### TRAVEL DEMAND FORECASTS

### A. Introduction

1. The purpose of the travel demand forecasts is to assess the impact of the project components on the performance of the urban transport system in Ji'an. The results of the analysis will provide the forecasts of future travel demand, travel patterns, transport system performance, and public transport ridership which will be used to assess the economic viability of each transport project component. The information from the travel model will be used for estimating travel time and vehicle operating cost savings, emissions, and traffic safety impacts.

### B. The scope of the analysis

2. The analysis area covers the existing Ji'an Urban Center Area (JUCA) and its surrounding area (see Figure 1):

- (i) Jizhou District
- (ii) Qinyuan District
- (iii) Jingangshan Economic Development District
- (iv) Jiangshan New District
- (v) City West New District
- (vi) Southwest New District
- (vii) Binjiang New District
- 3. The project components included in the travel demand model are (see Figure 2):
  - (i) Public transport component including an 6.9-km bus priority corridor with associated improvement of bus stop bays and waiting areas.
  - (ii) Urban road development component with traffic management including five new arterial roads in the JUCA including improved traffic management measures and an advanced traffic monitoring and control system.

4. Traffic data on existing roads, socio-economic forecasts, urban development plans, and vehicle fleet forecasts were used to develop the travel demand model and to support scenario analysis (see Figure 3).

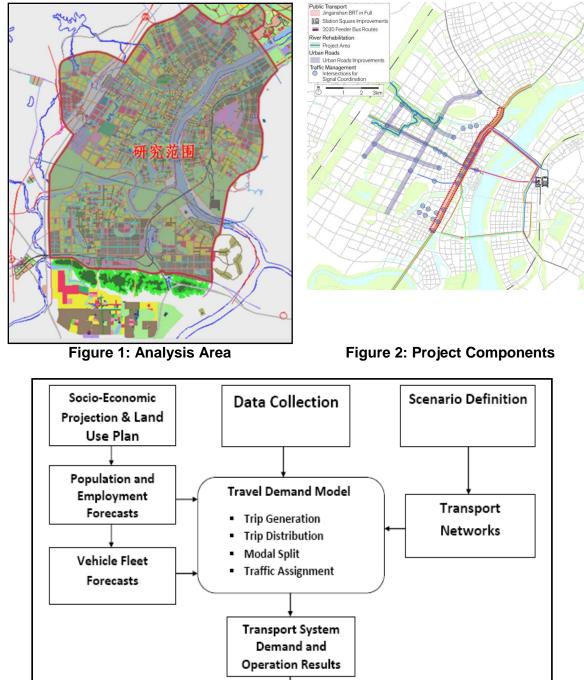
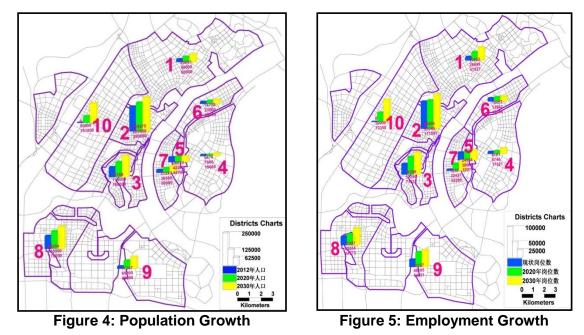
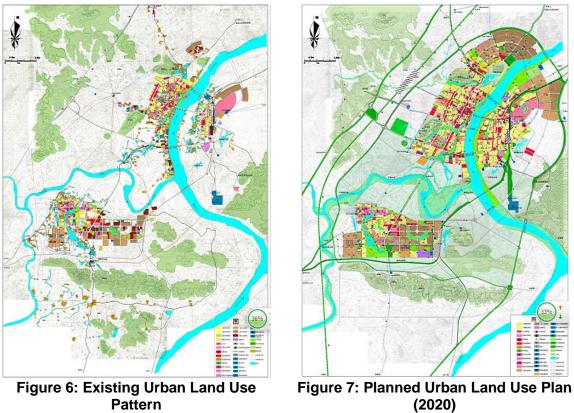



