	224.8	101.4	83.4	69.3	112.1
1975	57.9	48.2	40.3	35.3	127.4	333.6	173.6	220.3	242.8	177.3	103.3	85.9	137.2
1976	71.3	73.4	50.6	47.3	77.0	154.4	202.4	335.3	253.8	210.1	116.2	94.7	140.5
1977	78.6	65.8	55.2	47.4	48.1	103.5	288.2	159.5	196.4	85.2	70.9	59.1	104.8
1978	49.0	41.3	35.1	51.5	28.7	287.3	248.1	312.0	349.8	154.3	108.1	89.9	146.2
1979	74.6	63.5	52.6	48.4	185.6	191.0	217.7	217.9	167.0	98.1	79.3	66.0	121.8
1980	54.8	45.9	39.6	36.8	99.7	252.6	299.8	341.7	318.1	144.8	116.9	97.3	154.0
1981	80.7	67.6	56.6	67.2	102.4	186.1	348.7	288.9	306.2	224.9	121.7	101.3	162.7
1982	84.1	70.4	64.5	85.2	128.3	234.9	276.8	427.9	409.6	244.6	151.0	124.8	191.8
1983	103.5	102.5	85.1	76.0	100.1	149.2	319.3	359.6	303.9	203.8	141.9	109.5	171.2
1984	94.1	79.1	64.1	63.7	99.4	176.9	232.1	293.4	281.1	140.4	109.6	90.6	143.7
1985	74.8	62.6	52.5	57.5	277.3	307.5	341.7	268.4	256.7	144.7	116.5	99.1	171.6
1986	80.7	68.0	56.8	71.6	78.9	225.2	163.6	262.5	219.2	137.3	96.5	79.3	128.3
1987	65.8	55.2	46.2	38.9	56.7	205.1	260.7	327.7	308.1	193.0	111.8	92.7	146.8
1988	95.6	72.0	62.8	85.7	131.5	307.7	345.1	316.4	263.6	213.9	128.1	106.7	177.4
1989	88.5	74.0	70.8	106.8	104.2	272.7	222.1	296.7	241.8	166.9	111.6	92.9	154.1
1990	77.1	64.9	57.7	52.8	68.9	346.3	546.7	331.5	281.8	301.0	149.1	122.7	200.0
1991	101.9	85.3	71.7	79.7	72.3	160.4	257.0	297.5	218.7	126.3	96.4	80.3	137.3
1992	71.6	58.1	47.6	40.9	37.5	153.6	195.4	194.1	120.1	80.9	66.2	61.2	93.9
1993	46.4	38.9	32.6	31.4	81.5	209.6	370.2	266.4	157.2	121.5	91.0	75.8	126.9
1994	63.3	56.2	61.1	70.0	80.0	244.2	259.3	303.9	250.4	167.9	119.3	96.2	147.7
1995	79.8	66.8	55.9	56.8	111.9	206.9	399.0	483.0	300.4	159.3	128.7	106.6	179.6
1996	88.5	73.8	63.7	61.3	116.4	223.4	306.5	454.4	303.3	164.5	165.3	114.5	178.0
1997	95.2	79.5	72.5	122.4	157.6	181.9	349.5	361.4	341.0	180.7	136.0	113.2	182.6
1998	93.9	78.7	65.9	60.1	84.6	152.9	243.2	213.4	178.1	98.9	81.5	67.9	118.3
1999	56.3	47.1	42.0	48.0	262.9	304.6	282.4	381.2	335.1	184.6	136.4	113.1	182.8
2000	93.9	81.6	66.0	95.6	175.8	258.4	228.2	319.0	318.7	153.9	116.5	96.7	167.0
Ave	76.0	64.7	56.0	61.1	106.9	216.6	277.7	303.4	259.8	157.4	110.6	90.9	148.4
Max	103.5	102.5	85.1	122.4	277.3	346.3	546.7	483.0	409.6	301.0	165.3	124.8	255.6
Min	45.1	37.8	31.6	26.4	28.7	103.5	158.8	159.5	106.7	80.9	66.0	54.4	74.9

Figure 2.7 Basin Annual Mean Rainfall and Discharge (Inflow) at NNP1 Main Power Station

Figure 2.8 Seasonal Change in Discharge (Inflow) at NNP1 Main Power Station

Measurement at B. Hat Gniun

The observed daily discharge at B. Hat Gniun gauging station from 2007 to 2011 is shown in *Figure 2.9* and *Table 2.5*. The actual flow measurement recorded a minimum daily inflow of 12.8 m³/s on 25th and 26th April 2009 (*Figure 2.10*).

Table 2.5Measured Data at B. Hat Gniun

Daily miminum dishcarge

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	av.
2007							87.3	119.0	120.2	108.6	72.9	51.0	
2008	36.8	27.0	18.1	23.3	40.1	92.6	196.0	223.1	141.8	103.5	79.5	58.8	86.7
2009	34.8	30.8	22.2	12.8	15.7	85.7	147.3	176.9	119.7	84.3	57.2	46.0	69.5
2010	36.4	29.0	25.9	23.4	25.0	36.7	92.3	175.1	186.7	89.2	59.9	44.1	68.6
2011	32.9	28.2	26.1	24.4	34.8	66.5	332.9	371.1	181.5	132.9	80.8	56.4	114.0
Ave	35.2	28.8	23.1	21.0	28.9	70.4	171.2	213.0	150.0	103.7	70.0	51.2	84.7

Daily maximum discharge

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	av.
2007							338.1	548.9	388.2	885.8	112.3	71.1	
2008	54.3	70.9	62.0	75.5	176.1	382.9	606.9	627.8	358.5	244.7	170.0	78.3	242.3
2009	57.4	46.0	44.3	66.8	348.2	272.2	733.2	420.6	386.0	140.5	81.6	56.7	221.1
2010	169.0	39.4	29.3	51.3	225.0	268.3	434.6	601.8	643.1	170.1	88.5	59.1	231.6
2011	43.5	33.1	146.0	48.9	288.5	1287.8	2818.6	2271.1	1245.7	505.1	139.4	79.4	742.3
Ave	81.0	47.4	70.4	60.6	259.5	552.8	986.3	894.0	604.3	389.2	118.4	68.9	359.3

Daily mean discharge

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	av.
2007							137.2	191.0	222.9	277.1	89.3	60.3	
2008	43.2	38.3	28.0	42.1	88.0	220.2	398.4	424.7	204.4	138.4	103.1	68.8	149.8
2009	44.3	38.0	29.1	32.1	79.6	129.8	325.7	278.4	157.9	102.6	67.1	50.6	111.2
2010	49.3	32.8	27.4	27.2	38.8	90.2	189.0	358.2	321.8	122.4	72.3	52.2	115.2
2011	38.6	30.5	41.4	29.7	98.0	242.4	617.6	667.8	468.9	207.3	103.1	67.6	217.7
Ave	43.8	34.9	31.5	32.8	76.1	170.6	333.6	384.0	275.2	169.6	87.0	59.9	148.5

Comparison of Hydrological Characteristics with other Projects

The annual average discharge of 148.4 m³/s for this Project was compared with other projects located in the middle of Laos (the Nam Theum River basin) and in the northwest (the Nam Ngum River basin) to confirm values of runoff coefficient and the specific yield as is shown in *Table 2.6*.

Project	Source	Year	Catchment Area km ²	Annual average rainfall mm/year	Annual average discharge m³/s	Specific yield m³/s/ 100km²	Runoff coefficient
Nam Ngiep 1	KANSAI Update F/S	2007	3,700	1,874	148.4	4.01	0.67
	Feasibility Study on the NAM NGIEP 1 Project (Phase II) Final Report: volume1 Main Report (JICA)	2002	3,700	1,874	147.2	3.98	0.67
Nam Ngum 2	Hydropower Development Strategy for	2000	5,640	2,166	200.6	3.56	0.52
Nam Ngum 3	LAO Draft Final Report (LAHMEYER)		3,873	2,166	106.2	2.74	0.40
Nam Ngum 5			483	1,944	22.7	4.70	0.76
Nam Theun 3			2,338	-	110.00	4.70	-
Nam Theun 2	Water Management Plan for the NAM THEUN Final Report (NORPLAN A.S.)	1997	4,013	2,250	233.0	5.81	0.81
Nam Ngum 1	Nam Ngum5 Hydropower Project	1997	8,460	-	308.0	3.64	-
Nam Ngum 5	Feasibility Study (LAHMEYER)		483	2,200	22.8	4.72	0.68
Nam Ngum 1	NAM NGUM1 Hydropower Station	1995	8,460	2,250	301.2	3.56	0.50
Nam Ngum 2	extension Feasibility and Engineering		5,750	1,950	163.0	2.83	0.46
Nam Ngum 3	study Mid-term Report (LAFIME FER)		3,810	1,600	74.1	1.94	0.38

Table 2.6Comparison of Hydrological Characteristics with other Projects in North and Middle of Laos

2.4.2 Flood

The hourly rainfall data for the NNP River basin was prepared by the automatic rainfall recorder installed at B. Thaviang, near the centre of the basin (See *Figure 2.4* and *Table 2.2* for location) from September 1998 to December 2000. To estimate the hourly rainfall hydrograph under torrential rain conditions, 24-hour rainfall of 50 mm and more was selected from the hourly rainfall data observed at B. Thaviang and a pattern of typical rainfall for the NNP River basin was determined (*Figure 2.11*).

Figure 2.11 Accumulated Hourly Rainfall Curves

2.4.3 Base flow

Using the 13-year discharge data (1989-2002) of Muong Mai station (See *Figure* 2.4 and *Table* 2.2 for location), the base flow at Muong Mai station was estimated at 400 m³/s and the base flow at the dam site was estimated at 350 m³/s by multiplying the ratio of the basin.

2.4.4 Runoff coefficient

Typical hydrographs were selected from the 13-year discharge data of Muong Mai station. By cutting off the base flow from the hydrographs, the effective rainfall was obtained, to which a runoff coefficient was estimated.

2.4.5 Unit hydrograph

Hourly discharge data are necessary for preparing a unit hydrograph, but such data are not available. Hence the dimensionless unit hydrograph quoted by the US Soil Conservation Service was used as a unit hydrograph.

2.4.6 Probable flood discharge estimation

The probable flood discharge was estimated using two methods. The first was an estimation using the annual maximum daily discharge data from Muong Mai station and frequency curve. The flood time peak discharge at Muong Mai site was converted from annual maximum daily discharge by multiplying with the correction coefficient (1.2). Log Peason Type-III for the frequency curve as the most suitable one out of the other four functions (*Figure 2.12*).

Figure 2.12 Flood frequency Distribution Curve

The second method was an estimation of probable rainfall derived from the annual maximum daily rainfall of the mean basin rainfall of data recorded from 1971–2000, using a frequency curve.

ENVIRONMENTAL RESOURCES MANAGEMENT 0185065 ERM EFA revision.docx

2.4.7 Flood analysis result

It was likely that the actual discharge measurement at Moung Mai station was more reliable than the rainfall data estimated by the Thiessen method. Thus, $5,210 \text{ m}^3/\text{s}$ of probable flood discharge in 1,000 years was adopted for designing the dam (*Table 2.7*).

Probable year	Probable flood discharge (m³/s)
10,000	7,920
1,000	5,210
500	4,560
200	3,800
100	3,290
50	2,840
30	2,530
20	2,300
10	1,930
5	1,590
2	1,150
1.01	680

Table 2.7Flood Analysis Result

2.4.8 Sediment

Data of suspended load at B. Hat Gniun were collected by KANSAI from April 2010 to March 2011 (*Figure 2.13*). The following formula is obtained from the relationship between discharge and suspended sediment. In the figure, data from other projects such as Xekatam in Lao PDR and Tha-htay, Nancho, Thaukyegat in Myanmar are plotted for reference.

 $Q_S = 7.063 \times 10^{-8} Q^{2.155}$

where Qs: Suspended Sediment (m^3/sec) , Q: Discharge (m^3/sec)

Annual sediment yield at the dam site is estimated by the following equation. Bed load, which is equivalent to 20% in weight of suspended load, was added to the suspended load.

$$V_{VS} = \frac{R \times \frac{1}{\gamma} \times \frac{1}{(1 - n_s)}}{V_{VD}} = \frac{R \times 0.2 \times \frac{1}{\gamma} \times \frac{1}{(1 - n_b)}}{R \times 0.2 \times \frac{1}{\gamma} \times \frac{1}{(1 - n_b)}}$$

R= Suspended load curve $\times D_h$

,where

V_y: Annual sediment yield (m³/yr)

 Vy_{S} , Vy_{b} : Sediment yield of suspended load, bed load (m³/yr)

- R: Sediment weight (kg)
- γ : Specific gravity (2,650 kg/m³)
- n_s, n_b: Void content; Suspended load: 0.7, Bed load: 0.4

D_h: Discharge of duration curve (sec)

By using the above equation, the annual sediment yield of NNP1 is estimated to be 178 ton/ $\rm km^2/$ year.

Figure 2.13 Suspended Sediment in NNP River Basin

2.4.9 Water Quality

NNP River Water Quality Sampling at Downstream Area in April and October 2007

To monitor the baseline water quality of NNP River before project activities, surface water sampling at downstream locations was conducted. The downstream sampling stations included B. Hat Gniun (St 8), Ban Somseun (St 9) and Nam Ngeip bridge (St 10) and data were collection from these stations in April and October 2007 as shown in *Figure 2.14*.

Parameters of interest included physical and chemical water qualities (temperature, pH, alkaline, conductivity, salinity, hardness, turbidity, suspended solids and total dissolved solids), biological water qualities (DO, BOD5, PO43-, P, N, NO3-, NH3, oil and grease), bacteriological water quality (total coliform and fecal coliform) and trace elements (As, Cd, Cu, Fe, Hg, Mn, Ni, Pb and Zn). Regarding the biological water qualities, DO concentrations were high with a range of approximately > 7.0 as shown in *Table 2.8*.

	T T '	61.0		61.0		01.10	
Parameters	Unit	<u>St 8</u>	0.1	<u>St 9</u>	<u> </u>	St 10	0.1
		April	Oct.	April	Oct.	April	Oct.
Temperature °C		29.5	25.3	28.2	27.9	27.7	26.5
pН	-	7.09	7.09	8.18	7.34	7.58	7.17
Alkalinity	meq/L	0.26	0.14	NA	0.29	NA	0.27
DO	mg/L	7.21	7.23	7.60	7.47	7.20	6.97
BOD5	mg/L	1.4	1.2	2.6	1.1	3.3	1.1
Oil and Grease	mg/L	< 0.01	< 0.01	NA	< 0.01	NA	< 0.01
Turbidity	FTU	17.9	16.2	47.9	15.7	32.9	17.3
Suspended	mg/L	21.4	22.1	112.0	17.9	72.0	21.2
solids	0						
TDS	mg/L	33.1	19.7	100.0	21.2	93.0	31.6
Hardness	mg/L	78	73	184.0	84.0	118.0	76.0
Conductivity	μS/cm	60.56	48.9	88.5	72.0	94.5	74.1
Phosphate-P	mg/L	0.48	0.1	0.14	0.20	0.16	0.12
Total P	mg/L	0.11	0.04	0.27	0.09	0.32	0.04
Ammonium-N	mg/L	0.05	0.02	0.01	0.04	ND	0.04
Nitrate-N	mg/L	0.14	0.21	0.17	0.10	0.20	0.09
Total N	mg/L	0.07	0.05	NA	0.07	NA	0.03
Total coliform	MPN/100	NA	NA	NA	NA	NA	NA
Fecal coliform	MPN/100	NA	NA	NA	NA	NA	NA
Cadmium, Cd	mg/L	< 0.001	< 0.001	0.06	< 0.001	0.05	< 0.001
Mercury, Hg	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Copper, Cu	mg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Iron, Fe	mg/L	0.22	0.2	< 0.10	0.10	< 0.10	0.11
Manganese, Mn	mg/L	0.18	0.11	0.76	0.13	0.70	< 0.10
Nickel, Ni	mg/L	< 0.10	< 0.10	NA	< 0.10	NA	< 0.10
Lead, Pb	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Zinc, Zn	mg/L	< 0.02	< 0.02	0.02	< 0.02	< 0.02	< 0.02
Arsenic, As	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

Table 2.8Results of Surface Water Quality from the NNP River in April and October2007

Note: NA = Not available

In general, the water quality of samples collected in October was classified as Class 2 according to the Thai Surface Water Standards (it should be noted that Lao PDR does not yet have its own comprehensive water quality standard). This is considered a very clean, fresh surface water resource that can be used for consumption with only simple water treatment before use. It is also of a sufficiently high quality to support aquatic organisms for fisheries and to safely undertake recreational activities. However, the water quality of samples collected in April fell to Class 3 according to the Thai Surface Water Standards, which is considered a medium clean, fresh surface water resource that can be used for agriculture but that needs to pass through more comprehensive water treatment before being used for consumption. The increase of BOD5 (The Biochemical Oxygen Demand occurring over a 5-day period) was caused by the nutrients flushed from the agricultural lands and residential areas into the river during the start of the rainy season.

NNP River Water Temperature Measurement at B. Hat Gniun since 2011

Periodic measurement of the river water temperature at B Hat Gniun has been conducted since 2011. The daily river water temperature in 2011 ranged from 11.4°C in December to 30.2°C in June. The monthly average river water

temperature ranged from 20.4°C in April to 26.4°C in December, according to the data from 2011 as shown in *Figure 2.15*.

The daily fluctuation of river and air water temperature in May and October 2012 is shown in *Figure 2.16*. Data collection is carried out at 6 am (0600), 12 noon (1200), and 6 pm (1800) respectively.

River water temperature fluctuates far less than air temperature. River water temperature keeps a relatively stable daily value whereas air temperature varies daily, being lowest in the morning and highest around noon. The fluctuation in river water temperature ranged from 23.9°C to 29.8°C compared to air temperature which ranged from 22.0°C to 35.0°C in May 2012. In October 2012, river water temperature ranged from 22.0°C to 27.5°C compared to that of air temperature which ranged from 19.0°C to 37.0°C.

NNP River Water Quality Sampling during March 2013

As part of the NNP1 Biodiversity Offset Assessment Study, ERM consultants conducted water quality monitoring along the NNP River and the Nam Xan River at strategic locations to assess water quality conditions and facilitate the biodiversity offset study. Water quality sampling results along the Nam Xan River were presented in the *NNP1 Biodiversity Offset Design Report* and the key findings are presented in *Annex A*. Surface water quality samples along the length of the surveyed NNP River were taken at six (6) stations (*Table 2.9*) every 1 km on 15 March 2013 (*Figure 2.17*).

Table 2.9Locations for Surface Water Quality Sampling along the Surveyed Stretch of
NNP River

Station	Location				
SW-1	Upstream of main dam and powerhouse (PH)				
SW-2	Downstream of main dam and PH, and upstream re-regulating dam and PH				
CW/ 2	Downstream re-regulating dam and PH, and upstream of one tributary (Nam				
500-5	Xao)				
SW-4	Downstream of Nam Xao				
SW-5	Upstream of one tributary (Nam Pa)				
SW-6	Downstream of Nam Pa				

Figure 2.17 Water Quality Sampling Sites along the NNP River in March 2013

The parameters were measured against the relevant water quality standard for drinking water and surface water listed in Lao PDR National Environmental Standard (Lao PDR 2009) and analysed. All parameters were recorded as well as date and time, GPS UTM (Zone 48, based on WGS 84 datum), physical conditions such as weather, water colour, odour, visible oil and grease, floating solids and any activities near the sites that were considered useful for helping to interpret the water quality data.

The results of water quality analysis indicate that along the NNP River the average DO level of 6.5 mg/L complies with the Ambient Surface Water Quality Standard of Lao PDF. TDS was measured at the sites and shows an average level of 46.7 mg/L. No Ambient Surface Water Quality Standard applies to TDS in Lao or Thailand but this level of TDS is considered high with water having a turbid and colored appearance with the presence of suspended matter during the site sampling.

ENVIRONMENTAL RESOURCES MANAGEMENT 0185065 ERM EFA revision.docx NAM NGIEP 1 POWER CO., LTD 21 January 2014

EXISTING BIODIVERSITY AND ECOSYSTEM SERVICES OF THE DOWNSTREAM NAM NGEIP RIVER

The flow regime of any aquatic ecosystem plays a role in the health and productivity of the system and influences the nearby biodiversity and ecosystem services; for some species, flows can trigger movement during certain periods. This section provides information on the terrestrial/ riparian habitats of the NNP River downstream of the re-regulation dam and goes on to report on the exiting aquatic biodiversity and ecosystem services in that section of the river.

