CLIMATE CHANGE ASSESSMENT

I. Basic Project Information

Project Title: MFF CAREC corridor Development Investment Program, Tranche 1 Project

Project Budget: \$195 million

Location: Petaro, Sehwan, Ratodero, and Shikarpur in Sindh Province; and Dara Adamkhel and Peshawar in Khyber Pakhtunkhwa Province, Pakistan

Sector: road transport (non-urban)

Theme: Inclusive economic growth and regional cooperation

Brief Description

The proposed MFF will enhance regional connectivity and trade via the CAREC Corridors in Pakistan by improving the efficiency for road traffic along the CAREC Corridors. For the purpose, the proposed MFF will rehabilitate and upgrade the road network of 747 km constituting the CAREC Corridors mainly in Sindh, Punjab, and Khyber Pakhtunkhwa.

Tranche 1 Project will (i) build an additional 2-lane carriageway for 66 km of Petaro–Sehwan road and for43 km of Ratodero–Shikarpur road; (ii) rehabilitate the existing 34 km 4-lane carriageway of Dara Adamkhel–Peshawar road; and (iii) develop NHA's capacity through due diligence advisory services and assistance with project implementation. Project 1 is estimated to cost \$195 million.

In case of building an additional two-lane carriageway for Petaro–Sehwan and Ratodero–Shikarpur roads, the additional carriageway will be 7.3 m wide with 3.0 m outer shoulder and 1.0 m inner shoulder with the design speed of 100 km/h, separated from the existing carriageway through New Jersey barrier. The additional carriageway including the shoulders will be benched into the existing width and pavement layers constructed and compacted as per the NHA's technical specifications after checking the soil properties of pavement and shoulder. The pavement construction will consist of embankment filling, granular subbase, aggregate base and asphaltic layers. As for rehabilitation of the existing four-lane carriageway for Dara Adamkhel–Peshawar road, the existing carriageway of 14.6 m wide with 2.0 m outer shoulder and 1.0 m inner shoulder will be upgraded with the design speed of 100 km/h. Drainage system will consist of bridges, culverts and cross drainage structures. Majority of the pipe culverts will be replaced by box culverts to make the structures resilient to cater for the current hydrology, seismic zone and climate change. Following the experience of the floods of 2009–2011 in Pakistan, NHA has strengthened its design standards to make road assets more resilient to climate change. Climate proofing road design has been adopted which includes protective structure for reducing vulnerability to water rise, floods, and/or landslides.

II. Summary of Climate Risk Screening and Assessment

A. Sensitivity of Project Component(s) to Climate/Weather Conditions and Sea Level

Heavy rainfall may affect the optimal number of bridges and culverts and the adequacy of bridge and culvert design. A large discrepancy between the high and low temperatures in summer and winter may affect the adequacy of road pavement materials.

Project component		Sensitivity to climate/weather conditions				
Construction	of bridges and culverts	High summer temperature at times				
Construction of asphaltic road pavement		Intensity and frequency of heavy rainfall				
B. Climate Risk Screening						
Risk topic	Description of the risk					
• Flood						

	 The alignments for Petaro–Sehwan and Ratodero–Shikarpur roads fall in arid region with average annual rainfall of 200–250 mm. The long-term rainfall analysis shows that in case of Petaro–Sehwan road, there is no general trend of unstable up and down of rainfall. The flood inundation analysis, especially looking at the mega historical flood of 2010 shows no major threat to the road although the flood water crossed through the XC-drainage structures while remaining below the entire road alignment.
	The alignment for Dara Adamkhel–Peshawar road falls in the high rainfall zone with average rainfall up to 600 mm. The long-term rainfall trends indicate a slight decrease on long-term average. The historical pattern of alternating dry and wet years shows that wet years were dominant with no extremes, though. The flood hazard analysis especially with reference to major historical flood of 2010 shows no major hazard to the road. A small stream of Bara River (Km 0+050), which is a tributary of the Kabul River and crosses the alignment, experienced flooding in 2010; however, no threat to the bridge was reported except for some damages in the areas located upstream and downstream to the bridge due encroachment to its bed.
Climate Risk Clas	sification: Medium