Figure 3: Technical Approach of the Analysis


# C. Data Collection and Forecasts

# 1. Socioeconomic and land use data


5. The current population, economic development and land use pattern are the fundamental factors which generate current travel demand. Those data have been collected for the base year to associate those data to the travel demand and patterns within the study area. The population in the study area has been growing 0.7% per annum during the last 7 years. According to the master plan for the area included in the travel demand model, the population in

2013 was 480,000 and expected to increase to 730,000 in 2020 and 1,040,000 in 2030. Future numbers of employees were also forecasted on the basis of population and land use plans.

| Table 1: Population of Various Residential Districts |           |           |           |  |  |
|------------------------------------------------------|-----------|-----------|-----------|--|--|
| Residential District                                 | Year 2013 | Year 2020 | Year 2030 |  |  |
| City North District                                  | 21,000    | 35,000    | 55,000    |  |  |
| Central District                                     | 190,000   | 220,000   | 250,000   |  |  |
| Houhe District                                       | 75,000    | 115,000   | 160,000   |  |  |
| City West                                            | -         | 62,500    | 187,500   |  |  |
| City East                                            | 42,000    | 47,500    | 60,000    |  |  |
| Binjiang                                             | 21,000    | 60,000    | 80,000    |  |  |
| Dunhou                                               | 99,000    | 135,000   | 160,000   |  |  |
| JGS Economic Devel. Dist                             | 17,000    | 55,000    | 87,500    |  |  |
| Total                                                | 480,000   | 730,000   | 1,040,000 |  |  |



6. The current land use data and projections are shown in Figure 5 and Figure 6. Existing urban areas that have been substantially developed include: Jizhou District to the West of river, Qinyuan to the East and Jingangshan Economic development Zone to the South of existing city center. By 2020, the urban area is expected to expand in all directions from the city center.



Source: Ji'an Municipal Government. Ji'an Urban Master Plan (2007–2020).

7. The annual growth rates of automobiles have been more than 30% for the last 10 years. As shown in Table 2, the number of automobiles is forecast to grow from 35,000 in 2013 to 109,500 in 2020, and to 187,000 in 2030. In 2030, vehicle ownership is expected to reach the level of 180 cars/1000 people.

| Table 2: For                    | 5      |         |         |
|---------------------------------|--------|---------|---------|
|                                 | 2012   | 2020    | 2030    |
| Number of Passenger<br>Vehicles | 35,519 | 109,500 | 187,200 |
| Population (1000s)              | 48     | 73      | 104     |
| Vehicles/1000 People            | 74     | 150     | 180     |

### 2. Traffic and travel data survey

8. A number of surveys were carried out to collect data for this study. The purposes of these surveys are to acquire necessary information on travel and traffic conditions on the road network and public transport system. The data collected in the surveys were used to calibrate or adjust the parameters of the travel demand model. These include:

| Survey Type                                                     | Details                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Road traffic volume count study                                 | 33 road segments within the city center and 6 external highway<br>segments.<br>classified vehicle count data (including bicycles and electric<br>bicycles)<br>12-hour period from 07:00 to 19:00<br>major external highways connecting to Ji'an Center City : routes<br>G105, S318 (Ji'an North Avenue), S224 (Ji'an South Avenue)<br>and S335 |
| Bus routes on-board ridership survey                            | passengers boarding and alighting at stops<br>12-hour period from 07:00 to 19:00<br>16 bus routes (out of 20 routes in operation) with daily ridership<br>more than 500 passengers                                                                                                                                                             |
| Jingangshan avenue<br>screenline bus passenger<br>volume survey | 7 locations along the BRT corridor<br>12-hour period from 07:00 to 19:00                                                                                                                                                                                                                                                                       |
| External transport<br>terminal passenger<br>survey              | Gender split of passengers<br>Percentages of people picking up/dropping off passengers<br>Split of Ji'an residents and visitors<br>Purpose split of the out of city trips<br>Destinations of the out of city trips<br>Mode use for visitor coming to Ji'an                                                                                     |