Data from two key surveys have been used to determine the existing biodiversity and ecosystem services in the downstream NNP River. A dry season, baseline survey conducted along the NNP River in January 2008 at ten aquatic sampling stations. Examination of aquatic fauna and flora included distribution of indigenous fish species and their abundance in particular areas of the river. Plankton, benthos and aquatic plants, which provide nutrients to young fish, were also studied. Study results and other relevant data (hydrology, water quality) were used to predict possible changes in aquatic life after project development and its effect on peoples' livelihood. *Annex B* shows how six stations were located upstream from the Project's main dam site, one between the main dam and the re-regulation dam and the other three located downstream of the re-regulation dam.

A further biodiversity study, including a detailed aquatic biota survey, was conducted by the Thailand Institute of Scientific and Technological Research in March (dry season) and July (wet season) 2013 in four different areas potentially affected by the NNP1 Project. One area was along the NNP River and included five (5) sampling sites (NNg1 through to NNg5) upstream of the proposed main dam and thee (3) sampling sites (NNg6 through to NNg8) downstream of the proposed main dam. The aquatic biota survey included collection and identification of phytoplankton, zooplankton and benthos as well as capture and identification of fish species and discussion with local fishermen.

3.1 DOWNSTREAM BIODIVERSITY

3

3.1.1 Terrestrial/Riparian Habitat and Flora Downstream of Re-Regulation Dam (Lower NNP River)

Downstream of the re-regulation dam, the terrain is predominately flat and tilts gradually towards the Mekong River. In this area, the NNP River runs parallel to the Nam Xan before it merges with the Mekong at Pakxan.

Forest along the Lower NNP River is dominated by disturbed mixed deciduous forest with approximately 60-70% canopy cover. The forest is

31

highly respected by local people and well preserved with a top canopy height of 20-30 m. Records from the 2007 and 2013 surveys indicate that forest species include, among others, *Gironniera nervosa*, *Ficus racemosa* L., *Morus alba* L. and *Xanthophyllum lanceatum* as well as *Callicarpa arborea*, *Litsea glutinosa*, *Crudia Chrysantha*, and *Cratoxylum formosum* in the middle canopy and saplings an seedlings of higher canopy trees in the lower canopy such as *Trewia nudiflora* L., *Baccaurea ramiflora*, *Pseuduvaria rugosa* and *Mallotus philippinensis*. This NNP River downstream area is, however, disturbed and dominated by agricultural landuse with high human activity

Aquatic riverine and tributary habitats show seasonal variation in terms of water depth, clarity, flow and wetted width. In general river habitats are fast flowing with greater water depth and flows during the wet season, flooding all banks and vegetation. Erosion always happens due to the strong water flow resulting in steep bank along the river. Dry season river habitats exhibited riffle zones which are flooded during the wet season and while the main river flows rapidly in the wet and dry season, in the tributary areas the water course in some areas dried to isolated pools. For the Lower NNP River, depth in the typical dry season was recorded as 2-3 m but shallower in riffle zones where water flows fastest, and 4-5 m deep in the wet season.

The river bed is generally dominated by sand and gravel with some boulders and the width of the river varies from 50-100 m in the dry season to 100-150 m during the wet season during surveys. While the riparian zone is mainly covered by large trees and bamboos, aquatic plants were sparsely present on the river bank which generally exposed and dried in the dry season. Over the course of the 2007 and 2013 surveys, 22 plant species were recorded along the downstream NNP River. Most of these are common but three tree species are listed under IUCN as 'Endangered' and two trees/shrubs as 'Vulnerable'.

The three endangered trees species are *Dipterocarpus alatus, Shorea roxburghii* and *Afzelia xylocarpa* and those listed as vulnerable are *Hopea odorata* and *Syzygium vestitum*. All five species were listed as endangered in 1998 by IUCN, generally due to the rate of habitat loss or selective logging for their wood, but the IUCN records now require updating. *Dipterocarpus alatus* is mainly found along river banks, *Shorea roxburghii* is unusual for its adaptation to withstand adverse climatic conditions and soil types, *Afzelia xylocarpa* is highly exploited for its hard, attractive wood quality and *Hopea odorata* is a widespread tree which usually occurs in lowland riparian forest on deep rich soils.

3.1.2 Provincial Protected Area

Protected areas in Bolikhamxay Province cover 382,404 ha or about 24% of the Province. Of this 296,070 ha are National Protected Areas, 52,152 ha are Provincial Protected Areas and 34,182 ha are District Protected Areas. Below are more specific details for each protected area:

- National Protected Areas cover 18.5% of the Province's land base.
- Provincial Protected Areas cover 3.4% of the Province's land base.
- District Protected Areas cover 2.1% of the Province's land base.

One provincial protected area close to the Project Area is that of Houy Ngua PPA, which falls to the east of the downstream NNP River as it flows towards the Mekong River. The Houy Nghua Provincial Protected Area ("HNG PPA") (*Figure 3.1*) is 5,495 ha and approximately 6 km from the Provincial Administration Office. There is a HNG PPA Management Plan for which the Provincial Agriculture and forestry office is ultimately responsible and this management plan includes an Aquatic & Wildlife Unit. There are five (5) villages in the management zone including Ban Sisavath, Ban Nonsomboun, Ban Sisomxeun, Theu Hua and B. Hat Gnuin (which is the nearest village to where the NNP1 Project dam will be built.

The HNG PPA has been established since 1995 with various changes to the area is covers but it contains abundant biodiversity and natural resources which are reported to be very important to the livelihoods of communities in adjacent villages and within the district as well. HNG PPA is also a significant natural property of the district, with the possibility to create income in the future from eco-tourism.
Figure 3.1 Houy Nghua PPA Boundary

3.1.3 Aquatic Biota

Fish

The fish community of the Mekong River is one of the largest in the world with most of the production based on migratory river species (Poulsen *et al.,* 2004). Fish migration is an important component for many fish species life cycle. In the Mekong, fish migration can be generally described in terms of (Poulsen *et al.,* 2004):

- Annual movement between inundated floodplains (where most fish production originates) and dry season refuges;
- Movement into spawning areas within the river system usually upstream) from dry season refuges, generally upon start of flooding; and
- Passive migration of fish fry downstream from spawning areas.

The January 2008 dry season survey found 42 fish species along the NNP River at ten sampling stations located both upstream (6 stations) and downstream (4 stations) of the main dam site. The community detected included relatively similar proportions of surface feeders, column feeders and bottom feeders and was made up of species common to the Mekong tributaries and dominated by fish from the Cyprinidae family. Cyprinidae family species were reported to adapt to different environmental in various sections of the river, and this family was also the dominant group recorded during 2013 surveys. The 2013 surveys (wet and dry) recorded 75 fish species across four different areas potentially affected by the NNP1 Project, just one of which was the NNP River. In total 47 species of fish have been recorded in the NNP River downstream of the main dam site during the surveys.

Results of the January 2008 survey reported in the Project EIA note that larger species of fish such as *Bagarius yarrelli*, *Cirrhinus molitorella*, *Hemibagrus wyckioides* and *Labeo erythropterus* were found in the NNP River upstream of the dam site. Many of these larger fish, particularly *Cirrhinus molitorella*, *Hemibagrus wyckioides* and *Labeo erythropterus* are migratory species of the lower Mekong basin that move upstream along the river and its tributaries during the wet season for spawning (EIA citing Poulsen *et al.*, 2004).

Both surveys noted a number of juvenile individuals of the migratory species (e.g. *Opsarius pulchellus, Puntius brevis, Rasbora danioconius, Raimas guttatus* and *Poropuntius spp.*) suggesting that the NNP River plays a role in providing habitat for the reproductive cycle (EIA citing Lowe-McConnell, 1995).

Benthic Fauna

Benthic sampling has detected individuals from 30 invertebrate families across whole the Project area and candidate offsets sites. Species richness varied at each sampling site with no specific trends in richness across sampling areas. For the downstream NNP River, benthic family richness ranged from seven (7) families at NNg6 & NNg7 to eleven families at NNg8, and included species such as earthworms, the Stonefly Nymph and Mayfly Nymph as well as Damselfly Nymph.

A higher density of earthworms at stations further downstream towards the convergence with the Mekong River, indicate the soils around these areas are in a virgin or near virgin stage. Earthworms and other insects are excellent food for many kinds of local fish.

Plankton Community

The NNP River is host to a great diversity of plankton species. Of the 104 species found during the January 2008 surveys, 64 were phytoplanktons and the other 40 species were zooplanktons (EIA, 2012). The highest density of planktons were found at the site furthest downstream and closest to the convergence with the Mekong River, followed by stations just upstream, at and just downstream of the dams.

In the NNP River, the dominant phytoplankton species is *Nitzschia* sp. from phylum Bacillariophyta and the dominant zooplankton species is *Testudinella patina*.

During the dry season, most of the river becomes shallow, so that light can penetrate into the water for longer periods and with higher light intensity. This can accelerate photosynthesis for the planktons and algae to grow. The relative richness of plankton species is due to substantial variations in ecosystems, caused by the range of climatic and geological conditions of the NNP River.

Threatened Species

Biodiversity surveys in the downstream NNP River area recorded 47 fish species of which one (1) species is listed as Protected (List II) in the Regulation of Ministry of Agriculture and Forestry No. 0360/MAF (2003) and six (6) species are listed as endangered, vulnerable or near threatened on the IUCN Red List. Information on these threatened species are summarised in *Table 3.1*.

Species / Common IUCN Habitat requirements Relative Status Name Status Abundance *Poropuntius deauratus* VC EN Yellow tail brook barb is the dominant species in the river. It generally occurs in medium size and small rivers and streams (Serov et al., 2006), and is usually found in clear water with rapid current. During Yellow tail brook surveys for the Project juvenile fish were recorded in the rivers and tributaries. This species has been barb recorded in coastal freshwater river drainages in Central Viet Nam, between the Thu Bon River and the (Cyprinidae family) Quang Tri River (Huckstorf & Freyhof, 2011) and sometimes large clear rivers from Thailand, Cambodia and Vietnam (Rainboth, 1996) although Kottelat (2000) notes records from Cambodia, China, Laos, Malaysia and Thailand are due to misidentification (Huckstorf & Freyhof, 2011). Yellow tail brook barb is at least 6 cm Standard Length (SL) (Fishbase, 2013) feeds on fine debris, algae, diatoms and aquatic insects (Rainboth, 1996) and does not persist in confined bodies of waters or reservoirs. Cirrhinus cirrhosis* VU Mrigal carp is an introduced species in Lao PDR being native to India and introduced in a number of LC other countries (Rema Devi, 2011) largely in connection with aquaculture, such that its distribution can no longer be determined. Mrigal carp* This species is a potamodromous (migrates within freshwater) benthopelagic fish, inhabiting fast flowing streams and rivers. It is a plankton feeder with juveniles being omnivorous to about 5 cm Total Length (Cyprinidae family) (TL) and adults being almost entirely herbivorous. This fish has a rapid growth rate; by the age of two individuals can reach a length of 60 cm and can weigh as much as 2 kg. It is commonly 40 cm (TL) (with average weight of 1 kg) and can reach up to 100 cm. There is a maximum published weight of 12.7kg from a 1991 specimen in India (Fishbase, 2013). These fish are widely cultured, and although adults thrive in ponds, they fail to breed naturally in ponds, needing swift rivers to spawn. Spawning occurs in water bodies with a depth of 50-100cm and over sand or clay substrate (Fishbase, 2013). Yasuhikotakia splendida VU Jaguar loach is native to Lao PDR and found in the Sekong River, the Mekong at Savannakhet as well as С in the Mun River at Keng Tana, Thailand (Baird, 2011b). The species is reported to inhabit swift or moderately swift, clearwater, freshwater streams and rivers Jaguar loach with predominantly rocky or cobblestone bottoms. It has a reported maximum SL of 10 cm (Fishbase, (Cobitidae family) 2013).

Table 3.1 Threatened Fish Species Recorded in Lower NNP River Area

Species / Common Name	Status	IUCN Status	Habitat requirements	Relative Abundance
Mekongina erythrospila		NT	The <i>Mekongina erythrospila</i> is endemic to the Mekong basin in Thailand, Lao PDR and Viet Nam.	VC
(Labeoninae family)			<i>Mekongina erythrospila</i> is found in rapidly flowing medium and large-sized rivers. It has a reported maximum SL of 45 cm and inhabits slower deeper reaches during the dry-season but prefers rocky stretches with rapids and fast-flowing current (Fishbase, 2013). It feeds on aquatic chlorophytes, periphyton and phytoplankton and spawning is thought to occur in the Mekong mainstream at onset of the monsoon (Poulsen, 2004). Juveniles migrate in big schools comprising several hundred fish (usually with other cyrpinids and loaches) from upper basin areas to the mainstream and back while adults remain in upper catchment areas (Baird, 2011).	
Bagarius bagarius & Bagarius varrelli		NT	The confused taxonomy surrounding the identities of <i>Bagarius</i> species in the Indian subcontinent and IndoChina is badly in need of resolution in order to accurately assess their conservation status.	С
Gnooch & Giant Gnooch			Adults inhabit a variety of fluviatile habitats, although it is typically associated with rapid and rocky pools of large and medium-sized rivers. This species is potamodromous and benthopelagic and feeds on insects, small fish, frogs and shrimps. It is thought to breed in rivers prior to the beginning of the annual flood season (Fishbase, 2013).	
(Sisoridae family)			These fish are relatively large, predatory fish and are actively fished for food and, in places, for ornamental trade as sport fish.	
Luciosoma bleekeri	\checkmark	LC	The Apollo shark minnow was recorded during project surveys within the Nam Ngiep study sites (upper and lower) and as well as being recorded in other locations within the Mekong basin, this species is also known from Cambodia, Thailand and Viet Nam (Vidthayanon, 2012b).	VC
Apollo shark minnow			The Apollo shark minnow is mainly found in rivers. It also inhabits tributaries and flooded forests, moving to marshlands and floodplains in the rainy season and into permanent water as flood waters recede (November and December) (Rainboth, 1996).	
			The Apollo shark minor feeds on insects, small crustaceans and some small other crustaceans and fish (Vidthayanon, 2012b).	
Status = Regulation of	the Minist	try of Agr	iculture and Forestry No. 0360/MAF, dated 8th December 2003	
IUCN Stats = EN-Enda	ngered; V	U-Vulner	able; NT-Near Threatened; LC-Least Concern; DD-Data Deficient	
Relative abundance = V	/C: Very (Common,	C: Common, LC: Less Common	
* = Introduced species				

3.2 DOWNSTREAM ECOSYSTEM SERVICES

It is evident that villagers in the Project area regularly use aquatic biodiversity e.g. fish as a food source, however, the dependence on the NNP River and tributaries varies by village and is largely associated with accessibility. This section describes the downstream ecosystem services supported by the NNP River and uses and much of the data is from village and market surveys undertaken by ERM in February and March 2013.

Table 3.2 provides a summary of the villages located in the downstream area of the re-regulation dam, including the number of households and population. There are nine (9) villages located within this zone; three (3) are located in the Bolikhan District and six (6) are located further downstream in the Pakxan District.

Province	District	Village	No of Households	Population		
Bolikhamxay	Bolikhan	Nampa	84	584		
		Somseun	221	1,207		
		Houykoun	358	2,180		
Bolikhamxay	Pakxan	Thong Noi	165	839		
		Thong Yai	86	437		
		Sanaxay	274	1,156		
		Phonsy	137	719		
		Pak Ngiep	173	859		
		Sanoudom	94	457		
Source: SDP of the Nam Ngiep 1 Hydropower Project						

Table 3.2Households and Population in the Project Area

The villages are home to three main ethnic groups - lowland Lao, Hmong and Khmu. Despite traditional ways of living, conditions are changing in Laos PDR. This in part is being driven by government policy, which is consolidating smaller villages into larger ones to improve access to infrastructure, such as roads, and communication technology. This has meant considerable population increases, particularly over the past four to five years, in a number of the villages in the Project area (refer to *Social Impact Assessment Report – Nam Ngiep 1 Hydropower Project*) and it is likely that the overall growing population is causing more pressure on the natural resources, including through over-fishing. Indeed villagers have noted that availability of naturally occurring resources, especially forest animals and fish, has been declining in recent years.

3.2.1 Fisheries

When compared to hunting, fishing occurs on a more regular basis. This is largely because of the close proximity of villages to waterways. The most common fishing method is with a cast weighted net, an item commonly seen in most houses. Larger nets are used during the rainy season to catch larger fish that swim up river from the Mekong River. At Hatsaykham, the survey team observed other methods such as scaring fish into a net hung across a short section of the river and gathering by hand. Other equipment observed in villages included lines, hooks and spear guns. Fishing takes place at established riverside sites at which small shelters are built.

Fish is generally caught only for household consumption, but it is also a common item used in inter-household exchange and transactions. Surplus fish tends to be sold at below market rates suggesting such transactions may more likely be part of a local gift economy rather than a commercial transaction. This being said, it was common to hear that small fish are eaten at home while big fish, when found, are sold. The Project EIA (2012) also reports that fish is the main source of protein for the people in the villages along the river.

Aside from the importance of fishing for subsistence living, fishing may have been more important for income generation in earlier times but with greater availability of alternative protein sources and reported reduction in fish stock availability and size, villages have adapted. Incomes of the downstream communities are shown in *Table 3.3* and *Table 3.4*.

		Items										
			On Far	m			Off East		Tatal			
Village	Crop		Livestock		Fishery		Oli Fai	111	10181			
	Income	%	Income	%	Income	%	Income	%	Income	%		
Thahuea	4,214,286	42.69	3,157,142	31.98	285,714	2.89	2,214,286	22.43	9,871,429	100		
Nampa	5,727,273	40.38	4,636,364	32.69	181,818	1.28	3,636,364	25.64	14,181,818	100		
Somseun	5,816,667	34.88	5,276,667	31.64	466,667	2.8	5,166,667	30.68	16,676,667	100		
Houykhoun	1,533,333	12.79	1,079,167	9	20,833	0.17	9,354,167	78.03	11,987,500	100		
Tong Noi	4,422,727	27.81	1,727,273	10.86	1,369,091	8.61	8,386,364	52.73	15,905,455	100		
Thong Yai	3,233,333	21.86	683,333	4.62	125,000	0.85	10,750,000	72.68	14,791,667	100		
Sanaxay	194,286	1.36	337,143	2.36	0	0	13,771,429	96.28	14,302,857	100		
Phonsy	852,941	9.99	705,882	8.26	294,118	3.44	6,688,235	78.31	8,541,176	100		
Pak Ngiep	15,140,909	54.53	1,436,364	5.17	977,273	3.52	10,213,646	36.78	277,681,820	100		
Sanoudom	2,258,333	12.23	458,333	2.48	500,000	2.71	15,250,000	82.58	18,466,667	100		

Table 3.3Sources of Income for Villages in downstream Area

Table 3.4Sources of Income of the Host Villages

	On Farm					Off Ear		Tatal		
	Crop		Livesto	ck	Fishery		Fishery		Total	
Village	Income	%	Income	%	Income	%	Income	%	Income	%
Hat Gniun	9,874,341	52.7	95,952	0.5	3,626,047	19.3	5,150,896	27.5	18,747,236	100
Thahuea	4,214,286	25.5	3,157,143	43.4	285,714	7.2	2,214,286	23.9	9,871,429	100

3.2.2 Navigation

A total of 829 boats consisting of wooden boats with engines and canoes are operated by villagers along the NNP River sections surveyed for the Project. These are used for fishing purposes and transportation of passengers and materials (*Table 3.5*). Especially in the wet season, river navigation is a crucial means of transport between villages along the NNP River and further downstream to Pakxan.

There is no obvious navigation system or rules of navigation for the NNP1 River and jetties are not abundant.

If the road between Nongsomboun and B. Hat Gniun is improved so that it can be used through the year, the frequency of navigation is expected reduce.