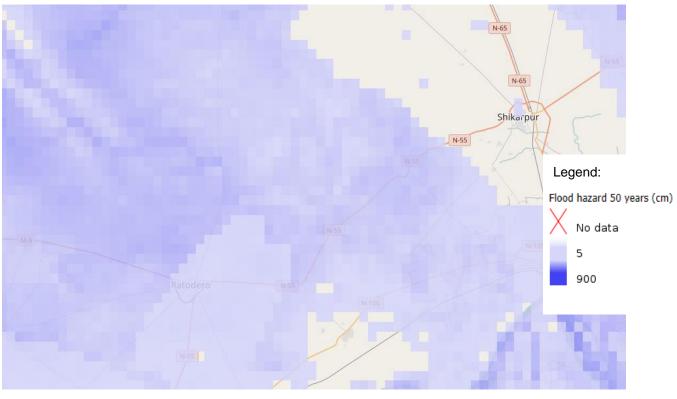
C. Climate Risk Assessment

C. Climate Risk Assessment

GIS analysis indicates that some regions of the project areas may be at moderate risk to flooding. Based on the design standards adopted by NHA for detailed designs for project roads, it is expected that national highway design parameters can mitigate climate variability-related impacts.

III. Climate Risk Management Response within the Project

Climate change risks and mitigation measures were considered in the project design. The road embankment is sufficiently high to withstand sheet flows of highest floods. The design provides adequate cross drainage structures and hydraulic structures, based on 100-year recurrenceinterval flood discharges, adopted by NHA after the 2010 mega-flood. The impact of temperature on asphaltic pavement layers has been mitigated by adopting pavement specifications suitable for the climate in the project areas.


Design measures that have been taken to address climate change risks are:

- Sufficiently high embankments to facilitate drainage crossings
- Drainage ditch as required along the roads
- Increased clearance of bridges
- Putting additional culverts and expanding the capacity of culverts by replacing pipe culverts with box culverts.
- Giving 0.2 to 0.3 freeboard (about 20%) margin in culvert design to mitigate the risk of overland flow.

For the project roads under the MFF, a total of about 1.73% (\$14.5 million of the civil works cost of \$838.0 million) will be spent on addressing (adaptation) climate change risks.