Table 3.5Kinds of Boat and Usages

		Village	XomXuen	HuayKhoun	Hat Guiun	HatSayKham	ThaHue	ThongNoy	ThongYai	NamPa	XaNaXay	NamNgiep	PhoneSy	SaenOuDom
Total			1196	2191	610	217	273	849	529	521	1185	955	753	NA
М			597	1108	323	105	152	433	279	270	599	484	373	NA
FM			599	1083	287	112	121	416	250	251	586	471	380	NA
Boat	with engine		221	5	68	10	18	30	7	85	5	70	100	30
	I.I town .	private	√	√	1	√	√	√	√	√	√	√	√	√
	Usag type	shere	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Initial cost (kip)/boat	4,500,000	1,500,000	6,500,000	2,080,000	1,000,000	3,900,000	3,900,000	1,300,000	1,500,000	1,820,000	3,900,000	3,900,000
		Maintenance cost(kip)	NA	NA	1,000,000	500,000	300,000	260,000	1,040,000	1,500,000	NA	200,000	520,000	100,000
		service life (vears)	10	5	4	6	3	5	10	5	10	3	6	3
	without engine	Č,	NA	NA	NA	8	11	NA	20	20	NA	100	20	NA
		private	NA	NA	NA	1	√	NA	√	√	NA	1	✓	NA
	Usag type	shere	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Initial cost (kin)/boat	NA	NA	NA	1,300,000	500.000	NA	1.040.000	520.000	NA	520.000	600.000	NA
		Maintenance cost(kin)	NA	NA	NA	400.000	NA	NA	NA	500.000	NA	100.000	200.000	NA
		service life (years)	NA	NA	NA	6	3	NA	NA	5	NA	3	5	NA
Canoe	with engine	service me (jeurs)	NA	NA	NA	NA	10	NA	NA	NA	25	NA	NA	NA
Cunoc	with engine	private	NΔ	NΔ	NΔ	NΔ	_10 √	NΔ	NΔ	NΔ	~	NΔ	NΔ	NΔ
	Lleag tune	chara	NΔ	NΔ	NΔ	NΔ	NA NA	NΔ	NΔ	NΔ	NA NA	NΔ	NΔ	NΔ
	Osag type	Initial cost (kin)/host	NA	NA	NA	NA	200,000	NA	NA	NA	500.000	NA	NA	NA
		Maintananaa aast(kin)	NA	NA	NA	NA	200,000 NA	NA	NA	NA	NA	NA	NA	NA
		ivialiteitatice cost(kip)	NA	NA	NA	NA	2	NA	NA	NA	10	NA	NA	NA
	without onging	service me (years)	NA	50	NA	NA	2 NA	60	NA	NA	NA NA	NA	NA	35
	without engine	animata	NA	./	NA	NA	NA		NA	NA	NA	NA	NA	
		ohore	NA	V NA	NA	NA	NA	N A	NA	NA	NA	NA	NA	NA
		siele	IN/A NA	500.000	NA	N/A N/A	N/A N/A	INA (00.000	IN/A NA	INA NA	NA	NA NA	NA	TRA 790.000
		Initial cost (kip)/boat	NA	500,000	NA	NA	NA	000,000	NA	NA NA	NA	NA	NA	100,000
		Maintenance cost(kip)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	100,000
		service life (years)	NA	NA	NA	NA	NA	4	NA	NA	NA	NA	NA	3
Number of jet	ty		3	2	3	3	4	8	3	5	6	25	7	3
private			NA	NA	NA	NA	NA	NA	NA	NA	NA	√	NA	NA
shere			✓	✓	✓	✓	✓	✓	✓	√	~	✓	✓	✓
Type of jetty			Land	Land	Gernaral	Natural	Natural	Natural	Natural	land,rock	Land	Land, jetty in	Natural	Natural
fishery	type of boat		engine boat	engine boat	engine boat	engine boat	engine boat	engine boat,w	engine boat,w	engine boat	engine boat,	vengine boat,w	engine boat	engine boat,w
	destination		NA	HatGuiun	XomXuen	XomXuen	XomXuen	NamPa,Xom	HatGuiun,Xo	upsteam of N	lex,NamNgie	along NamNg	songkhone	NamTex,Mek
	number of workers	(Man)	NA	some member	NA	6	6	-	5	2	NA	2	2	20
	frequency	dry season (time/month)	7	5	NA	5	20	12	15	26	4	26	25	8
		rainny season (time/month)	4	3	9	8	25	12	10	26	5	26	26	16
	Expense or charge (kip/time)	10,000	60,000	180,000	200,000	80,000	60,000	60,000	24,000	20,000	33,000	10,000	150,000
transportation	type of boat		engine boat	NA	engine boat	engine boat	engine boat,w	NA	NA	engine boat	NA	NA	engine boat	NA
of materials	destination		paddy field,up	NA	NA	across NamN	across NamN	NA	NA	across NamN	NA	NA	across NamN	NA
	number of workers		NA	NA	NA	2	NA	NA	NA	10	NA	NA	6	NA
	frequency	dry season (time/month)	30	NA	NA	20	25	NA	NA	3	NA	NA	20	NA
		rainny season (time/month)	20	NA	15	20	25	NA	NA	1	NA	NA	25	NA
	Expense or charge ((kip/time)	20,000	NA	NA	5000	10,000	NA	NA	24,000	NA	NA	10,000	NA
transportation	type of boat		engine boat	NA	engine boat	NA	engine boat	NA	NA	engine boat	NA	NA	NA	NA
of passengers	destination		HatGuiun	NA	NA	NA	XomXuen	NA	NA	NaPa water	NA	NA	NA	NA
	number of workers		NA	NA	NA	NA	6	NA	NA	7	NA	NA	NA	NA
	frequency	dry season (time/month)	NA	NA	NA	NA	NA	NA	NA	0	NA	NA	NA	NA
		rainny season (time/month)	5	NA	15	NA	5	NA	NA	3	NA	NA	NA	NA
	Expense or charge ((kip/time)	100,000	NA	400,000	NA	100,000	NA	NA	36,000	NA	NA	NA	NA
rental boat	type of boat		NA	NA	engine boat	NA	NA	NA	NA	NA	NA	NA	NA	NA
	destination		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	number of workers		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	frequency	dry season (time/month)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		rainny season (time/month)	NA	NA	5	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Expense or charge (kip/time)	NA	NA	500,000	NA	NA	NA	NA	NA	NA	NA	NA	NA
kind of naviga	tion system		NA	NA	NA	NA	NA	NA	NA	transportion	NA	NA	NA	NA
rule of navigat	ion system		NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	1 hoat must t	NΔ	NΔ	NΔ	NΔ
rat or navigat	ion system	ļ	nn	110	na	nn	nn.	nn.	ma	1 Juan must t	inn	inn	inn	110

3.2.3 Other Activities related to the NNP River

The NNP River in the Project Area is utilized for various activities other than fisheries and navigation by villagers (*Table 3.6*). The river water is used for essential activities for residents such as drinking, irrigation, laundry, bathing and washing. It is also used for micro-hydro power generation at B.Hat Gnuin.

With regards to drinking water, villagers mainly get their drinking water from gravity flow water systems, with the water obtained from springs or other sources with all-year flows, or from wells, with the NNP River and tributaries as a supplemental source of domestic water rather than the principle one. In fact, of all the villages in the affected area of the Project, only the community of Houayphamom in the reservoir area and the subvillage of Hatsaykham near B. Hat Gniun, depend entirely on the Nam Ngiep and nearby tributaries for all their water. Hence none of the villages in the area downstream of the re-regulation dam rely on the NNP River for their drinking water.

For most of its course, the Nam Ngiep passes through valleys with steep embankments and even farther downstream, where the topography is less mountainous, the river flows through a valley between higher hills. Nearly all the agricultural fields are on lands above the river and the main agriculture production - vegetables, lowland rice, upland crops, and tree crops - depends upon rainfall rather than river water. A few areas are irrigated, but these use water from streams flowing down toward the Nam Ngiep from the mountains. Farmers use river and/ or local stream water only for some small plots, about 0.08 to 0.3 ha with bamboo fences, near the embankments. Those are mostly vegetable plots, and they are planted when the waters are high and more accessible, just after the rice harvest in October or November. The vegetables that are grown tend to be for household consumption, while any surplus is sold at local markets. No irrigation system was observed during surveys. Villagers typically rely on rainfall or nearby local streams rather than the NNP River. In the event of a drought (or a decrease in rainfall), villagers often let their crops die.

Some materials are extracted from the river, such as gravel and sand for construction (e.g. of houses) but mining, such as for gold dust, is not carried out.

	Thonesy	SaenOuDom
Total 1196 2191 610 217 273 849 529 521 1185 955	753	NA
M 597 1108 323 105 152 433 279 270 599 484	373	NA
FM 599 1083 287 112 121 416 250 251 586 471	380	NA
Laundry description some HH NA NA for HH const NA villager using NA NA general using NA	HH consump	NA
number of occupation NA	NA	NA
annual income (kip) NA	NA	NA
operation period (year-year) NA NA NA NA NA NA 1937-2012 NA NA NA NA	1964-2012	NA
Bathing description some person to upland , NA NA NA villager using NA people go to take shower take shower	HH consump	NA
number of occupation NA	NA	NA
annual income (kip) NA	NA	NA
operation period (year-year) NA NA NA NA NA NA 1937-2012 NA until 2012 NA until 2012	NA	NA
Power generatidescription NA NA use genarator NA NA NA NA NA NA NA NA	NA	NA
number of occupation NA NA 20 NA NA NA NA NA NA NA NA	NA	NA
annual income (kip) NA	NA	NA
operation period (year-year) NA NA 6 NA NA NA NA NA NA NA NA	NA	NA
Extracting sand description NA By use Exca NA excavate san NA NA NA By use Exca NA Excavate san	NA	NA
number of occupation NA 1 NA NA NA NA NA 1 NA NA	NA	NA
annual income (kip) NA	NA	NA
operation period (year-year) NA 2010 NA NA NA NA NA NA 1992-1993;19 NA NA	NA	NA
Mining description NA	NA	NA
number of occupation NA	NA	NA
annual income (kip) NA	NA	NA
operation period (year-year) NA	NA	NA
Drinking supplied HH or area(ha) 221 NA NA 30 NA NA NA 58 NA NA	NA	NA
quantity of water supply(m3/day) based on usin NA NA 100 NA 20 NA 10 NA NA	150	NA
water supply period(days/year) 365 NA NA 180 NA NA NA 180 NA NA	NA	NA
charge (kip) NA NA NA NA NA 4000 NA NA NA NA	NA	NA
method of intake carry.pump NA NA carry NA pump NA carry NA NA	pump	NA
operation period (year-year) until 2000 NA NA 1994-2012 NA 1937-2012 NA until 2008 NA NA	2002-2012	NA
HH consuming supplied HH or area(ha) 221 NA NA 30 NA NA NA 97 unit 1,2,3 of v 100	NA	NA
quantity of water supply(m3/day) based on usin NA NA 200 NA 4000 NA 200 NA 200	200	NA
water supply period(days/year) 365 NA NA 180 NA NA NA 365 NA 365	NA	NA
chage (kip) NA NA NA NA NA NA NA NA 20,000	NA	NA
method of intake carry,pump NA Carry carry NA pump NA pump pump pump	NA	NA
operation period (year-year) until 2000 NA NA 1994-2012 NA 1937-2012 NA until 2012 NA until 2012	NA	NA
Irrigation supplied HH or area(ha) NA	pumping for	NA
quantity of water supply(m3/day) NA NA NA NA NA NA NA NA NA	NA	NA
water supply period(days/year) NA	NA	NA
chage (kip) NA	60,000/day	NA
method of intake NA	NA	NA
operation period (year-year) NA	NA	NA
Fishery apporving organization Luxembourg NA NA NA word vision NA NA NA Luxembourg NA WWF;MoAF	NA	NA
period of right(year) 3 NA NA 2007-2012 NA NA NA 2008-2012 NA 2001	NA	NA
approved date NA NA NA 10/05/2007 NA NA NA 2008 NA 2011	NA	NA
expense of right (kip) NA NA NA 800,000 NA NA NA 900,000 NA NA	NA	NA
Irrigation water apporving organization NA	NA	NA
period of right(year) NA	NA	NA
approved date NA	NA	NA

Table 3.6Other Activities Related to the NNP1 River

4 CHANGE OF FLOW REGIME DUE TO THE PROJECT

4.1 **PROJECT DESCRIPTION**

The NNP1 project consists of a main power station and a re-regulation power station. The main power station is designed to have a capacity of 272.0 MW and annual power generation of 1,515.0 GWh. The re-regulation dam of the re-regulation power station is planned to re-regulate and stabilize the maximum plant discharge of 230.0 m³/s released from the main power station for the safety to the downstream area of the re-regulation dam. The re-regulation power station is designed to have 18 MW and annual power generation of 105 GWh. The main dam creates a reservoir with the normal water level (NWL) at Elevation (EL) 320 m and minimum operating level (MOL) at EL 296 m. The effective storage capacity is 1,192 Mm³ at normal water level 320 m. The dam inundation area is approximately70 km length and includes a total surface area of just under 70 km². The basic specifications of the main features are shown *Table 4.1*.

Table 4.1Main Features of the Project

Facility	Items	Unit	Specifications
Main Power Station	1		=
Main Reservoir	Flood water level	EL. m	320.0
	Normal water level	EL. m	320.0
	Rated water level	EL. m	312.0
	Minimum operating level	EL. m	296.0
	Available depth	m	24.0
	Reservoir surface area	km ²	66.9
	Effective storage capacity	106 m ³	1,192
	Catchment area	km ²	3,700
	A works and annual inflows	m³/s	148.4
	Average annual millow	mill.m ³	4,680
Main dam	Tuno		Concrete gravity dam
	Туре	-	(Roller-Compacted Concrete)
	Dam height	m	148.0
	Crest length	m	530.0
	Dam volume	10 ³ m ³	2,034
	Crest level	EL. m	322.0
Spillway	Gate type	-	Radial gate
	Number of gates	-	4
	Design flood	m³/s	5,210 (1,000-year)
Intake	Туре	-	Bell-mouth
	Number	-	2
	Discharge capacity	m³/s	230.0
Penstock	Туре	-	Embedded and concrete-lined
	Number	-	2
	Length	m	185.81
	Diameter	m	5.2
Powerhouse	Туре	-	Semi-underground
	Length	m	25.0
	Width	m	62.5
	Height	m	47.2
Turbing and	Maximum plant	m ³ /a	220.0
i urbine and	discharge	m^{3}/s	230.0
generator	Gross head	m	132.7
	Effective head	m	130.9

ENVIRONMENTAL RESOURCES MANAGEMENT

0185065 ERM EFA revision.docx

NAM NGIEP 1 POWER CO., LTD 21 January 2014

Facility	Items	Unit	Specifications
	Type of turbine	-	Francis
	Rated output	MW	272 (at Substation)
	Annual power	CWb	1 546 (at Substation)
	generation	GWII	1,540 (at Substation)
Transmission line	Voltage	kV	230
11ansinission inte	Distance	km	125
	Connecting point	-	Nabong S/S
	Width of right of way	m	80 (40 m each side of CL)
	Number of towers	-	262
Re-regulation Pow	er Station		
Re-regulation	Flood water level	EL. m	185.9
reservoir	Normal water level	EL. m	179.0
	Rated water level	EL. m	179.0
	Minimum operating level	EL. m	174.0
	Available depth	m	5.0
	Reservoir surface area	km ²	1.27 at NWL
	Effective storage capacity	$10^{6}m^{3}$	4.6
	Catchment area	km ²	3,725
Re- regulation	Туре	-	Concrete Gravity dam
Dam	Dam height	m	20.6
	Crest length	m	290.0
	Dam volume	103 m ³	23.9
	Crest level	EL. m	187.0 (non-overflow section)
Re-regulation	Туре	-	Fixed wheel gate
Gate	Number	-	1
	Discharge capacity	m³/s	5,210 (1,000-year)
Saddle dam	Туре	-	RCC associate with rock fill dam
	Crest length	m	507.1
	Dam height	m	14.6
Spillway	Gate type	-	Ungate spillway (labyrinth type)
	Design flood	m³/s	5,210 (1,000-year)
Intake	Туре	-	Open
	Number	-	1
	Discharge capacity	m³/s	160.0
Powerhouse	Туре	-	Semi-underground
	Length	m	46.4
	Width	m	22.05
	Height	m	49.10
Turbine and	Maximum plant	m^3/c	160.0
Generator	discharge	m ⁵ / S	160.0
	Gross head	m	13.1
	Effective head	m	12.7
	Type of water turbine	-	Bulb
	Rated output	MW	18 (at Substation)
	Annual power	CWb	105 (at Substation)
	generation	Gwii	105 (at Substation)
Transmission line	Voltage	kV	115
	Distance	km	40
	Connecting point	-	Pakxan S/S
	Width of right of way	m	50 (25 m each side of CL)
	Number of towers	-	110

The NNP1 project has been developed on a 'Built Operate and Transfer' basis. The Project will generate and sell electricity to EGAT and Electricite du Laos EDL for 27 years under a concession provided by the Government of Laos (GoL) and the Power Purchase Agreements with EGAT and EDL respectively.

The general layout of the Project is shown in Figure 4.1.

4.2 CHANGE OF FLOW REGIME

4.2.1 Change to Baseline Flow Regime (Natural River)

Due to lack of long term observed data, the annual, monthly and daily discharge downstream of the re-regulation dam has been calculated by Tank Model method using 1971 to 2000 data. The calculated mean annual inflow is estimated to be 148.4 m³/s at the main dam and 149.4 m³/s at the re-regulation dam. *Figure 4.2* presents seasonal inflow and outflow of the main dam (top panel) after construction; and inflow to the re-regulation dam before and after construction (bottom panel). *Figure 4.4* shows monthly and annual natural inflow to the main dam, outflow from the main dam and outflow from the re-regulation dam over the 30-year period.

The dam-reservoir systems regulate the flood discharge during the wet seasons and increase the flow rates during the dry seasons, so that the seasonal flow regime shows less fluctuation over the year. Daily and monthly flow fluctuations are also likely to be less evident after the regulation.

(b) Seasonal Inflow to the Re-Regulation Dam before and after the dam construction

Figure 4.4Annual and Monthly Natural Inflow to the Main Dam and Outflow from the
Main Dam and the Re-regulation Dam over the 30-year Period

The observed daily discharge at B. Hat Gniun gauging station from 2007 to 2011 recorded the daily minimum discharge at being 12.8 m³/s in April 2009 and the maximum discharge as being 2,818.6 m³/s in July 2011.

4.2.2 During Construction

The river water will be discharged through a diversion tunnel during construction. In case of flood, flood peak discharge will be reduced by

reservoir storage effect. The flow regime during construction is, however, equivalent to that of a natural river.

4.2.3 During Initial Impounding

During initial impounding, the river water is discharged through a riparian release conduit that is set in the reservoir at EL 245.0 m. At the start of the initial impounding, the elevation of the riparian release conduit is set at EL 245.0 m so that the river water cannot be discharged through the riparian outlet until the reservoir water level reaches EL 245.0 m, which is predicted to take approximately two weeks. Thus the stored water at the re-regulation reservoir is discharged to secure a riparian release of $5.5 \text{ m}^3/\text{s}$. The discharge scheme during initial impounding is summarized in *Figure 4.5*. The breakdown of environmental flow to ensure a release of $5.5 \text{ m}^3/\text{s}$ is shown in *Figure 4.6*.

Figure 4.5 Discharge Scheme during Initial Impounding

Figure 4.6 Breakdown of Discharge Volume

Non-uniform flow analysis was applied to estimate the downstream water level, water depth and flow velocity for the riparian release of 5.5 m³/s during the initial impounding (Annex C). *Figure 4.7* presents the analysed water depths along the 3km downstream of the re-regulation dam. The minimum water depth of 0.5 m occurred at the section CR 31 between the regulation dam and Ban Hat Gnuin during initial impounding. The water depth increases as more inflows join.

According to the tentative programme the initial impounding starts on 1st July 2018. Initially the stored water in the re-regulation reservoir will be discharged with natural inflow to the re-regulation reservoir, and within about two weeks the reservoir water level would reach the sill elevation. It will take about one wet season to fill the reservoir at the first impoundment but it could vary depending on climate conditions according to the past 30 year inflow data. After that, the discharge from the riparian release conduit increases gradually as the reservoir water level increases.

Figure 4.7 Water Level along the 3km downstream of the Re-regulation Dam during Initial Impounding (Riparian Environmental Flow of 5.5 m³/s)

4.2.4 During Operation

Changes in Flow Rate, Water Level, River Width and Flow Velocity

After the construction of the NNP1 main dam and the re-regulation dam, stable outflow downstream of the re-regulating powerhouse can be secured. The discharge from the normal operation of the main power station is designed at 16-hour peak generation on weekdays and Saturday. The main power station would not operate on Sunday. The discharge from the main dam would be stored in the re-regulation reservoir and then discharged downstream. On the weekend, the outflow from the re-regulation reservoir will be reduced to 48 m³/s for a period of 17 hrs, and reduced further to 27 m³/s for a period of 15 hours (during which time it is released from the re-regulation gate). The flow pattern is illustrated in *Table 4.2* and *Figure 4.8*, and the discharge pattern over the weekend is shown in *Figure 4.9*.

Table 4.2Typical Operation Pattern during Week Day and Saturday and Sunday

No	Case	Timing	Period	Discharge (m³/s)		Explanation
				Main	Re-regul.	
				P/S	P/S	

ENVIRONMENTAL RESOURCES MANAGEMENT 0185065 ERM EFA revision.docx

_						
N-	1 Normal	6am-10pm	16	230.0	160.0	Nearly maximum
	operation	Mon-Sat	hrs/day			plant discharge re-
						regulation P/H
N-	2	10pm-6am	8 hrs/day	0	160.0	Nearly maximum
		Mon-Sat				plant discharge re-
						regulation P/H
N-	3	14pm Sun -	15 hrs/	0	48.0	Minimum plant
		6 am Mon	week			discharge of re-
						regulation P/H
						during off-peak
N-	4	10pm Sat -	17 hrs/	0	27.0	Water release
		14pm Sun	week			through spillway
						during off-peak
E-1	Extreme	When there is a	zero inflow	27.0	27.0	Riparian release from
		from the Nam	Ngiep			main reservoir
		basin-				through spillway
						during extreme
						drought year

Outflow Pattern from the Main Dam and Re-regulation Dam

Figure 4.9 Discharge Pattern from Re-Regulation Reservoir during Weekend

The re-regulation reservoir will be operated between NWL of EL179.0 m and MOL of EL 174.0 m. From Monday to Saturday, the re-regulation reservoir will store part of the discharge from the main dam as it operates for 16-hours, re-use it for power generation and release it downstream evenly over the 24-

hour period in order to augment the downstream river flow for the remaining 8-hours when the main dam is not discharging, thus flattening the peak discharge from Monday to Saturday. The re-regulation reservoir will release the discharge downstream in two steps from 10pm on Saturday to 6am on Monday, thus maintaining a discharge flow even when the main dam is not discharging. This typical operation accounts for over 97% of the reservoir simulation period of 30 years.

Figure 4.10 presents the analysed 47.9 km section of the NNP1 River between the re-regulation dam and the confluence with the Mekong River. During off-peak on Saturday when the release flow drops from 160.0 to 27.0 m³/s over 4 hours ramp down time the maximum fluctuation of water surface area change reaches 160.0 m at the cross section CR34 near the B. Hatkham village whilst the maximum fluctuation of the water level change of 1.5 m occurs further downstream at 15.9 km upstream of the confluence with the Me Kong River when flow release changes from 160.0 m³/s to 27.0 m³/s.

Figure 4.10 Water Level along the 3km downstream of the Re-regulation Dam during the Operation (Riparian Release of 27.0 m³/s)

The analysis also predicts that the maximum reduction in the flow velocity drops by 0.7 m/s at the most at the section CR 31, where the minimum water depth of 1.0 m was also predicted under the release rate of 27.0 m³/s. Meanwhile, the shallow river water depths of 1.2, 1.2 and 1.4 m also occurred at locations between Nam Miang and Nam Tak River at respective cross sections of CR 33, 34 and 35. It is noted that such regulated low water depths would have also occurred under the natural dry conditions without the dam operation, evident by the minimum daily flows (less than 27.0 m³/s) recorded at B. Hat Gniun in March, April and May in the years from 2008 to 2011 (*Table 2.5*).

In these typical operation patterns, the fluctuation of water level would be controlled not to cause a change of over 0.6 m /hour nor 1.7 m / 24 hours

according to the Concession Agreement (the limitation is not applied in the case of flood period). In the remaining 3% of the simulation period, it will be reduced to 40.0 m³/s or less in the dry season and there is a 1% or less possibility of the water being released from the reservoir stopping due to a shortage of reservoir storage volume.

Seasonally, the dam operations will contribute to about 0.5 - 0.7 m increase in water levels than under natural conditions in dry seasons. This can be considered as a positive impact for the downstream, since there will be increased flow even during the drier periods. The higher water levels will occur over almost the entire downstream segment of the river during March and April. The greatest predicted increase of the river width is in May at 21.6 km below the re-regulation dam, with an increase of 31.7 m compared to the width under natural flow without the dam.

Table 4.3 presents the summary of minimum natural inflow to the main dam, outflows from the immediately downstream of re-regulation with the riparian release. The proposed minimum weekly release of 27.0 m³/s is higher than the observed and modelled minimum average monthly and also daily river flow in the past 30 yr.

Table 4.3Minimum Natural Inflows to the Main Dam and Minimum Outflows from
the Immediately Downstream of the Re-regulation Dam

Condition	Cases	Flow rate (m³/s)
Without Dam (Natural inflow to	Min. average monthly river flow in 30 yr (1971-2000), estimated by Tank Model	26.4
main dam)	Min. daily river flow in 30 yr (1971-2000) , estimated by Tank Model	23.5
	Min. daily inflow measured at B. Hat Gniun (25 th and 26 th April 2009)	12.8
With Dam (immediately	Min. daily/weekly flow rate during dry condition	27.0
downstream of re-regulation dam)	Riparian release during extreme drought year	27.0

Frequency of Less Water Release

A. Water release of 27.0 m^3 /s through re-regulation dam during off-peak in the weekend

In dry conditions, water release of 27.0 m³/s through the re-regulation dam during off-peak in the weekend is likely to occur when it does not have enough storage in the main reservoir. *Figure 4.11* and *Figure 4.12* present the frequency of the discharge of 27.0 m³/s during operation on a monthly and yearly basis (using Tank Model to review the past 30 years of data). Seasonal frequency of daily outflow 27.0 m³/s from the re-regulation dam is on average 4.5 days in Jan and reduces to about 1.5 days in July (*Figure 4.11*). In the past 30 years, the number of days when outflow reaches 27.0 m³/s

ranges from the minimum 19 days in 1997 to the maximum of over 50 days in 1972, 1973, 1974 and 1977 (drought years) (*Figure 4.12*).

Figure 4.11 Monthly Occurrence (Days) of Discharge of 27.0 m³/s through the Reregulation Dam

Figure 4.12 Annual Occurrence (Days) of Discharge of 27.0 m³/s through the Re-regulation Dam

B. Riparian release of 27 m³/s in case of extreme draught year

Extreme drought years have happened in the past 30 years and the model estimated that a riparian release (assuming with the dam existed) would have occurred on 49 days continuously in September and October 1972, 1977 and 1992. *Figure 4.13 shows* the number of concession days over the past 30 years when there would have been an outflow of 27.0 m³/s through the intake/powerhouse at EL 275.5 m in the main dam. During these periods inflow of small amount is used to store water in the main reservoir without

operation of the main powerhouse to keep the reservoir water level above the rule curve for the reservoir operation. It is noted that the occurrence of riparian release could be postponed by months as compared to the timing of the driest natural inflow to the main dam, benefiting from the operation capacity of the reservoir. By the time riparian release took place (for example in September and October), the natural inflow to the main reservoir might have recovered from the minimum flow of the year. The numbers of days when riparian releases occurred are listed below and as shown in *Annex D*.

- 1972: 15 days in September to October
- 1977: 2 days in October
- 1992: 32 days in September to October

Accordingly, the frequency when the daily outflow is 5.5 m³/s from the reregulation dam is 0.5 % (less than 1.5 days /year over 30 years). In such a situation, the amount of environmental flow (riparian release) would be secure enough to mitigate the extremely low flow conditions in the year of extreme drought in the downstream areas.

Without the dam operation, the Tank Model indicated in the past 30 years (1971 -2000) there were 55 days when the inflows at the main reservoir were less than 27.0 m³/s occurring in the years of 1973, 1978 and 1998. With the secured riparian release, such low flows would have been augmented to 27.0 m³/s. Hence, changes to the dry flow regime are considered to be fairly minor given the low flow rates and frequency that could naturally takes place during the extreme drought years.

5

EFA aims to identify the extent of the NNP River system likely to be affected by the NNP1 Project and alert NNP1PC to the likely impacts on biodiversity and ecosystem services that will need to be addressed.

The primary objective of the EFA revision Study is to assess the projected environmental flow rate(s) during operation of the Project that are sufficient to maintain the basic needs of the downstream biodiversity and ecosystem services of the NNP River i.e. that below the re-regulation dam.

The dam-reservoir systems regulate the flood discharge during the wet seasons and increase the flow rates during the dry seasons, so that the seasonal flow regime shows less fluctuation over the year. Daily and monthly flow fluctuations are also likely to be less after the regulation.

5.1 ENVIRONMENTAL FLOW FOR NNP1 PROJECT

Environmental flow or "Riparian release" is defined in Chapter 1 and for the purposed of this assessment will be the discharge from the NNP1 main reservoir and re-regulation reservoir that will maintain normal functions of the river downstream of the re-regulation dam, including from a biodiversity perspective concerning the terrestrial/ riparian habitats and aquatic biota, as well as from a utilization perspective (ecosystem services) such as through fisheries, navigation, etc.

A certain amount of discharge from the main dam should be secured to maintain the basic level of natural processes and ecological value of the aquatic ecosystem even in a drought year or an emergency event such as an unexpected shutdown of the main power station. In this context, a mechanism of environmental flow release will be introduced as one of the mitigation measures, taking into account various anticipated impacts on downstream biodiversity and ecosystem services as well as the minimum flow of the NNP River from past records.

5.2 ENVIRONMENTAL FLOW OF OTHER HYDROPOWER PROJECTS IN LAOS

It is found that there is no standard for environmental flow in the Mae Kong riparian countries including all Mekong River Commission reports. Therefore the riparian release from the other projects in Lao PDR have been reviewed, as shown in *Table 5.1*, showing the catchment area, minimum discharge and specific discharge for the proposed dams to be developed in Lao PDR. The specific discharge ranges from the lowest value of zero (0) to the maximum value of 0.10 m³/s/100 km².

Table 5.1Riparian Flow of Other Projects in Laos

Name of the project	Catchment area	Minimum	Specific discharge
		discharge	
	(km²)	(m³/s)	(m³/s/100km²)
Nam Theun 2	4,031	2.0	0.05
Theun Hinboun	8,937	5.0	0.06
Thuen Hinboun Exp	4,903	5.0	0.10
Houay Ho	192	0.0	0.00
Nam Leuk	274	0.0	0.00
Nam Ngum 3	3,890	1.0	0.03
Nam Mang 3	82	0.0	0.00
Xe Set	320	0.0	0.00

*1: Under construction, commencement of commercial operation in 2009.

*2: The minimum discharge of Nam Ngum 3 is a proposed value from the EIA draft final report (Dec 2007, Norplan)

According to the location and the rainfall condition, NNP1 Project (No. 15 in *Figure 5.1*) has a similarity to Nam Theun 2 project (No. 12 in *Figure 5.1*). If the same method that was used to estimate the riparian flow for Nam Theun 2 project (a specific discharge rate of $0.05 \text{ m}^3/\text{s}/100 \text{ km}^2$) is used for NNP1, the minimum riparian flow for the NNP1 Project (with a catchment area of 3,700 km²) is approximately 1.85 m³/s (=0.05 m³/s/100 km² x 3,700 km² catchment area).

Figure 5.1 Location of Proposed Dams to be Developed in Lao PDR

ENVIRONMENTAL RESOURCES MANAGEMENT 0185065 ERM EFA revision.docx

5.3.1 During Initial Impounding

Considering the practice of environmental flow of other projects in Laos an environmental flow discharge of $5.5 \text{ m}^3/\text{s}$ is adopted for the NNP1 Project during the initial impounding. This is a much higher specific discharge than that of other projects in Laos. The proposed riparian flow rate during the initial pounding has also considered the restrictions by the designed capacity of the re-regulation pond and riparian release conduit.

During the initial impounding the riparian release is set to $5.5 \text{ m}^3/\text{s}$. The section with reduced water is limited to 3 km downstream at the confluence of the Nam Xao River, where the minimum flow will increase to more than 18.6 m³/s (*Figure 5.2*) with the July inflows (*Table 5.2*) from the Nam Tak and Nam Xao.

Figure 5.2Minimum Recovered Discharge 3 km Downstream of the NNP1 Re-regulation
Dam during Initial Impounding in July 2018

Table 5.2Discharge at Each Point Downstream

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Nam Tak	1.2	1.0	0.9	1.0	1.7	3.4	4.4	4.8	4.1	2.5	1.7	1.4
Nam Xao	6.4	5.4	4.7	5.1	9.0	18.2	23.3	25.5	21.8	13.2	9.3	7.6
Nam Xao												
minimum	3.3	2.7	1.8	1.3	1.6	3.7	8.7	11.2	12.0	8.5	7.3	4.4
daily flow												

Note: The minimum daily flow in the Nam Xao is estimated by multiplying ratio of basin area to NNP River basin area to the minimum daily flow recorded in the NNP River in *Table 2.5*.

It is noted that the initial impounding is scheduled to take place in the beginning of rainy season in July with an increasing natural inflow to the main reservoir in order to reduce the impacts of low flows on downstream riverine system. The filling of the main reservoir will takes one wet season and complete before the dry season. Non-uniform river flow analysis (*Annex C*) was performed based on river sectional surveys and the river water flows to investigate the downstream minimum water depth during the initial impounding. Near the B. Hat Gniun village the minimum water depth was predicted to increase to about 1.0 m (refer to *Figure 4.7*), which should provide

sufficient depth for boat navigation according to the villager's experience. In case that there is a point where the river depth is not enough for boat navigation, the villagers can convey boat by hand so far. It is noted that after construction up to the main dam, access road will be constructed and a bridge across the NNP River just at the downstream of the re-regulation dam. Consequently, the needs for navigation may be decreased. Local villagers' boat navigation is hence not anticipated to be a critical issue.

5.3.2 During Operation

After the commencement of operation, the environmental flow rate would be augmented to $27.0 \text{ m}^3/\text{s}$, released through the intake at EL 274.4 m rather than the riparian release conduit at EL 244.6 m in the main reservoir.

During years of extreme drought, a discharge of riparian release of 27.0 m³/s is likely to concur with the dry seasonal tributary flow in the Nam Xao River. The minimum daily flow in the Nam Xao River is estimated to range from 1.3 (April) to 12.0 m³/s (Sept) (dry season) (*Table 5.2*Error! Reference source not found.). This is calculated by multiplying the ratio of the Nam Xao River basin area to the NNP River basin area with the minimum daily flow in the NNP River in *Table 2.5*. In the past 30 years, the model suggests that riparian releases would have been taken place in September and October (*Annex D*). If discharging riparian release increases to 27.0 m³/s during the normal operation, the minimum flow encountered between immediate downstream of the re-regulation dam and the Nam Xao will be increased to at least 38.0 m³/s near the Nam Xao confluence, which is higher than the observed minimum daily mean natural inflows at Hat Gniun. The minimum water depth downstream will be increased from 0.5 m (when the riparian release is 5.5 m³/s during initial impounding) to 1.0 m at Hat Gniun.

Required minimum water depth for navigation and fish has been considered. A villager at B. Hat Gniun stated that the minimum required water depth for navigation is 0.5 m (Hb) and suggested that the required water depth for fish is usually double the height of the fish. In case there is a point where the river depth is not enough for boat navigation, the villagers can convey boat by hand so far. A depth of 0.5 m enables boat navigation and appears to be sufficient for the ecology of most fish. Required minimum water depth for navigation and fish are 0.5 m.

As a result of assessment for environmental flow and discussions with related authorities, the required environmental flow and water depth is determined as shown in *Table 5.3*, which is set in *Annex C of the Concession Agreement* between the GoL and the NNP1 PC. The compliance status with the below threshold will be adequately monitored during impoundment and operational phase.

Table 5.3Flow Requirement in Annex C of Concession Agreement

[During impor	undment]								
River reach	Absolute N	Ainimum Flow	Water depth (measured at a fixed point immediately downstream of the re- regulation dam)						
Downstream of re-regulation	of the • Min dam the c rainy	5.5 m3/s at all times in dry season and in the y season	• 0.5 m						
[During the Operational Phase]									
River reach	Absolute Minimum Flow	[Water depth]	Max Fluctuations						
Downstream of the re- regulation dam	Min 5.5 m ³ /s at all times in the dry season and in the rainy season	 Min water depth in in the entire reach from downstream of the re-regulating po- until [*km] during of and rainy season respectively (measu at the deepest point any cross-section) 	 m • 1.7 m Max fluctuation in any 24 hour period of • 1.7m Max fluctuation in any period of seven consecutive days • Max rate of change is 0.6n m/h • Max frequency in events per 24 hours and in any 7 days • consecutive period 						

During the normal operation the riparian flow will be drawn from the upper layer of the reservoir, unlike the deep storage released during the short time period of the initial impounding. Computer models were made to determine the quality of outflow at the intake water level and results are outlined in Section 6. The impact on aquatic biota will be confirmed by continuous monitoring as outlined in Section 6 and aeration measure is to be made if needed.

EVALUATION OF CHANGE IN ENVIRONMENTAL FLOW ON DOWNSTREAM BIODIVERSITY AND ECOSYSTEM SERVICES

As discussed in the previous sections, the dam-reservoir systems regulate the flood discharge during the wet seasons and increase the flow rates during the dry seasons, so that the seasonal flow regime shows less fluctuation over the year. In general, there will expect to be no major negative impacts to the downstream (below the re-regulation dam) biodiversity and ecosystem services under normal operation of the Project (discharge rate ranging from 27.0 m³/s to 160.0 m³/s as indicated in *Table 4.2*.

The key concern is the potential impacts on downstream biodiversity and ecosystem services during initial impounding and extreme drought years.

It should be noted that operation of the main powerhouse will be stopped during extreme drought period and a riparian release of $27.0 \text{ m}^3/\text{s}$ from the reservoir will be discharged continuously (in which the natural inflow is likely less than $27.0 \text{ m}^3/\text{s}$). By the time riparian release took place, the natural inflow to the main reservoir might have recovered from the minimum flow of

5.4

the year. And therefore the amount of environmental flow (riparian release) would be secure enough to mitigate the extremely low flow conditions in the year of extreme drought in the downstream areas and benefiting from the operation capacity of the reservoir. It is also noted that the frequency of when the daily outflow is 27.0 m³/s from the re-regulation dam is 0.5 % (less than 1.5 days /year over 30 years).

Further to a review of the downstream biodiversity and ecosystem services as detailed in *Section 3*, the terrestrial/ riparian habitats and flora including the endangered trees species downstream of re-regulation dam (Lower NNP River), as well as the Houy Ngua PPA, are less dependent on the NNP River. While the aquatic biota and fishery resources on the NNP River are expected to be more sensitive to the change of water flow due to NNP1 Project. And therefore the evaluation of change in environmental flow on downstream biodiversity and ecosystem services in the following section are focussed on aquatic biota and fishery resources.

Aquatic Biota and Fisheries Resources

Direct and indirect impacts on the aquatic biota and fisheries resources due to the construction of the dams and associated infrastructure, including habitat loss, habitat fragmentation and barrier to movement etc, have been discussed and evaluated, and associated mitigation measures/ offsets (including fish enhancement program) were also recommended in the Project EIA Report and *Biodiversity Offset Design Report*. There were 47 fish species, including one protected species (Apollo shark minnow *Luciosoma bleekeri*) and six endangered, vulnerable or near threatened species (Yellow tail brook barb *Poropuntius deauratus* (EN), Mrigal carp *Cirrhinus cirrhosis* (VU), Jaguar loach *Yasuhikotakia splendida* (VU), *Mekongina erythrospila* (NT), Gnooch *Bagarius bagarius* (NT) and Giant Gnooch *Bagarius yarrelli* (NT)) in the downstream NNP River area. Cyprinidae family species was the dominant group recorded during 2013 surveys and were reported to adapt to different environmental in various sections of the river.

During initial impounding which restricted to one wet season, the riparian release through the re-regulation dam will fall to 5.5 m³/s. Potential impacts on downstream fishes and benthic fauna during initial impounding are expected to be anticipated. The reduced flow and water depth of the river may affect the abundance and richness of the fishes and benthic fauna (also considered as the food source for fish species). However, the reduced flow and water depth will be improved further downstream at least starting at 3km downstream of the re-regulation dam by confluent of Nam Xao river and also in the event of after rains (which will be frequent during wet season). The fish species may move to river section of adequate water level and the fish abundance and richness are likely to adjust in response to the altered flow regime until the water flow recovered. Regarding the benthic fauna of less mobility such as earthworms and other invertebrates including insect larvae/ nymphs (ie Stonefly, Mayfly and Damselfly), the changes in waterflow will expect to reduce their diversity and abundance in certain extent. With

consideration of the initial impounding water flow reduction happening during wet season and restricted to one wet season, significant adverse impacts on downstream fishes and benthic fauna during initial impounding do not expect to be anticipated.

Under normal operation of the Project, water flow will be stabilised with less fluctuation and expect to be of sufficient discharge rate for the downstream aquatic biota including fishes, as well as fishing activities. Although the aquatic biota will experience weekly changes of flow from 160.0 m³/s to 48 or 27.0 m³/s from 10pm on Saturday to 6am on Monday, the changes will be reduced further downstream as the waterflow will increase at least starting at 3km downstream of the re-regulation dam by confluent of Nam Xao river. Significant impacts on the downstream fishes do not expect to be anticipated due to such short duration and their high mobility as they can temporarily move to river section of adequate water level and back to the affected areas after waterflow increased. The temporary changes in waterflow will reduce the water depth that may expose the benthic faunal community to air. However, the benthic fauna will likely to hide in microhabitats of sufficient water or high humidity (ie pools, underneath the stones or litters or logs etc) and their activities will be reactivated/ resumed after waterflow recovered. It should be noted that the river section of concern is mainly focus on the 3km downstream of the re-regulation dam. Consequently, adverse impacts on aquatic biota and fisheries resources during normal operation do not expect to be anticipated.