Attachments: 1. Project Location and GIS Analysis

2. Estimated Cost for Adapting Climate Change Risks

Project Location and GIS Analysis

Figure 1: GIS Analysis of Ratodero–Shikarpur Section

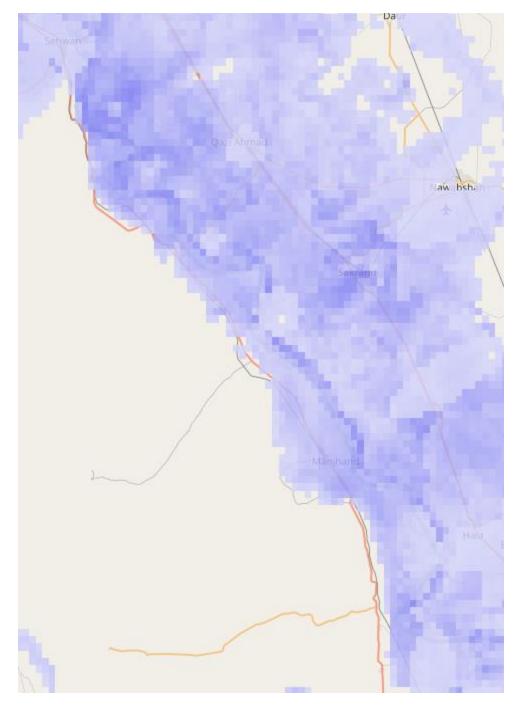


Figure 2: GIS Analysis of Petaro–Sehwan

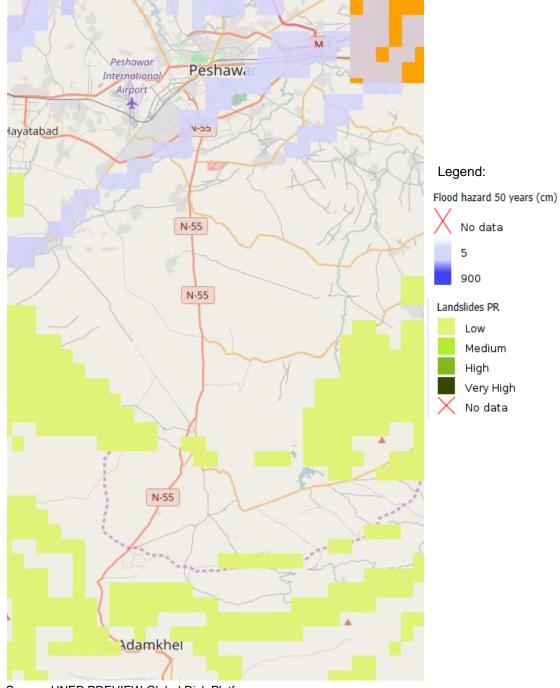



Figure 3: GIS Analysis of Dar Adamkhel–Peshawar

Source: UNEP PREVIEW Global Risk Platform.

Figure 4: Projected Change in Annual Precipitation at 25%, 50%, 75% Percentiles (RCP4.5)

Source: IPCC (2013) AR5 WG1 Annex I.

Road	Unit No.	Description	Unit	Quantity	Rate (Rs)	Amount (Rs)
Petaro–Sehwan	107a	Structure excavation in common material	m ³	5,348	363.27	1,942,768
	107d	Granular backfill	m ³	4,793	1,065.04	5,104,737
	401a3	Concrete Class "A3"	m ³	4,663	11,238.26	52,404,006
	401f	Lean concrete	m ³	574	5,736.89	3,292,975
	SS	Extra over for providing sulphate-resisting cement in concrete works of specified class:				
		for concrete Class "A3"	m ³	4,663	200.00	932,600
		for lean concrete	m ³	574	87.50	50,225
	404b	Reinforcement as per AASHTO M31 Grade 60	ton	699	115,360.95	80,637,304
	406a	Premoulded joint filler 25 mm thick with bitumen joint	m ²	75	3,033.78	227,534
		Total				144,592,149
Ratodero-	107a	Structure excavation in common material	m ³	689	359.83	247,923
Shikarpur	107d	Granular backfill	m ³	717	1,330.58	954,026
	401a3	Concrete Class "A3"	m ³	750	11,197.93	8,398,448
	401f	Lean concrete	m ³	125	5,553.91	694,239
	SS	Extra over for providing sulphate-resisting cement in concrete works of specified class:				
		for concrete Class "A3"	m ³	750	200.00	150,000
		for lean concrete	m ³	125	87.50	10,938
	404b	Reinforcement as per AASHTO M31 Grade 60	ton	112	116,134.21	13,007,032
	406a	Premoulded joint filler 25 mm thick with bitumen joint	m ²	9	3,027.72	27,249
		Total				23,489,855
Dara Adamkhel-	107a	Structure excavation in common material	m ³	1,524	361.08	550,286
Peshawar	107d	Granular backfill	m ³	1,783	1,885,98.00	3,362,702
	401a3	Concrete Class "A3"	m ³	1,723	12,062.90	20,784,377
	401f	Lean concrete	m ³	290	6,370.51	1,847,448
	404b	Reinforcement as per AASHTO M31 Grade 60	ton	258	116,443.82	30,042,506
	406a	Premoulded joint filler 25 mm thick with bitumen joint	m²	22	3,063.65	67,400
		Total			-,	56,654,719
Total						224,736,723
Total Civil Works Cost						12,981,483,000
Average %			T			1.73%

Estimated Cost for Adapting Climate Change Risk