During extreme drought years, the natural inflow will expect to be reduced to minimal. With the provision of continuous environmental flow $(27.0 \text{ m}^3/\text{s})$ by the Project (using the water stored in the reservoir), additional water inflow to downstream areas will be resulted and positive impacts on the downstream fisheries resources and aquatic biota including the protected, endangered, vulnerable or near threatened fish species will expect to be anticipated.

5.5 WATERSHED MANAGEMENT ACTIVITIES IN THE NAM NIEP WATERSHED

Watershed management activities above and below the Nam Ngiep Dam will provide opportunities to improve the aquatic and riparian habitats of the watershed. Combined with the environmental flow regime, these management actions will have the objectives of:

- Improving knowledge of aquatic biodiversity values in Lao PDR;
- Engaging the community in watershed management;
- Managing key threats to water quality and aquatic habitats; and
- Monitoring and evaluating the effectiveness of management actions on water quality and aquatic habitats.

Management of fish habitat, targeting to protect and enhance habitat for fish species lifecycle, is one of the recommended watershed management activities

that can also be considered as a measure for the change of flow due to the Project and details please refer to the *NNP1 Biodiversity Offset Design Report*.

6 MONITORING PLAN

6.1 WATER QUALITY SIMULATION

The predicted change of temperature and DO were simulated by computer to help understand how the water quality would be affected by the dam construction. The water quality models were calculated to predict the quality change of inflow and outflow or discharge due to the project. The variation of water quality, as predicted by the variations of DO and water temperature, was found to arise largely from the seasonal variation rather than hourly variation. In addition, since the NNP1 reservoir is considered as the annual regulation reservoir, the water quality simulation in the reservoir was conducted on a daily interval rather than an hourly interval.

6.2 WATER TEMPERATURE

The inflow water temperature was estimated by using a correlation equation between air temperature and observed data of water temperature. The daytime water temperature at the dam site was measured in 2011. The average daytime water temperature of reservoir surface close to the dam was the lowest (25.9°C) in January while the highest (30.1°C) was in May (*Figure 6.1*). The difference in the water surface temperatures between the reservoir and at the dam fluctuated throughout the year. The thermocline zone was predicted to form around EL. 250 m and it may affect the water quality for eight years.

The water temperature of discharged water tends to be higher than that of the natural inflow (*Figure 6.2*). The temperature of the discharged water also tends to be lower than that of reservoir surface water close to the dam.

Figure 6.2 Comparison of Inflow and Outflow Water Temperature of NNP1 River

The water temperatures of the downstream river before and after the dam construction were significantly different. The average temperature downstream after the dam construction would be about 4°C higher than that before the construction (*Figure 6.3*). The temperature of discharged water gradually changes as the water flows downstream and it gradually approaches the temperature of water before construction of the dam.

Due to the limits of available data on temperature, the impact assessment of water temperature on aquatic life in the project area had to be made by indirectly linking it to the biochemical functions that are affected by temperature change. The water temperature change could affect biochemical functions such as those that control the immune response, spawning, hatching, and survival rate of larva of aquatic life.

One study of small dams in warm climate areas assessed the impact of changing water temperatures on fish and macro-invertebrate communities below those dams. The results of this study showed that the main change downstream was that macro-invertebrates showed shifts in community composition below these small, surface release dams (Lessard and Hayes, 2003). With reference to this study, at a minimum it is expected that there will be changes in the community composition of macro-invertebrates in those areas downstream from the NNP1 dam that are predicted to experience significant increases in temperature (up to 4°C).

The assessment of the impact on aquatic organisms due to temperature changes downstream of the NNP1 dam was conducted using the results of a

temperature model, which may not reflect the real life situation. This makes it imperative that an effective and regular monitoring system be in place to determine the actual impact of the NNP1 dam on downstream aquatic life during construction and throughout the operation of the dam.

Figure 6.3 Comparison of Downstream Water Temperature of NNP1

6.3 DISSOLVED OXYGEN

The prediction of DO change due to the Project was conducted by reviewing the impacts of similar dam projects, using eight (8) years (1991-1998) of data collected from those dams and comparing the results with that of natural inflow. The result of the computation shows that the DO in the discharged water from the main dam has a significant tendency to be lower than that of inflow. The predicted range of the DO in the discharge varies from 3.5 mg/L to 7.9 mg/L through the year (*Figure 6.4*).

Figure 6.4 Comparison of Inflow and Outflow DO Levels

DO concentration of discharged water from the re-regulating dam is over 6 mg/L almost all the year. The DO concentration increases gradually as the water flows further downstream due to oxygenation and dilution (*Figure 6.5*).

Figure 6.5 Prediction of DO Changes per Month (Longitudinal Profile of the River)

In natural conditions, a concentration of 5 mg/L DO was recommended for optimum fish health. To prevent low DO affects the fish health, the regular monitoring system should be conducted during construction and throughout the operation of the dam. Sensitivity to low levels of dissolved oxygen was species specific; however, most species of fish were distressed when DO falls to 2-4 mg/L. Mortality usually occurs at concentrations less than 2 mg/L.

Overall the water quality simulation predicts that there is a possibility of adverse impact on aquatic biota within an approximate 6 km range from the re-regulation pond. This is due to the DO in this section of river being predicted to be 3.5 to 6.0 mg/L, which is less than the 5 mg/L DO recommended for optimum fish health. The adverse impact on aquatic biota will be confirmed by continuous monitoring as outlined below.

6.4 MONITORING PLAN

The monitoring plan will be carried out to ensure that the water quality of the NNP1 reservoir and river are maintained. The monitoring will be conducted periodically at selected sites upstream from the reservoir, in the reservoir and downstream from the dam. The monitoring will be divided into two phases, one during construction and the other during operation. The monitoring locations and frequency will be decided in accordance with the Concession Agreement and EIA report. As needed, in response to an emergency (such as fish dying downstream, foul odours, excessive algal growth) or viable complains from people around the reservoir or downstream, additional monitoring and countermeasures should be implemented.

The monitoring parameters, measuring points and frequencies are outlined below.

6.4.1 During construction phase

- Monthly to observe parameters of physical and chemical water quality (temperature, pH, conductivity, turbidity, suspended solid, total dissolved solid), biological water quality (DO, COD, BOD5), and bacteriological water quality (total coliform and fecal coliform) at sites upstream from the dam (at two (2) sites most upstream and most downstream points within the main reservoir) and downstream (at two (2) sites one immediately downstream from the re-regulating dam and another farther downstream before the confluence with the Nam Xao River.);
- Seasonally (3 times/year in wet, dry and transition period) to report all the above parameters, plus Mn;
- Quarterly during the inundation period only, for ambient water quality parameters as listed in *Table 6.1*, in addition to the above parameters, plus Mn; and

• In addition, necessary parameters for biomass simulation to be observed in accordance with *Appendix 2* of *Annex C* of CA.

6.4.2 During operation phase

- Bi-weekly tests (short to medium term) to observe temperature, pH, conductivity, turbidity, SS, DO, COD, BOD5, total coliform and faecal coliform at sites upstream (at two (2) sites most upstream and most downstream points within the main reservoir) and downstream (at one (1) site immediately downstream from the re-regulating dam);
- Seasonally (3 times/year in wet, dry and transition period) (long-term) to observe physical and chemical water quality (temperature, pH, conductivity, turbidity, suspended solid, total dissolved solid), biological water quality (DO, COD, BOD5, P, PO43-, N, NO3-, NH3), bacteriological water quality (total coliform and faecal coliform) and Mn at the three sites;
- Quarterly (long-term)– observe the ambient water quality parameters as listed in *Table 6.1* in addition to the above parameters;
- In addition, necessary parameters for biomass simulation to be observed in accordance with *Appendix* 2 of *Annex C* of CA; and
- As needed, to observe any parameters considered important in response to an emergency (such as fish dying downstream, foul odors, excessive algal growth) or viable complaints from people around the reservoir or downstream.

		Constructi	on period		Operation period		
	Most upstream in the main reservoir	Most downstream in the main reservoir	Immediately downstream of the re-regulation dam	Further downstream from the re- regulation dam	Most upstream in the main reservoir*	Most downstream in the main reservoir*	Immediately downstream of the re-regulation dam*
Temperature	e Monthly Monthly		Monthly	Monthly	Biweekly-	Biweekly-	Biweekly-
рН	Monthly	Monthly	Monthly	Monthly	Biweekly- 3 times/year	Biweekly- 3 times/year	Biweekly- 3 times/year
Conductivity	Monthly	Monthly	Monthly	Monthly	Biweekly- 3 times/year	Biweekly- 3 times/year	Biweekly- 3 times/year
Turbidity	Monthly	Monthly	Monthly	Monthly	Biweekly- 3 times/year	Biweekly- 3 times/year	Biweekly- 3 times/year
SS	Monthly	Monthly	Monthly	Monthly	Biweekly- 3 times/year	Biweekly- 3 times/year	Biweekly- 3 times/year
TDS	Monthly	Monthly	Monthly	Monthly	Biweekly- 3 times/year	Biweekly- 3 times/year	Biweekly- 3 times/year
DO	Monthly	Monthly	Monthly	Monthly	Biweekly- 3 times/year	Biweekly- 3 times/year	Biweekly- 3 times/year
COD	Monthly	Monthly	Monthly	Monthly	Biweekly- 3 times/year	Biweekly- 3 times/year	Biweekly- 3 times/year
BOD5	Monthly	Monthly	Monthly	Monthly	Biweekly- 3 times/year	Biweekly- 3 times/year	Biweekly- 3 times/year
Total coliform Bacteria	Monthly	Monthly	Monthly	Monthly	Biweekly- 3 times/year	Biweekly- 3 times/year	Biweekly- 3 times/year
Total faeal Coliform	Monthly	Monthly	Monthly	Monthly	Biweekly- 3 times/year	Biweekly- 3 times/year	Biweekly- 3 times/year
Mn	3 times/year 4 times/year 5 pient water ity parameters sted in <i>Table</i> other than we parameters		5 times/year	6 times/year	7 times/year	8 times/year	9 times/year
Ambient water quality parameters as listed in <i>Table</i> 6.2 other than above parameters			Quarterly during inundation only	-	Quarterly	Quarterly	Quarterly

Table 6.1Summary of Water Quality Monitoring

*First frequency given is for short/medium term and second is for long term monitoring

6.5 WATER QUALITY STANDARD

The water quality standard is prescribed in accordance with the *Annex C* in the Concession Agreement. The related water quality standards are shown in *Table 6.2*.

Parameter	Unit	Standard
pH		5-9
Dissolved Oxygen	mg/l	>6.0
BOD5	mg/l	1.5
COD	mg/l	5.0
Nitrogen as nitrate (N-NO3)	mg/l	5.0
Nitrogen as ammonia (N-NH3)	mg/l	0.2
Sulfate	mg/l	500
Total coliform bacteria	MPN/ml	5,000
Total faecal coliform	MPN/ml	1,000
Phenols	mg/l	0.005
Arsenic (As)	mg/l	0.01
Cadmium (Cd) CaCO $3 \le 100 \text{ mg/l}$	mg/l	0.005
Cadmium (Cd) CaCO3 ≥ 100 mg/l	mg/l	0.05
Chromium (VI) (Cr6+)	mg/l	0.05
Copper (Cu)	mg/l	0.1
Cyanide	mg/l	0.005
Lead (Pb)	mg/l	0.05
Mercury (Hg)	mg/l	0.002
Nickel (Ni)	mg/l	0.1
Zinc (Zn)	mg/l	1.0
Manganese (Mn)	mg/l	1.0
Alpha ¬Radioactivity	Becquerel/1	0.1
Beta ¬ Radioactivity	Becquerel/1	1.0
Total Organochlorine	mg/l	0.05
DDT	mg/l	1.0
Alpha-BHC	mg/l	0.02
Dieldrin	mg/l	0.1
Aldrin	mg/l	0.1
Heptachlor and Heptachlor Epoxide	mg/l	0.2
Endrin	mg/l	0

Table 6.2Ambient Surface Water Quality Standard in Annex C - Concession Agreement

REFERENCES

Azmeri, Basri, H., and Herissandy, N. (2012). Changing land use impact analysis toward water avaibility on Krueng Meureudu watershed. Journal of Ekonomi dan Pembangunan, 5 (1): 83-98.

Baird, I. 2011. *Yasuhikotakia splendida*. In: IUCN 2013. IUCN Red List of Threatened Species. Version 2013.1. <<u>www.iucnredlist.org</u>>.

Basri, H., Fukuda, T., and Kuroda, M. (1998). Water balance and water Quality analysis of paddy field irrigation system in low lying area. J. Fac. Agr, Kyushu Univ.,. 43(1-2): 222-237.

Basri, H., Nakano, Y., Kuroda, M., and Funakoshi, T. (1999). Water requirement analysis of paddy field irrigation system in diversified land use area. J. Fac. Agr, Kyushu Univ., 44(1-2): 175-187.

Basri, H., Syahrul and Nursidah. (2002). Evaluation of hydrological response of Krueng Jreue watershed using computer simulation of tank model. Jurnal Agrista, 6 (1): 7-18.

Dyson, Megan, ed. ; Bergkamp, Ger, ed. ; Scanlon, John, ed. ; IUCN, Water and Nature Initiative, 2003, Flow: the Essentials of Environmental Flows, page 118. ISBN 2-8317-0725-0

Environmental Research Institute (ERI) (2012). Nam Ngiep 1 Hydropower Project Environmental Impact Assessement Draft Report, Prepared by ERI, Chulalongkorn University.Fishbase (2013). Available at <u>www.fishbase.org</u>.

Fukuda, T., Jayadi, R., Nakano, Y., and Kuroda, M. (1999). Application of complex tank model for evaluating performance of water operation in a Reused water irrigation system. J. Fac. Agr., Kyushu Univ., 44 (1-2): 189-198.

Jayadi, R., Fukuda, T., Nakano, Y., and Kuroda, M. (1999). Evaluation of Reused water effect on irrigation water quality of low-lying paddy area. J. Fac. Agr, Kyushu Univ., 44(1-2): 199-211.

Kottelat, M., 1998. Fishes of the Nam Theun and Xe Bangfai basins, Laos, with diagnoses of twenty-two new species (Teleostei: Cyprinidae, Balitoridae, Cobitidae, Coiidae and Odontobutidae). Ichthyol. Explor. Freshwat. 9(1):1-128.

Kuok, K.K., Harun, S., and Shamsudddin, S.M. (2010). Global optimatimization of the hydrologic tank model's parameters. Canadian Journal on Civil Engineering, 1(1): 1-14.

Kuroda, M., Nakano, Y., Basri, H., and Funakoshi, T. (1999). Analysis of intake water of agricultural water use operated under traditional water right in Japan. J. Fac. Agr, Kyushu Univ., 44 (1-2): 149-156.

Lessard, J. L. and Hayes, D. B. Effects of elevated water temperature on fish and macroinvertebrate communities below small dams. 19 (7), Pages 721 – 732. Published Online: 2 Apr 2003.

Poulsen, A.F. 2001. Integration of fishers knowledge into research on a large tropical river basin, the Mekong River in Southweast Asia. In: Haagan, N., C. Brignall and L. Woods (eds), Putting Fishers Knowledge to Work 11 (1): 198-207.

Serov, D.V., Nezdoliy, V.K. and Pavlov, D.S. 2006. The Freshwater Fishes of Central Vietnam. KMK Scientific Press Ltd., Moscow, Nha Trang.

Setiawan, B. I. (2003). Optimation of tank model's parameters. Bulletin Keteknikan Pertanian, 17(1): 8-16.

Singhanouvong, D., C. Soulignavong, K. Vonghachak, B. Saadsy and T.J. Warren, 1996. The main dry-season fish migrations of the Mekong mainstream at Hat Village, Muang Khong District, Hee Village, Muang Mouan District and Hatsalao Village, Paxse. Indigenous Fishery Develoment Project, Fisheries Ecology Technical Report no. 3. Lao People's Democratic Republic. 130 p.

Sugawara, M., Watanabe, E. Ozaki, E., and Katsuyama, Y. (1984). Tank model with snow component. The National Research Center for Disaster Prevention, Science and Technology Agency, Japan.

Sugawara, M. (1961). Automatic callibration of tank model. Hydrological Sciences-Bulletin-des Sciences Hydrologiques, 24(3): 375-388.

Sugawara, M. (1961). On the analysis of runoff structure about several Japanese River. Japanese Journal of Geophysic, 4 (2): 1-76.

Sutoyo, Yanuar, M., and Purwanto, J. (2003). River runoff prediction based on rainfall data using tank model. Bulletin Keteknikan Pertanian, 13 (3): 25-39.

Taki, Y., 1978. An analytical study of the fish fauna of the Mekong basin as a biological production system in nature. Research Institute of Evolutionary Biology Special Publications no. 1,77 p. Tokyo, Japan..

Annex A

Water Quality Test Results

RESULTS OF WATER QUALITY ANALYSIS NAM NGIEP RIVER AT B HAT GNIUN, B HOUAY SOUP AND B POU IN JULY 2012 AND FEB 2013

			pH			
date	B Hat Gniun	B Houay Soup	B Pou	Ambient,Effluent(Max)	Ambientt(Min)	Effluent(Min)
2012.07.24	9.7	6.2		9	5	6
2012.08.10		6.4		9	5	6
2013.02.15	8.3			9	5	6
2013.02.16			8.1	9	5	6

		Do			
date	B Hat Gniun	B Houay Soup	B Pou	Ambient	Effluent
2012.07.24	9.7	8		6	
2012.08.10		8.8		6	
2013.02.15	10.3			6	
2013.02.16			7.8	6	

		BOI)		
date	B Hat Gniun	B Houay Soup	B Pou	Ambient	Effluent
2012.07.24	3	2		2	30
2012.08.10		2		2	30
2013.02.15				2	30

		COL)		
date	B Hat Gniun	B Houay Soup	B Pou	Ambient	Effluent
2012.07.24	4	2		5	125
2012.08.10		4		5	125
2013.02.15	2			5	125
2013.02.16			2	5	125

ENVIRONMENTAL RESOURCES MANAGEMENT 0185065 ERM EFA REVISION_ANNEX A.DOCX

A1

	Turt	pidity	
date	B Hat Gniun	B Houay Soup	B Pou
2012.07.24	192.3	153.84	
2012.08.10		153.84	
2013.02.15	153.84		
2013.02.16			153.84

date	B Hat Gniun	B Houay Soup	B Pou
2012.07.24	25.4	25.4	
2012.08.10		24.8	
2013.02.15	26.1		
2013.02.16			26.4

A2 RESULTS OF WATER QUALITY ANALYSIS NAM NGIEP RIVER MARCH 2013

Station No.	Cumulative Distance (km)	E	N	Time	Water Temp (°C)	pH	Conductivity (uS/cm)	TDS (mg/L)	DO (mg/L)	Turbidity (FTU)	Turbidity (NTU)	Total Coliform	Physical
SW-1	0	344191	2062133	10:42	26.6	8.12	95	47	7.1	NM	9.17	12	Sunny/Clear / odourless/ Medium flow
SW-2	4.29	347507	2062246	12:41	27.7	8.01	97	55	6.9	NM	8.32	3	Sunny/Clear / odourless/ Medium flow
201	5.17	348295	2062526	12:48	27.5	8.15	94	46	6.3	NM	-	-	Sunny/Clear / odourless/ Medium flow
202	6.15	349181	2062555	12:51	27.5	8.19	92	46	6.5	NM	-	-	Sunny/Clear / odourless/ Medium flow
203	7.17	350022	2062701	12:56	27.6	8.18	93	46	4.3	NM	-	-	Sunny/Clear / odourless/ Medium flow
204	8.19	350176	2063595	13:00	29.2	8.21	97	48	4.4	NM	-	-	Sunny/Clear / odourless/ Medium flow
SW-3	9.14	350994	2063234	13:03	28.8	8.16	93	47	6.5	NM	6.17	3	Sunny/Clear / odourless/ Medium flow
301	10.2	351840	2062703	13:10	28.4	8.22	94	47	6.8	NM	-	-	Sunny/Clear / odourless/ Medium flow
SW-4	11.2	352339	2061963	13:14	27.7	8.14	96	48	7.1	NM	7.16	6	Sunny/Clear / odourless/ Medium flow
401	12.2	352375	2060981	13:20	28.4	8.09	94	46	6.9	NM	-	-	Sunny/Clear / odourless/ Medium

ENVIRONMENTAL RESOURCES MANAGEMENT 0185065 ERM EFA REVISION_ANNEX A.DOCX

Station No.	Cumulative Distance (km)	Ε	Ν	Time	Water Temp (°C)	рН	Conductivity (uS/cm)	TDS (mg/L)	DO (mg/L)	Turbidity (FTU)	Turbidity (NTU)	Total Coliform	Physical
													flow
402	13.2	352361	2060033	13:23	28	8.17	94	46	7	NM	-	-	Sunny/Clear / odourless/ Medium flow
403	14.1	352496	2059277	13:27	28.1	8.17	93	46	7.1	NM	-	-	Sunny/Clear / odourless/ Medium flow
404_DS of Houy Soup	15.4	352318	2058113	13:31	28.6	8.2	94	46	6	NM	8.05	-	Sunny/Clear / odourless/ Medium flow
405	16.2	352290	2057567	13:34	28.2	8.19	93	46	7	NM	-	-	Sunny/Clear / odourless/ Medium flow
406	17.3	352596	2056700	13:38	28.2	8.2	93	47	6.5	NM	-	-	Sunny/Clear / odourless/ Medium flow
407	18.2	353258	2056287	13:41	28.1	8.17	94	47	7	NM	-	-	Sunny/Clear / odourless/ Medium flow
408	19.2	352768	2055462	13:44	27.9	8.18	91	45	6.6	NM	-	-	Sunny/Clear / odourless/ Medium flow
409	20.4	353014	2054559	13:48	28	8.15	98	46	5.2	NM	-	-	Sunny/Clear / odourless/ Medium flow
410	21.2	353480	2053919	13:51	28.2	8.13	94	46	5.5	NM	-	-	Sunny/Clear / odourless/ Medium flow
411	22.2	354140	2053232	13:54	28.2	8.13	92	46	6.9	NM	-	-	Sunny/Clear / odourless/ Medium

Station No.	Cumulative Distance (km)	E	Ν	Time	Water Temp (°C)	pН	Conductivity (uS/cm)	TDS (mg/L)	DO (mg/L)	Turbidity (FTU)	Turbidity (NTU)	Total Coliform	Physical
													flow
412	23.2	354940	2052645	13:57	28.1	8.12	94	47	6.6	NM	-	-	Sunny/Clear / odourless/ Medium flow
413	24.5	355942	2051955	14:00	28.1	8.06	92	47	6.3	NM	-	-	Sunny/Clear / odourless/ Medium flow
414	25.2	355734	2051360	14:03	28.2	8.1	92	47	6.7	NM	-	-	Sunny/Clear / odourless/ Medium flow
415	26.1	356360	2050922	14:05	28.7	8.07	92	47	6.9	NM	-	-	Sunny/Clear / odourless/ Medium flow
416	27.3	357160	2050357	14:09	28.3	8.07	94	46	6.5	NM	-	-	Sunny/Clear / odourless/ Medium flow
417	28.1	356692	2049737	14:11	28.2	8.02	93	46	6.4	NM	-	-	Sunny/Clear / odourless/ Medium flow
418	29.1	356750	2048962	14:14	28.2	8.06	92	46	6.8	NM	-	-	Sunny/Clear / odourless/ Medium flow
419	30.2	357308	2048258	14:18	28.5	8.04	93	45	6.9	NM	-	-	Sunny/Clear / odourless/ Medium flow
420	31.2	357798	2047445	14:21	28.4	8.04	93	46	6.8	NM	-	-	Sunny/Clear / odourless/ Medium flow
421	32.2	358252	2046605	14:24	28.7	8.04	94	46	6.8	NM	-	-	Sunny/Clear / odourless/ Medium flow

Station No.	Cumulative Distance (km)		Ν	Time	Water Temp (°C)	рН	Conductivity (uS/cm)	TDS (mg/L)	DO (mg/L)	Turbidity (FTU)	Turbidity (NTU)	Total Coliform	Physical
422	33.3	357509	2045919	14:27	28.4	8.01	95	46	7.1	NM	-	-	Sunny/Clear / odourless/ Medium flow
423	34.1	357196	2045265	14:30	28.5	8.01	93	46	7.2	NM	-	-	Sunny/Clear / odourless/ Medium flow
424	35.1	356700	2044695	14:33	29.2	8.04	92	45	6.5	NM	-	-	Sunny/Clear / odourless/ Medium flow
SW-5	36.5	355618	2044464	14:41	28.9	7.97	92	47	7.3	NM	5.03	5	Sunny/Clear / odourless/ Medium flow
SW-6	37.9	354831	2044030	14:48	29.8	8.1	99	49	5.9	NM	6.81	7	Sunny/Clear / odourless/ Medium flow
NM = No	ot measurable												

Annex B

Fish and Fisheries Survey Locations along the Nam Ngiep River in January 2008

1

B1 FISH AND FISHERIES SURVEY LOCATIONS ALONG THE NAM NGIEP RIVER IN JANUARY 2008

No	Namo		Location		Coordinate			
INO.	Iname	Village	District	Province	Ν	Ε		
1	Station 1	Piengta	Thathom	Xieng Khouang	19º01'33.6"	103°25'09.6"		
2	Station 2	Hatsamkhone	Thathom	Xieng Khouang	19°00'46.0"	103°26'40.3"		
3	Station 3	Pou	Thathom	Xieng Khouang	19°00'52.5″	103°27'37.7"		
4	Station 4	Houypamom	Hom	Vientiane	18°59'32.6"	103°30'10.5″		
5	Station 5	Sopphuane	Hom	Vientiane	18°50'01.9"	103º26'19.9"		
6	Station 6	Sopyouak	Hom	Vientiane	18°42′53.7″	103º26'40.9"		
7	Station 7	Hatsaykham	Bolikhan	Bolikhamxay	18°38'41.1"	103°33'17.4"		
8	Station 8	Hat Gniun	Bolikhan	Bolikhamxay	18°39'23.6"	103º35'03.6"		
9	Station 9	Somseun	Bolikhan	Bolikhamxay	18°25'03.5"	103°36'22.6"		
10	Station 10	Pak Ngiep	Pakxan	Bolikhamxay	18°31′58.8″	103°38'48.3"		

FIGURE B1 FISH AND FISHERIES SURVEY LOCATIONS ALONG THE NAM NGIEP RIVER

Annex C

Results of Non-uniform Flow Analysis

C1. SUMMARY OF ANALYSIS

C1.1ANALYTIC METHOD

Water flow condition downstream of the re-regulation dam is analyzed through non-uniform flow analysis.

Unknown hydraulic value such as water level, water velocity and etc., upstream are calculated by the hydraulic value downstream by applying the energy constant law as follows;

$$z_1 + h_1 + \frac{v_1^2}{2g} + h_1 = z_2 + h_2 + \frac{v_2^2}{2g}$$

Here,

h: water depth

z: elevation of rive bed

v; water velocity

h; loss in head

$$h_{\rm L} = \frac{\Delta x}{2g} \left(\frac{n_1^2 v_1^2}{R_1^{4/3}} + \frac{n_2^2 v_2^2}{R_2^{4/3}} \right)$$

n; coefficient of roughness by manning equation = 0.04 checked by observed

data

R; hydraulic mean depth

Figure C1 Image of hydraulic value

Software for non-uniform analysis named "ELNORE FUJITSU FIP Japan" is used for the analysis

C1.2 ANALYTIC CONDITION

C1.2.1 River cross section

The analysis is conducted in the sections between the downstream of the re-regulation dam and the confluence of Mekong River as shown in figure below. The total 37 sections are used for analysis. The drawings of river cross section of total 37 sections are attached in Appendix.

Figure C2 Analyzed section

1.2.2 Inflow from tributary of the Nam Ngiep River

Inflow from 12 tributaries of the Nam Ngiep River between the re-regulation dam and the confluence of the Mekong River are counted. The each inflow from these tributary is calculated by multiplied with the ratio of the basin area at the Nam Ngiep 1 dam site, respectively. The inflow from each tributary is calculated by multiplied the ratio of each river basin area to that of the Nam Ngiep River at the re-regulation dam.

Figure C3 Tributaries of Nam Ngiep River

Table C 1Catchment area of tributary

Tributon	Catchment area
Thouary	(km²)
1 Nam Miang	33
2 Nam Tak	58
3 Nam Xao	311
4 Houay Soup	60
5 Houay Khinguak (Upstream)	27
6 Houay Khinguak (Downstream)	61
7 Houay Kokkhen	42
8 Houay Poungxang	12
9 Small tributary around B Muong Mai village	27
10 Nam Pa	90
11 Nam Tek Noy	102
12 Small tributary around Mekong	10
Total	833
Ref) Nam Ngiep at re-regulation dam	3,725

Section	Tributary	Catchment area (km ²)	Inflow from tributary (m ³ /s)	Inflow at Nam Ngiep (m ³ /s)
29				80.9
28				80.9
27	Nam Teknoy	102	4.1	80.9
26				76.8
25				76.8
24				76.8
23				76.8
22				76.8
21				76.8
20				76.8
19				76.8
18	Nam Pa	90	3.6	76.8
17				73.2
16				73.2
15	B Muong Mai	27	1.1	73.2
14				72.2
13	Houay Poungxan	12	0.5	72.2
12				71.7
11	Houay kokkhen	42	1.7	71.7
10				70.0
9				70.0
8	Houay khinguak	61	2.4	70.0
7	Houay Khinguak	27	1.1	67.6
6				66.5
5				66.5
4	Houay Soup	60	2.4	66.5
3	· · ·			64.1
2	Nam Xao, Nam thak	369	14.8	64.1
1				49.3
CR35				49.3
CR34				49.3
CR33	Nam Miang	33	1.3	49.3
CR32	Ŭ			48.0
CR31				48.0
CR30				48.0
CR29				48.0
CR28	Re-regulation dam			48.0

Table C2Annual average inflow by applying inflow from tributaries in the case of
release discharge of 48 m³/s from re-regulation dam

1.2.3 Water level at the downstream end of Nam Ngiep River

For the calculation, the water level at the confluence of the Nam Ngiep River and the Mekong River is input as an initial condition. The observed water level data at Pakxan Gauging Station from 1991 to 2000 are applied as below.

Table C3 Water level of Mekong River in 1991 to 2000

												(m)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ave
145.	144.	144.	144.	145.	147.	151.	153.	153.	149.	147.	146.	147.
0	4	2	3	4	6	3	2	0	7	7	1	7

C2 STUDY CASE

Study case is shown in table below.

Table C4 Study case

Case	Operatic	on type	Discharge from	Water level at
0400	Timing	Period	re-regulation	downstream end (EL.m)
1	6am Sat - 6am Mon	15 hrs/week	27	
2		17 hrs/week	48	EL 147.7 m "Average of whole
3	6am - 10pm Mon-Sa	16 hrs/day	160	Season
4	Initial impounding	15 days	5.5	EL 149.25 m "Sep, 1992"

0185065 ERM EFA REVISION_ANNEX C.DOC

C3 RESULTS OF STUDY

[Original plan in table 3-1]

• Minimum water depth and surface width

The minimum water depth and surface width occur at the section CR31 and CR33 between the regulation dam and Ban Hat Gnuin respectively during initial impoundings of 5.5 m^3 /s: 0.5 m and 16.1 m

- Maximum velocity
 The maximum velocity is around 1.3 m/s during normal operation of 160 m³/s.
- Maximum fluctuation of water depth
 The maximum fluctuation of the water level change occurs at the section 19 when water release changes from 160 m³/s to 27 m³/s: 1.5 m.
- Maximum fluctuation of water flow velocity
 The maximum fluctuation of the water level change occurs at the section
 CR-31 when water release changes from 160 m³/s to 27 m³/s: 0.7 m⁷s.

[Case-1 to Case-3]

Figure C5 Water level along NNP River

Figure C6 Water depth along the NNP River

Figure C7 Width of river flow along the NNP River

Figure C8 Water velocity along the NNP River

Figure C9 Fluctuation of water level along the NNP River

Figure C10 Fluctuation of water surface width along the NNP River

Figure C11 Fluctuation of water flow velocity width along the NNP River

Case- 4

Figure C12 Water level along NNP River

Figure C13 Water depth along the NNP River

Figure C14 Width of river flow along the NNP River

Figure C15 Water velocity along the NNP River

Tributary	Distance from Mekong (km)	No.	River bed	Left bank	Right bank	Disc	Discharge (m³/s)		Water level (EL.m)		Water depth (m)		m)	Width of water surface (m)			Water velocity (m/s)			
						27	48	160	27	48	160	27	48	160	27	48	160	27	48	160
Mekong	0.0	29	143.0	154.3	154.3	59.9	80.9	192.9	147.7	147.7	147.7	4.6	4.6	4.6	112.0	112.0	112.0	0.1	0.2	0.4
	0.9	28	138.2	156.0	156.2	59.9	80.9	192.9	147.7	147.7	147.7	9.4	9.4	9.5	73.3	73.3	73.4	0.2	0.2	0.5
Nam Teknoy	1.9	27	141.7	154.4	154.4	59.9	80.9	192.9	147.7	147.7	147.8	5.9	5.9	6.0	90.3	90.3	90.9	0.2	0.2	0.5
	3.4	26	144.3	156.2	155.0	55.8	76.8	188.8	147.7	147.7	147.9	3.4	3.4	3.6	105.3	105.4	106.2	0.2	0.3	0.6
	4.5	25	142.2	160.3	155.7	55.8	76.8	188.8	147.7	147.7	148.0	5.5	5.5	5.8	73.1	73.3	74.8	0.2	0.2	0.6
	6.1	24	144.9	177.1	159.3	55.8	76.8	188.8	147.7	147.8	148.3	2.9	2.9	3.4	91.0	91.3	93.3	0.3	0.4	0.7
	8.0	23	145.4	156.5	156.4	55.8	76.8	188.8	147.8	148.0	148.7	2.5	2.6	3.3	95.6	95.9	98.3	0.3	0.4	0.7
	9.6	22	144.3	156.8	157.5	55.8	76.8	188.8	147.9	148.1	149.0	3.6	3.8	4.7	69.0	69.4	72.1	0.4	0.4	0.8
	10.6	21	144.3	157.8	156.0	55.8	76.8	188.8	148.0	148.2	149.2	3.7	3.9	4.9	74.6	75.2	78.4	0.3	0.4	0.6
	13.4	20	146.2	156.0	157.0	55.8	76.8	188.8	148.4	148.6	149.7	2.2	2.5	3.6	95.3	96.5	99.3	0.4	0.5	0.7
	15.9	19	143.2	158.0	160.2	55.8	76.8	188.8	148.7	149.0	150.2	5.5	5.8	6.9	79.4	82.7	94.0	0.3	0.4	0.6
Nam Pa	17.5	18	147.3	158.4	158.9	55.8	76.8	188.8	149.3	149.6	150.7	2.0	2.3	3.4	66.2	68.6	76.3	0.7	0.8	1.1
	18.5	17	148.1	159.3	158.7	52.3	73.3	185.3	149.9	150.2	151.3	1.8	2.1	3.2	77.0	78.1	80.4	0.5	0.6	0.9
	20.5	16	148.6	160.2	159.9	52.3	73.3	185.3	150.6	150.9	152.0	2.0	2.3	3.4	100.0	102.6	105.1	0.5	0.6	0.8
B Muong Mai	22.2	15	149.0	160.6	159.6	52.3	73.3	185.3	151.2	151.4	152.5	2.2	2.5	3.5	104.9	106.9	112.6	0.5	0.5	0.7
	23.3	14	149.0	160.4	160.6	51.2	72.2	184.2	151.4	151.7	152.8	2.4	2.7	3.7	56.9	58.4	111.1	0.5	0.6	0.7
Houay Poungxan	25.9	13	150.4	162.1	176.1	51.2	72.2	184.2	152.0	152.3	153.4	1.6	1.9	3.0	90.2	93.6	98.6	0.5	0.6	0.8
	27.0	12	150.9	163.1	162.2	50.7	71.7	183.7	152.7	152.9	153.9	1.8	2.0	3.0	100.7	114.1	128.3	0.6	0.7	0.8
Houay kokkhen	28.0	11	150.6	168.6	163.2	50.7	71.7	183.7	153.1	153.4	154.2	2.5	2.8	3.7	85.9	93.5	95.8	0.3	0.4	0.7
	30.4	10	152.6	164.5	163.3	49.0	70.0	182.0	153.8	154.1	155.1	1.2	1.5	2.5	82.1	84.1	88.1	0.6	0.7	0.9
	33.2	9	153.6	167.1	164.5	49.0	70.0	182.0	155.1	155.4	156.4	1.5	1.8	2.8	99.0	101.1	107.1	0.5	0.6	0.8
Houay khinguak	34.8	8	152.6	165.3	166.4	49.0	70.0	182.0	155.5	155.8	156.8	2.9	3.2	4.3	83.4	84.9	87.6	0.4	0.5	0.7
Houay Khinguak	36.3	7	155.0	182.1	166.0	46.6	67.6	179.6	156.2	156.5	157.5	1.2	1.4	2.4	77.6	79.9	86.0	0.7	0.7	1.0
	37.3	6	154.4	166.4	167.2	45.5	65.5	178.5	156.7	157.0	158.0	2.4	2.6	3.6	81.7	85.7	89.6	0.5	0.6	0.9
	38.6	5	150.9	194.1	165.9	45.5	65.5	178.5	157.0	157.3	158.4	6.1	6.4	7.4	67.6	69.4	74.3	0.2	0.3	0.6
Houay Soup	39.7	4	155.6	168.5	169.3	45.5	65.5	178.5	157.4	157.6	158.7	1.8	2.0	3.1	67.8	71.2	79.4	0.7	0.7	1.1
	42.1	3	158.9	189.0	186.1	43.1	64.1	176.1	159.9	160.1	160.8	0.9	1.1	1.9	101.5	112.8	122.4	0.7	0.8	1.0
Nam Xao, Nam tr	43.5	2	158.8	172.4	170.3	43.1	64.1	176.1	160.9	161.1	161.8	2.1	2.3	3.0	114.0	115.5	118.3	0.2	0.3	0.6
	44.2	1	158.6	170.6	172.3	28.3	49.3	161.3	161.0	161.2	161.9	2.4	2.6	3.4	80.1	81.3	85.2	0.3	0.4	0.8
	44.7	<u>CR-35</u>	159.9	172.5	172.0	28.3	49.3	161.3	161.1	161.3	162.2	1.2	1.4	2.3	80.2	83.1	86.0	0.4	0.6	1.0
B Hat Gniun	45.2	<u>CR-34</u>	160.5	1/2.2	1/1.2	28.3	49.3	161.3	161.7	161.9	162.8	1.2	1.5	2.3	1.2	83.3	95.6	0.7	0.8	1.2
Nam Miang	45.6	<u>CR-33</u>	161.1	172.6	172.9	28.3	49.3	161.3	162.5	162.7	163.3	1.4	1.6	2.2	1.4	127.9	165.0	0.7	0.8	1.0
	46.1	CR-32	159.2	180.3	171.5	27.0	48.0	160.0	163.4	163.5	163.9	4.1	4.2	4.7	4.1	81.7	83.2	0.2	0.3	0.8
	46.5	CR-31	162.7	174.0	173.3	27.0	48.0	160.0	163.7	163.8	164.4	1.0	1.1	1.7	1.0	107.5	116.4	0.6	0.8	1.3
	46.9	CR-30	161.3	172.4	176.1	27.0	48.0	160.0	164.0	164.2	165.0	2.7	2.9	3.7	2.7	61.4	95.1	0.3	0.5	1.0
	47.5	CR-29	158.1	1/2.8	178.7	27.0	48.0	100.0	100.0	104.3	105.3	29	0.2	1.2	5.9	95.1	101.9	0.1	0.1	0.4
	47.9	CR-28	162.7	1/3.9	1/6.2	27.0	48.0	160.0	164.1	164.4	165.4	1.5	1.8	2.8	1.5	69.0	/3.2	0.5	0.7	1.1
	Average		151.6	166.7	165.0	46.1	67.1	179.1	154.5	154.7	155.5	2.9	3.1	3.9	70.1	88.5	96.1	0.4	0.5	0.8
	Maximum		162.7	194.1	186.1	59.9	80.9	192.9	164.1	164.4	165.4	9.4	9.4	9.5	114.0	127.9	165.0	0.7	0.8	1.3
	Minimum		141.7	154.4	154.4	27.0	48.0	160.0	147.7	147.7	147.8	0.9	1.1	1.7	1.0	58.4	72.1	0.1	0.1	0.4

4-1 Data sheet of Case-1(27 m³/s), Case-2(48 m³/s), and Case 3(160 m³/s)

Case-1

No.	Distance from Mekong (m)	River bed (EL.m)	Discharge (m ³ /sec)	Area (m²)	velocity (m/sec)	Width (m)	Hydraulic mean depth (m)	Coefficient of roughness	Coefficient of adjustment of energy head	Energy head (m)	Water level (m)	Water depth (m)	Critical water depth (m)	Fr
1	0.000	143.040	59.900	443.717	0.135	112.049	3.87999	0.04000	1.00000	147.661	147.660	4.620	0.700	0.02167
2	938.100	138.230	59.900	391.040	0.153	73.287	5.09915	0.04000	1.00000	147.665	147.664	9.434	2.302	0.02118
3	1877.600	141.730	59.900	361.496	0.166	90.283	3.90667	0.04000	1.00000	147.671	147.669	5.939	1.320	0.02645
4	3383.800	144.310	55.830	282.923	0.197	105.279	2.66714	0.04000	1.00000	147.689	147.687	3.377	0.687	0.03845
5	4511.300	142.190	55.830	313.115	0.178	73.135	4.16430	0.04000	1.00000	147.702	147.701	5.511	0.879	0.02753
6	6061.500	144.880	55.830	211.103	0.264	91.040	2.28985	0.04000	1.00000	147.737	147.733	2.853	0.766	0.05548
7	8002.600	145.350	55.830	178.181	0.313	95.596	1.83884	0.04000	1.00000	147.841	147.836	2.486	0.853	0.07331
8	9595.300	144.320	55.830	158.931	0.351	68.974	2.27792	0.04000	1.00000	147.949	147.942	3.622	1.412	0.07392
9	10606.900	144.340	55.830	202.044	0.276	74.615	2.67170	0.04000	1.00000	147.999	147.995	3.655	0.866	0.05364
10	13378.700	146.150	55.830	124.263	0.449	95.271	1.29360	0.04000	1.00000	148.362	148.352	2.202	1.116	0.12567
11	15862.100	143.230	55.830	190.667	0.293	79.399	2.35800	0.04000	1.00000	148.701	148.696	5.466	1.470	0.06036
12	17466.700	147.320	55.830	75.148	0.743	66.236	1.12980	0.04000	1.00000	149.338	149.310	1.990	1.147	0.22281
13	18547.400	148.080	52.250	96.000	0.544	77.019	1.23799	0.04000	1.00000	149.936	149.921	1.841	0.897	0.15573
14	20490.500	148.620	52.250	105.427	0.496	100.029	1.04973	0.04000	1.00000	150.640	150.628	2.008	1.042	0.15421
15	22160.500	148.970	52.250	115.833	0.451	104.949	1.09632	0.04000	1.00000	151.188	151.178	2.208	1.293	0.13716
16	23327.300	149.020	51.170	110.689	0.462	56.860	1.91157	0.04000	1.00000	151.441	151.430	2.410	0.756	0.10584
17	25870.900	150.440	51.170	102.827	0.498	90.196	1.13597	0.04000	1.00000	152.049	152.036	1.596	0.691	0.14888
18	27030.500	150.910	50.690	82.166	0.617	100.699	0.81401	0.04000	1.00000	152.707	152.688	1.778	0.957	0.21817
19	27961.500	150.570	50.690	148.357	0.342	85.912	1.70885	0.04000	1.00000	153.123	153.117	2.547	0.684	0.08306
20	30435.000	152.640	49.020	85.201	0.575	82.105	1.03560	0.04000	1.00000	153.861	153.844	1.204	0.442	0.18042

ENVIRONMENTAL RESOURCES MANAGEMENT

0185065 ERM EFA REVISION_ANNEX C.DOC

NAM NGIEP 1 POWER CO., LTD

21 JANUARY 2014

No.	Distance from Mekong (m)	River bed (EL.m)	Discharge (m³/sec)	Area (m²)	velocity (m/sec)	Width (m)	Hydraulic mean depth (m)	Coefficient of roughness	Coefficient of adjustment of energy head	Energy head (m)	Water level (m)	Water depth (m)	Critical water depth (m)	Fr
21	33227.200	153.600	49.020	99.200	0.494	99.007	0.99777	0.04000	1.00000	155.114	155.101	1.501	0.691	0.15770
22	34808.300	152.570	49.020	131.977	0.371	83.415	1.57418	0.04000	1.00000	155.519	155.512	2.942	1.168	0.09433
23	36327.400	155.040	46.590	70.380	0.662	77.567	0.90560	0.04000	1.00000	156.218	156.196	1.156	0.480	0.22199
24	37269.200	154.390	45.510	90.503	0.503	81.735	1.10316	0.04000	1.00000	156.762	156.749	2.359	1.103	0.15265
25	38559.700	150.920	45.510	224.473	0.203	67.601	3.25035	0.04000	1.00000	157.000	156.998	6.078	1.361	0.03554
26	39672.500	155.600	45.510	68.658	0.663	67.794	1.00887	0.04000	1.00000	157.394	157.372	1.772	0.810	0.21040
27	42092.500	158.930	43.120	63.648	0.677	101.471	0.62472	0.04000	1.00000	159.899	159.875	0.945	0.530	0.27325
28	43517.300	158.790	43.120	175.594	0.246	114.040	1.53281	0.04000	1.00000	160.917	160.914	2.124	0.709	0.06322
29	44181.000	158.590	28.320	111.066	0.255	80.142	1.36882	0.04000	1.00000	160.958	160.955	2.365	0.990	0.06919
30	44721.100	159.922	28.320	63.005	0.449	80.185	0.78162	0.04000	1.00000	161.098	161.088	1.166	0.536	0.16198
31	45225.200	160.456	28.320	39.710	0.713	77.286	0.51286	0.04000	1.00000	161.711	161.685	1.229	0.843	0.31781
32	45580.800	161.102	28.320	43.003	0.659	122.985	0.34822	0.04000	1.00000	162.567	162.545	1.443	1.023	0.35577
33	46146.700	159.238	27.000	155.721	0.173	81.377	1.88840	0.04000	1.00000	163.374	163.373	4.135	1.230	0.04004
34	46530.900	162.682	27.000	46.523	0.580	101.144	0.45867	0.04000	1.00000	163.671	163.653	0.971	0.618	0.27335
35	46924.200	161.332	27.000	85.369	0.316	58.088	1.43971	0.04000	1.00000	163.990	163.985	2.653	0.793	0.08334
36	47506.300	158.130	27.000	294.427	0.092	93.156	3.12325	0.04000	1.00000	164.019	164.019	5.889	0.911	0.01648
37	47930.000	162.670	27.000	50.908	0.530	64.634	0.78562	0.04000	1.00000	164.151	164.137	1.467	0.724	0.19090

Case-2

No.	Distance from Mekong (m)	River bed (EL.m)	Discharge (m³/sec)	Area (m²)	velocity (m/sec)	Width (m)	Hydraulic mean depth (m)	Coefficient of roughness	Coefficient of adjustment of energy head	Energy head (m)	Water level (m)	Water depth (m)	Critical water depth (m)	Fr
1	0.000	143.040	80.900	443.717	0.182	112.049	3.87999	0.04000	1.00000	147.662	147.660	4.620	0.780	0.02927
2	938.100	138.230	80.900	391.280	0.207	73.295	5.10160	0.04000	1.00000	147.669	147.667	9.437	2.547	0.02859
3	1877.600	141.730	80.900	362.173	0.223	90.329	3.91191	0.04000	1.00000	147.679	147.677	5.947	1.500	0.03563
4	3383.800	144.310	76.830	285.242	0.269	105.365	2.68654	0.04000	1.00000	147.712	147.709	3.399	0.782	0.05229
5	4511.300	142.190	76.830	315.604	0.243	73.299	4.18753	0.04000	1.00000	147.738	147.735	5.545	1.027	0.03748
6	6061.500	144.880	76.830	216.486	0.355	91.288	2.34128	0.04000	1.00000	147.799	147.792	2.912	0.852	0.07362
7	8002.600	145.350	76.830	189.867	0.405	95.886	1.95178	0.04000	1.00000	147.966	147.958	2.608	0.967	0.09186
8	9595.300	144.320	76.830	171.203	0.449	69.422	2.43387	0.04000	1.00000	148.130	148.120	3.800	1.552	0.09128
9	10606.900	144.340	76.830	217.310	0.354	75.244	2.84514	0.04000	1.00000	148.205	148.198	3.858	1.039	0.06646
10	13378.700	146.150	76.830	148.164	0.519	96.536	1.52087	0.04000	1.00000	148.615	148.601	2.451	1.216	0.13371
11	15862.100	143.230	76.830	214.228	0.359	82.692	2.54269	0.04000	1.00000	148.994	148.987	5.757	1.693	0.07118
12	17466.700	147.320	76.830	93.553	0.821	68.559	1.35743	0.04000	1.00000	149.617	149.583	2.263	1.288	0.22458
13	18547.400	148.080	73.250	116.663	0.628	78.085	1.48105	0.04000	1.00000	150.207	150.187	2.107	1.006	0.16409
14	20490.500	148.620	73.250	132.469	0.553	102.614	1.28418	0.04000	1.00000	150.911	150.895	2.275	1.163	0.15546
15	22160.500	148.970	73.250	142.685	0.513	106.855	1.32546	0.04000	1.00000	151.445	151.432	2.462	1.399	0.14191
16	23327.300	149.020	72.170	126.752	0.569	58.387	2.12747	0.04000	1.00000	151.725	151.708	2.688	0.881	0.12344
17	25870.900	150.440	72.170	131.179	0.550	93.553	1.39620	0.04000	1.00000	152.360	152.345	1.905	0.793	0.14841
18	27030.500	150.910	71.690	109.399	0.655	114.095	0.95638	0.04000	1.00000	152.963	152.941	2.031	1.096	0.21378
19	27961.500	150.570	71.690	169.969	0.422	93.501	1.79779	0.04000	1.00000	153.363	153.354	2.784	0.814	0.09993
20	30435.000	152.640	70.020	107.457	0.652	84.122	1.27302	0.04000	1.00000	154.133	154.111	1.471	0.540	0.18417

ENVIRONMENTAL RESOURCES MANAGEMENT

0185065 ERM EFA REVISION_ANNEX C.DOC

NAM NGIEP 1 POWER CO., LTD

21 JANUARY 2014

No.	Distance from Mekong (m)	River bed (EL.m)	Discharge (m ³ /sec)	Area (m²)	velocity (m/sec)	Width (m)	Hydraulic mean depth (m)	Coefficient of roughness	Coefficient of adjustment of energy head	Energy head (m)	Water level (m)	Water depth (m)	Critical water depth (m)	Fr
21	33227.200	153.600	70.020	124.117	0.564	101.094	1.21938	0.04000	1.00000	155.366	155.350	1.750	0.792	0.16264
22	34808.300	152.570	70.020	154.746	0.452	84.902	1.81128	0.04000	1.00000	155.793	155.782	3.212	1.368	0.10706
23	36327.400	155.040	67.590	90.530	0.747	79.867	1.13060	0.04000	1.00000	156.480	156.452	1.412	0.597	0.22401
24	37269.200	154.390	65.510	111.685	0.587	85.686	1.29826	0.04000	1.00000	157.020	157.002	2.612	1.326	0.16412
25	38559.700	150.920	65.510	243.882	0.269	69.361	3.43900	0.04000	1.00000	157.285	157.281	6.361	1.640	0.04576
26	39672.500	155.600	65.510	87.759	0.746	71.201	1.22700	0.04000	1.00000	157.675	157.647	2.047	0.968	0.21478
27	42092.500	158.930	64.120	85.142	0.753	112.800	0.75133	0.04000	1.00000	160.104	160.075	1.145	0.637	0.27690
28	43517.300	158.790	64.120	197.405	0.325	115.492	1.70084	0.04000	1.00000	161.110	161.104	2.314	0.797	0.07936
29	44181.000	158.590	49.320	128.658	0.383	81.253	1.56161	0.04000	1.00000	161.180	161.173	2.583	1.138	0.09731
30	44721.100	159.922	49.320	84.127	0.586	83.070	1.00544	0.04000	1.00000	161.363	161.345	1.423	0.665	0.18609
31	45225.200	160.456	49.320	58.668	0.841	83.330	0.70250	0.04000	1.00000	161.957	161.921	1.465	1.004	0.32004
32	45580.800	161.102	49.320	62.823	0.785	127.939	0.48881	0.04000	1.00000	162.734	162.703	1.601	1.332	0.35788
33	46146.700	159.238	48.000	163.667	0.293	81.689	1.97591	0.04000	1.00000	163.474	163.470	4.232	1.585	0.06619
34	46530.900	162.682	48.000	63.322	0.758	107.480	0.58726	0.04000	1.00000	163.844	163.815	1.133	0.780	0.31547
35	46924.200	161.332	48.000	100.546	0.477	61.423	1.59817	0.04000	1.00000	164.250	164.239	2.907	1.066	0.11919
36	47506.300	158.130	48.000	321.653	0.149	95.149	3.33846	0.04000	1.00000	164.309	164.308	6.178	1.155	0.02593
37	47930.000	162.670	48.000	71.002	0.676	68.954	1.02600	0.04000	1.00000	164.460	164.437	1.767	0.922	0.21282

Case-3

No.	Distance from Mekong (m)	River bed (EL.m)	Discharge (m³/sec)	Area (m²)	velocity (m/sec)	Width (m)	Hydraulic mean depth (m)	Coefficient of roughness	Coefficient of adjustment of energy head	Energy head (m)	Water level (m)	Water depth (m)	Critical water depth (m)	Fr
1	0.000	143.040	192.900	443.717	0.435	112.049	3.87999	0.04000	1.00000	147.670	147.660	4.620	1.114	0.06979
2	938.100	138.230	192.900	393.757	0.490	73.374	5.12687	0.04000	1.00000	147.713	147.701	9.471	3.475	0.06755
3	1877.600	141.730	192.900	369.046	0.523	90.909	3.96023	0.04000	1.00000	147.766	147.753	6.023	2.152	0.08287
4	3383.800	144.310	188.830	306.739	0.616	106.162	2.86485	0.04000	1.00000	147.931	147.912	3.602	1.164	0.11569
5	4511.300	142.190	188.830	338.085	0.559	74.762	4.39346	0.04000	1.00000	148.054	148.038	5.848	1.594	0.08390
6	6061.500	144.880	188.830	258.997	0.729	93.282	2.73598	0.04000	1.00000	148.280	148.253	3.373	1.221	0.13977
7	8002.600	145.350	188.830	261.303	0.723	98.277	2.60873	0.04000	1.00000	148.722	148.695	3.345	1.329	0.14157
8	9595.300	144.320	188.830	236.646	0.798	72.099	3.21468	0.04000	1.00000	149.078	149.046	4.726	2.085	0.14069
9	10606.900	144.340	188.830	296.075	0.638	78.388	3.69362	0.04000	1.00000	149.244	149.224	4.884	1.615	0.10483
10	13378.700	146.150	188.830	257.534	0.733	99.306	2.55015	0.04000	1.00000	149.745	149.717	3.567	1.618	0.14544
11	15862.100	143.230	188.830	321.241	0.588	94.002	3.33527	0.04000	1.00000	150.189	150.171	6.941	2.558	0.10157
12	17466.700	147.320	188.830	175.503	1.076	76.296	2.27659	0.04000	1.00000	150.774	150.715	3.395	1.784	0.22661
13	18547.400	148.080	185.250	203.303	0.911	80.444	2.47830	0.04000	1.00000	151.322	151.280	3.200	1.415	0.18309
14	20490.500	148.620	185.250	244.765	0.757	105.113	2.29451	0.04000	1.00000	152.001	151.972	3.352	1.647	0.15843
15	22160.500	148.970	185.250	256.428	0.722	112.584	2.25290	0.04000	1.00000	152.490	152.464	3.494	1.772	0.15291
16	23327.300	149.020	184.170	281.294	0.655	111.140	2.46312	0.04000	1.00000	152.776	152.754	3.734	1.003	0.13146
17	25870.900	150.440	184.170	233.773	0.788	98.560	2.35105	0.04000	1.00000	153.442	153.410	2.970	1.186	0.16340
18	27030.500	150.910	183.690	224.870	0.817	128.348	1.73293	0.04000	1.00000	153.923	153.889	2.979	1.639	0.19714
19	27961.500	150.570	183.690	254.166	0.723	95.754	2.60823	0.04000	1.00000	154.270	154.244	3.674	1.345	0.14170
20	30435.000	152.640	182.020	194.756	0.935	88.080	2.18833	0.04000	1.00000	155.167	155.122	2.482	0.946	0.20077

ENVIRONMENTAL RESOURCES MANAGEMENT

0185065 ERM EFA REVISION_ANNEX C.DOC

NAM NGIEP 1 POWER CO., LTD

21 JANUARY 2014
No.	Distance from Mekong (m)	River bed (EL.m)	Discharge (m ³ /sec)	Area (m²)	velocity (m/sec)	Width (m)	Hydraulic mean depth (m)	Coefficient of roughness	Coefficient of adjustment of energy head	Energy head (m)	Water level (m)	Water depth (m)	Critical water depth (m)	Fr
21	33227.200	153.600	182.020	228.356	0.797	107.069	2.09406	0.04000	1.00000	156.383	156.351	2.751	1.172	0.17435
22	34808.300	152.570	182.020	245.537	0.741	87.640	2.76230	0.04000	1.00000	156.863	156.835	4.265	1.989	0.14148
23	36327.400	155.040	179.590	175.754	1.022	86.013	2.02981	0.04000	1.00000	157.529	157.475	2.435	1.063	0.22835
24	37269.200	154.390	178.510	200.001	0.893	89.566	2.20622	0.04000	1.00000	158.044	158.003	3.613	2.009	0.19080
25	38559.700	150.920	178.510	321.931	0.554	74.338	4.21193	0.04000	1.00000	158.377	158.361	7.441	2.657	0.08512
26	39672.500	155.600	178.510	169.940	1.050	79.409	2.12021	0.04000	1.00000	158.778	158.721	3.121	1.575	0.22937
27	42092.500	158.930	176.120	172.210	1.023	122.395	1.39465	0.04000	1.00000	160.861	160.808	1.878	0.999	0.27542
28	43517.300	158.790	176.120	274.327	0.642	118.298	2.30075	0.04000	1.00000	161.781	161.760	2.970	1.146	0.13467
29	44181.000	158.590	161.320	192.965	0.836	85.192	2.22282	0.04000	1.00000	161.981	161.945	3.355	1.682	0.17744
30	44721.100	159.922	161.320	159.091	1.014	86.024	1.82575	0.04000	1.00000	162.284	162.232	2.310	1.122	0.23819
31	45225.200	160.456	161.320	134.943	1.195	95.585	1.40636	0.04000	1.00000	162.836	162.763	2.307	1.488	0.32140
32	45580.800	161.102	161.320	160.111	1.008	164.983	0.96427	0.04000	1.00000	163.397	163.345	2.243	1.659	0.32671
33	46146.700	159.238	160.000	202.119	0.792	83.184	2.38909	0.04000	1.00000	163.968	163.936	4.698	2.733	0.16222
34	46530.900	162.682	160.000	127.407	1.256	116.361	1.09023	0.04000	1.00000	164.461	164.380	1.698	1.155	0.38337
35	46924.200	161.332	160.000	162.402	0.985	95.120	1.66598	0.04000	1.00000	165.058	165.008	3.676	1.939	0.24085
36	47506.300	158.130	160.000	418.376	0.382	101.917	4.04611	0.04000	1.00000	165.297	165.290	7.160	1.991	0.06029
37	47930.000	162.670	160.000	141.517	1.131	73.186	1.91272	0.04000	1.00000	165.487	165.422	2.752	1.539	0.25972

Fluctuation of water level, water surface area for Case-1 to Case-3

No.	Distance from Mekong	decrease in water level (m)	decrease in water flow velocity (m ³ /s)	decrease in water surface width (m)	Increase in water level (m)	Increase in water flow velocity (m ³ /s)	Increase in water surface width (m)	increase in water level (m)	Increase in water flow velocity (m ³ /s)	Increase in water surface width (m)
	(KM)		160→27	. ,	7 0	27→48	()		48→160	
29	0.00	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.3	0.0
28	0.94	0.0	0.3	0.1	0.0	0.1	0.0	0.0	0.3	0.1
27	1.88	0.1	0.4	0.6	0.0	0.1	0.0	0.1	0.3	0.6
26	3.38	0.2	0.4	0.9	0.0	0.1	0.1	0.2	0.3	0.8
25	4.51	0.3	0.4	1.6	0.0	0.1	0.2	0.3	0.3	1.5
24	6.06	0.5	0.5	2.2	0.1	0.1	0.2	0.5	0.4	2.0
23	8.00	0.9	0.4	2.7	0.1	0.1	0.3	0.7	0.3	2.4
22	9.60	1.1	0.4	3.1	0.2	0.1	0.4	0.9	0.3	2.7
21	10.61	1.2	0.4	3.8	0.2	0.1	0.6	1.0	0.3	3.1
20	13.38	1.4	0.3	4.0	0.2	0.1	1.3	1.1	0.2	2.8
19	15.86	1.5	0.3	14.6	0.3	0.1	3.3	1.2	0.2	11.3
18	17.47	1.4	0.3	10.1	0.3	0.1	2.3	1.1	0.3	7.7
17	18.55	1.4	0.4	3.4	0.3	0.1	1.1	1.1	0.3	2.4
16	20.49	1.3	0.3	5.1	0.3	0.1	2.6	1.1	0.2	2.5
15	22.16	1.3	0.3	7.6	0.3	0.1	1.9	1.0	0.2	5.7
14	23.33	1.3	0.2	54.3	0.3	0.1	1.5	1.0	0.1	52.8
13	25.87	1.4	0.3	8.4	0.3	0.1	3.4	1.1	0.2	5.0
12	27.03	1.2	0.2	27.6	0.3	0.0	13.4	0.9	0.2	14.3
11	27.96	1.1	0.4	9.8	0.2	0.1	7.6	0.9	0.3	2.3
10	30.44	1.3	0.4	6.0	0.3	0.1	2.0	1.0	0.3	4.0
9	33.23	1.3	0.3	8.1	0.2	0.1	2.1	1.0	0.2	6.0
8	34.81	1.3	0.4	4.2	0.3	0.1	1.5	1.1	0.3	2.7
7	36.33	1.3	0.4	8.4	0.3	0.1	2.3	1.0	0.3	6.1
6	37.27	1.3	0.4	7.8	0.3	0.1	4.0	1.0	0.3	3.9
5	38.56	1.4	0.4	6.7	0.3	0.1	1.8	1.1	0.3	5.0
4	39.67	1.3	0.4	11.6	0.3	0.1	3.4	1.1	0.3	8.2
3	42.09	0.9	0.3	20.9	0.2	0.1	11.3	0.7	0.3	9.6
2	43.52	0.8	0.4	4.3	0.2	0.1	1.5	0.7	0.3	2.8
1	44.18	1.0	0.6	5.1	0.2	0.1	1.1	0.8	0.5	3.9
CR-35	44.72	1.1	0.6	5.8	0.3	0.1	2.9	0.9	0.4	3.0
CR-34	45.23	1.1	0.5	94.4	0.2	0.1	82.1	0.8	0.4	12.3
CR-33	45.58	0.8	0.3	163.5	0.2	0.1	126.5	0.6	0.2	37.0
CR-32	46.15	0.6	0.6	79.0	0.1	0.1	77.6	0.5	0.5	1.5
CR-31	46.53	0.7	0.7	115.4	0.2	0.2	106.5	0.6	0.5	8.9
CR-30	46.92	1.0	0.7	92.5	0.3	0.2	58.8	0.8	0.5	33.7
CR-29	47.51	1.3	0.3	96.0	0.3	0.1	89.3	1.0	0.2	6.8
CR-28	47.93	1.3	0.6	71.7	0.3	0.1	67.5	1.0	0.5	4.2
Average		1.0	0.4	26.0	0.2	0.1	18.4	0.8	0.3	7.5
Maximum		1.5	0.7	163.5	0.3	0.2	126.5	1.2	0.5	52.8
Minimum		0.1	0.2	0.6	0.0	0.0	0.0	0.1	0.1	0.6

4-2 Data sheet of Case-4 (5.5 m³/s)

Tributary	Distance from Mekong (km)		River bed	Discharg e (m³/s)	Water level (EL.m)	Width depth (m)	Width of water surface (m)	Water velocity (m/s)
				5.5	5.5	5.5	5.5	5.5
Mekong	0.0	29	143.0	32.1	149.3	6.2	124.3	0.1
	0.9	28	138.2	32.1	149.3	11.0	79.3	0.1
Nam Teknoy	1.9	27	141.7	32.1	149.3	7.5	103.3	0.1
	3.4	26	144.3	28.8	149.3	4.9	110.8	0.1
	4.5	25	142.2	28.8	149.3	7.1	80.6	0.1
	6.1	24	144.9	28.8	149.3	4.4	97.9	0.1
	8.0	23	145.4	28.8	149.3	3.9	101.4	0.1
	9.6	22	144.3	28.8	149.3	4.9	72.8	0.1
	10.6	21	144.3	28.8	149.3	4.9	78.5	0.1
	13.4	20	146.2	28.8	149.3	3.1	98.3	0.1
	15.9	19	143.2	28.8	149.3	6.1	87.9	0.1
Nam Pa	17.5	18	147.3	28.8	149.4	2.1	67.2	0.3
	18.5	17	148.1	25.9	149.6	1.5	75.0	0.4
	20.5	16	148.6	25.9	150.2	1.6	96.7	0.4
B Muong Mai	22.2	15	149.0	25.9	150.8	1.8	101.9	0.3
	23.3	14	149.0	25.1	151.0	2.0	49.7	0.3
Houay Poungxan	25.9	13	150.4	25.1	151.6	1.2	85.4	0.4
	27.0	12	150.9	24.7	152.3	1.4	77.5	0.5
Houay kokkhen	28.0	11	150.6	24.7	152.7	2.2	79.3	0.2
	30.4	10	152.6	23.3	153.4	0.8	77.2	0.4
	33.2	9	153.6	23.3	154.7	1.1	90.4	0.4
Houay khinguak	34.8	8	152.6	23.3	155.1	2.5	80.5	0.2
Houay Khinguak	36.3	7	155.0	21.4	155.8	0.7	64.4	0.5
	37.3	6	154.4	21.4	156.3	2.0	75.2	0.4
	38.6	5	150.9	21.4	156.5	5.6	64.1	0.1
Houay Soup	39.7	4	155.6	20.5	156.9	1.3	49.6	0.5
	42.1	3	158.9	18.6	159.6	0.6	92.6	0.5
Nam Xao, Nam th	43.5	2	158.8	18.6	160.8	2.0	113.1	0.1
	44.2	1	158.6	6.6	160.8	2.2	79.0	0.1
	44.7	CR-35	159.9	6.6	160.8	0.9	74.3	0.2
	45.2	CR-34	160.5	6.6	161.3	0.8	47.0	0.5
Nam Miang	45.6	CR-33	161.1	6.6	161.9	0.8	16.1	0.8
	46.1	CR-32	159.2	5.5	162.6	3.3	73.5	0.1
	46.5	CR-31	162.7	5.5	163.2	0.5	50.0	0.5
	46.9	CR-30	161.3	5.5	163.9	2.5	54.3	0.1
	47.5	CR-29	158.1	5.5	163.9	5.7	92.1	0.0
	47.9	CR-28	162.7	5.5	163.9	1.2	55.7	0.2
	Average		151.6	21.0	154.6	3.0	78.8	0.3
	Maximum		162.7	32.1	163.9	11.0	113.1	0.8
	Minimum		141.7	5.5	149.3	0.5	16.1	0.02

Case-4

No.	Distance from Mekong (m)	River bed (EL.m)	Discharge (m³/sec)	Area (m²)	velocity (m/sec)	Width (m)	Hydraulic mean depth (m)	Coefficient of roughness	Coefficient of adjustment of energy head	Energy head (m)	Water level (m)	Water depth (m)	Critical water depth (m)	Fr
1	0.000	143.040	32.100	630.819	0.051	124.323	4.96245	0.04000	1.00000	149.250	149.250	6.210	0.577	0.00722
2	938.100	138.230	32.100	511.269	0.063	79.272	6.11551	0.04000	1.00000	149.251	149.250	11.020	1.892	0.00790
3	1877.600	141.730	32.100	514.722	0.062	103.291	4.85434	0.04000	1.00000	149.251	149.251	7.521	1.010	0.00892
4	3383.800	144.310	28.800	452.445	0.064	110.812	4.02206	0.04000	1.00000	149.253	149.252	4.942	0.543	0.01006
5	4511.300	142.190	28.800	432.337	0.067	80.597	5.19077	0.04000	1.00000	149.254	149.253	7.063	0.646	0.00919
6	6061.500	144.880	28.800	354.833	0.081	97.850	3.56047	0.04000	1.00000	149.256	149.255	4.375	0.631	0.01362
7	8002.600	145.350	28.800	317.758	0.091	101.435	3.06916	0.04000	1.00000	149.260	149.260	3.910	0.668	0.01636
8	9595.300	144.320	28.800	252.565	0.114	72.820	3.39174	0.04000	1.00000	149.266	149.265	4.945	1.149	0.01956
9	10606.900	144.340	28.800	299.624	0.096	78.517	3.73053	0.04000	1.00000	149.269	149.269	4.929	0.622	0.01572
10	13378.700	146.150	28.800	214.969	0.134	98.275	2.15738	0.04000	1.00000	149.287	149.286	3.136	0.693	0.02894
11	15862.100	143.230	28.800	241.343	0.119	87.940	2.69293	0.04000	1.00000	149.308	149.307	6.077	1.095	0.02301
12	17466.700	147.320	28.800	82.812	0.348	67.219	1.22628	0.04000	1.00000	149.431	149.425	2.105	0.829	0.10009
13	18547.400	148.080	25.900	72.962	0.355	75.024	0.96695	0.04000	1.00000	149.624	149.618	1.538	0.685	0.11499
14	20490.500	148.620	25.900	65.787	0.394	96.662	0.67857	0.04000	1.00000	150.233	150.225	1.605	0.760	0.15244
15	22160.500	148.970	25.900	76.664	0.338	101.926	0.74780	0.04000	1.00000	150.805	150.799	1.829	1.126	0.12444
16	23327.300	149.020	25.100	86.844	0.289	54.244	1.57684	0.04000	1.00000	151.005	151.000	1.980	0.498	0.07297
17	25870.900	150.440	25.100	62.775	0.400	85.228	0.73478	0.04000	1.00000	151.588	151.580	1.140	0.499	0.14882
18	27030.500	150.910	24.680	46.892	0.526	77.445	0.60427	0.04000	1.00000	152.315	152.300	1.390	0.742	0.21606
19	27961.500	150.570	24.680	117.226	0.211	79.269	1.46531	0.04000	1.00000	152.738	152.736	2.166	0.473	0.05530
20	30435.000	152.640	23.300	52.495	0.444	77.162	0.67945	0.04000	1.00000	153.444	153.433	0.793	0.296	0.17190

ENVIRONMENTAL RESOURCES MANAGEMENT

0185065 ERM EFA REVISION_ANNEX C.DOC

NAM NGIEP 1 POWER CO., LTD

21 JANUARY 2014

21	33227.200	153.600	23.300	61.682	0.378	90.374	0.68057	0.04000	1.00000	154.713	154.705	1.105	0.527	0.14606
22	34808.300	152.570	23.300	95.823	0.243	80.468	1.18649	0.04000	1.00000	155.074	155.071	2.501	0.803	0.07118
23	36327.400	155.040	21.400	39.786	0.538	64.352	0.61752	0.04000	1.00000	155.800	155.785	0.745	0.306	0.21852
24	37269.200	154.390	21.400	58.828	0.364	75.198	0.77972	0.04000	1.00000	156.353	156.346	1.956	0.804	0.13138
25	38559.700	150.920	21.400	194.610	0.110	64.125	2.97356	0.04000	1.00000	156.546	156.546	5.626	0.906	0.02016
26	39672.500	155.600	20.480	39.652	0.516	49.638	0.79639	0.04000	1.00000	156.871	156.857	1.257	0.539	0.18460
27	42092.500	158.930	18.550	34.865	0.532	92.571	0.37555	0.04000	1.00000	159.593	159.578	0.648	0.377	0.27694
28	43517.300	158.790	18.550	161.764	0.115	113.104	1.42415	0.04000	1.00000	160.793	160.792	2.002	0.520	0.03063
29	44181.000	158.590	6.570	98.656	0.067	79.037	1.23409	0.04000	1.00000	160.799	160.799	2.209	0.689	0.01904
30	44721.100	159.922	6.570	42.356	0.155	74.324	0.56793	0.04000	1.00000	160.823	160.822	0.900	0.315	0.06564
31	45225.200	160.456	6.600	14.193	0.465	47.047	0.30113	0.04000	1.00000	161.275	161.264	0.808	0.578	0.27045
32	45580.800	161.102	6.600	8.676	0.761	16.072	0.53127	0.04000	1.00000	161.963	161.933	0.831	0.475	0.33072
33	46146.700	159.238	5.500	92.662	0.059	73.466	1.24899	0.04000	1.00000	162.573	162.573	3.335	0.610	0.01688
34	46530.900	162.682	5.500	10.695	0.514	49.980	0.21361	0.04000	1.00000	163.210	163.197	0.515	0.382	0.35510
35	46924.200	161.332	5.500	78.439	0.070	54.349	1.41460	0.04000	1.00000	163.863	163.862	2.530	0.347	0.01864
36	47506.300	158.130	5.500	280.111	0.020	92.050	3.00811	0.04000	1.00000	163.864	163.864	5.734	0.458	0.00360
37	47930.000	162.670	5.500	35.290	0.156	55.701	0.63194	0.04000	1.00000	163.879	163.878	1.208	0.413	0.06255

Annex D

Release of Environment Flow

D1 THE NUMBERS OF DAYS WHEN RIPARIAN RELEASES OCCURRED AT THE YEARS 1972, 1977 AND 1992 (ESTIMATED BY THE MODEL)

Date	Classification	Rule curve (upper)	Rule curve (lower)	Inflow to main dam	Reservoir water level	Discharge from spillway/bottom outlet	Peak plant discharge	Peak discharge (24hour)	Off-Peak discharge	Off Peak discharge (24hour)	Inflow to re- regulation dam
	1: Weekend										
	0: Weekday	m	m	m³/s	m	m ³ /s	m³/s		m³/s		m³/s
20/09/1972	0	318.3	312.8	106.7	312.9	0	227.0131	151.342	0	0	152.1
21/09/1972	0	318.3	313.0	106.7	312.8	27	0	0	0	0	27
22/09/1972	0	318.4	313.2	106.7	312.9	27	0	0	0	0	27
23/09/1972	0	318.5	313.4	106.7	313.1	27	0	0	0	0	27
24/09/1972	1	318.5	313.6	106.7	313.2	27	0	0	0	0	27
25/09/1972	0	318.6	313.8	106.7	313.3	27	0	0	0	0	27
26/09/1972	0	318.7	314.0	106.7	313.4	27	0	0	0	0	27
27/09/1972	0	318.7	314.2	106.7	313.6	27	0	0	0	0	27
28/09/1972	0	318.8	314.4	106.7	313.7	27	0	0	0	0	27
29/09/1972	0	318.9	314.6	106.7	313.8	27	0	0	0	0	27
30/09/1972	0	318.9	314.8	106.7	313.9	27	0	0	0	0	27
01/10/1972	1	319.0	315.0	86.8	314.0	27	0	0	0	0	27
02/10/1972	0	319.0	315.0	86.8	314.1	27	0	0	0	0	27
03/10/1972	0	319.1	315.1	86.8	314.2	27	0	0	0	0	27
04/10/1972	0	319.1	315.1	86.8	314.3	27	0	0	0	0	27
05/10/1972	0	319.1	315.1	86.8	314.4	27	0	0	0	0	27
06/10/1972	0	319.2	315.2	86.8	314.5	0	95.99673	63.99782	0	0	64.6

Date	Classification	Rule curve (upper)	Rule curve (lower)	Inflow to main dam	Reservoir water level	Discharge from spillway	Peak plant discharge	Peak discharge (24hour)	Off-Peak discharge	Off Peak discharge (24hour)	Inflow to re- regulation dam
	1: Weekend										
	0: Weekday	m	m	m³/s	m	m³/s	m³/s		m³/s		m³/s
30/09/1977	0	318.9333	314.8	196.3584	314.7	0	93.22367	62.14911	0	0	63.47586
01/10/1977	0	319	315	85.18534	314.9	27	0	0	0	0	27
02/10/1977	1	319.0323	315.0323	85.18534	315.0	27	0	0	0	0	27
03/10/1977	0	319.0645	315.0645	85.18534	315.1	0	112.6692	75.11279	0	0	75.68836

Date	Classification	Rule curve (upper)	Rule curve (lower)	Inflow to main dam	Reservoir water level	Discharge from spillway	Peak plant discharge	Peak discharge (24hour)	Off-Peak discharge	Off Peak discharge (24hour)	Inflow to re- regulation dam
	1: Weekend					0					
	0: Weekday	m	m	m³/s	m	m³/s	m ³ /s		m³/s		m³/s
03/09/1992	0	317.1	309.4	120.1	309.3	0.0	47.0	31.3	0.0	0.0	32.1
04/09/1992	0	317.2	309.6	120.1	309.5	27	0.0	0.0	0.0	0.0	27
05/09/1992	0	317.3	309.8	120.1	309.7	27	0.0	0.0	0.0	0.0	27
06/09/1992	1	317.3	310.0	120.1	309.9	27	0.0	0.0	0.0	0.0	27
07/09/1992	0	317.4	310.2	120.1	310.1	27	0.0	0.0	0.0	0.0	27
08/09/1992	0	317.5	310.4	120.1	310.3	27	0.0	0.0	0.0	0.0	27
09/09/1992	0	317.5	310.6	120.1	310.4	27	0.0	0.0	0.0	0.0	27
10/09/1992	0	317.6	310.8	120.1	310.6	27	0.0	0.0	0.0	0.0	27
11/09/1992	0	317.7	311.0	120.1	310.8	27	0.0	0.0	0.0	0.0	27
12/09/1992	0	317.7	311.2	120.1	311.0	27	0.0	0.0	0.0	0.0	27
13/09/1992	1	317.8	311.4	120.1	311.2	27	0.0	0.0	0.0	0.0	27
14/09/1992	0	317.9	311.6	120.1	311.4	27	0.0	0.0	0.0	0.0	27
15/09/1992	0	317.9	311.8	120.1	311.6	27	0.0	0.0	0.0	0.0	27
16/09/1992	0	318.0	312.0	120.1	311.8	27	0.0	0.0	0.0	0.0	27

ENVIRONMENTAL RESOURCES MANAGEMENT

0185065 ERM EFA REVISION_ANNEX D.DOCX

NAM NGIEP 1 POWER CO., LTD 21 JANUARY 2014

Date	Classification	Rule curve (upper)	Rule curve (lower)	Inflow to main dam	Reservoir water level	Discharge from spillway	Peak plant discharge	Peak discharge (24hour)	Off-Peak discharge	Off Peak discharge (24hour)	Inflow to re- regulation dam
	1: Weekend					0					
	0: Weekday	m	m	m ³ /s	m	m ³ /s	m³/s		m³/s		m ³ /s
17/09/1992	0	318.1	312.2	120.1	311.9	27	0.0	0.0	0.0	0.0	27
18/09/1992	0	318.1	312.4	120.1	312.1	27	0.0	0.0	0.0	0.0	27
19/09/1992	0	318.2	312.6	120.1	312.3	27	0.0	0.0	0.0	0.0	27
20/09/1992	1	318.3	312.8	120.1	312.5	27	0.0	0.0	0.0	0.0	27
21/09/1992	0	318.3	313.0	120.1	312.7	27	0.0	0.0	0.0	0.0	27
22/09/1992	0	318.4	313.2	120.1	312.9	27	0.0	0.0	0.0	0.0	27
23/09/1992	0	318.5	313.4	120.1	313.0	27	0.0	0.0	0.0	0.0	27
24/09/1992	0	318.5	313.6	120.1	313.2	27	0.0	0.0	0.0	0.0	27
25/09/1992	0	318.6	313.8	120.1	313.4	27	0.0	0.0	0.0	0.0	27
26/09/1992	0	318.7	314.0	120.1	313.6	27	0.0	0.0	0.0	0.0	27
27/09/1992	1	318.7	314.2	120.1	313.7	27	0.0	0.0	0.0	0.0	27
28/09/1992	0	318.8	314.4	120.1	313.9	27	0.0	0.0	0.0	0.0	27
29/09/1992	0	318.9	314.6	120.1	314.1	27	0.0	0.0	0.0	0.0	27
30/09/1992	0	318.9	314.8	120.1	314.3	27	0.0	0.0	0.0	0.0	27
01/10/1992	0	319.0	315.0	80.9	314.4	27	0.0	0.0	0.0	0.0	27
02/10/1992	0	319.0	315.0	80.9	314.5	27	0.0	0.0	0.0	0.0	27
03/10/1992	0	319.1	315.1	80.9	314.7	27	0.0	0.0	0.0	0.0	27
04/10/1992	1	319.1	315.1	80.9	314.8	27	0.0	0.0	0.0	0.0	27
05/10/1992	0	319.1	315.1	80.9	314.9	0.0	55.7	37.2	0.0	0.0	37.7

ERM has over 100 offices across the following countries worldwide

The Netherlands
New Zealand
Panama
Peru
Poland
Portugal
Puerto Rico
Romania
Russia
Singapore
South Africa
Spain
Sweden
Taiwan
Thailand
United Arab Emirates
United Kingdom
United States
Venezuela
Vietnam

ERM's Bangkok Office

179 Bangkok City Tower 24th Floor, South Sathom Road Tungmahamek, Sathorn Bangkok 10120, Thailand Tel: +66 2 679 5200 Fax: +66 2 679 5209

www.erm.com