Figure 8: Locations of Traffic Volume Count Survey

### D. Travel Demand Model Development

#### 1. 4-stage Modelling Process



Figure 9: Locations of screen-line bus passenger volume survey

9. The model used in this study is a traditional 4-step trip based model implemented in TransCAD. The model included the following four elements:

- (i) Trip generation estimating trips generated from/to each traffic zone
- (ii) Trip distribution estimating trips among and within traffic zones

- (iii) Modal split estimating trips among traffic zones by various travel modes
- (iv) Traffic assignment "assigning" trips onto the transport network to estimate the traffic volume on the road network and public transport network
- 10. The model considers trips of following travel modes:
  - (i) Non-motorized person trips walk, bicycle, moped, etc.
  - (ii) Transit trips bus and BRT
  - (iii) Personal motorized trips auto, motorcycle, etc.
  - (iv) Trucks small trucks and large trucks

11. The model process basically generates a set of trip tables for various travel modes, which describe trips between individual traffic zone pairs. These trip tables are then "assigned" to the transport network to predict the vehicle volumes on the road network and passenger volumes on the transit network. The model can also estimate the service level (e.g., travel speeds, delay) on the transport system.

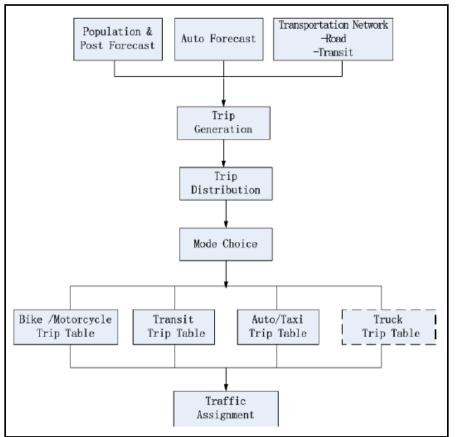
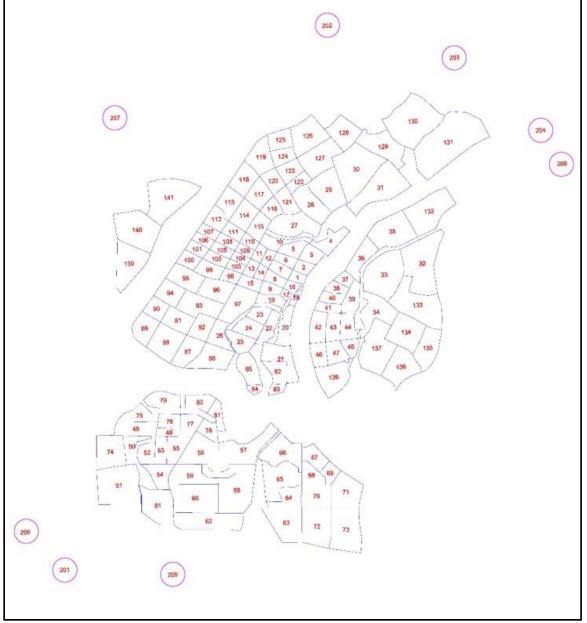
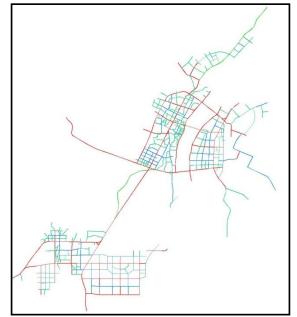




Figure 10: Four-stage Modelling Process

# 2. Network Building


12. **Traffic Analysis Zone (TAZ).** The study area is subdivided into 141 traffic analysis zones (TAZs) as shown in Figure 11. The TAZs were defined by dividing the administrative districts into zones which following certain physical or administrative boundaries, such as roads, rivers, street blocks, etc. The TAZs are the basic units upon which the travel demand is



estimated. In addition to the traffic zones, 8 external zones are defined in the model, representing the external highways connecting to the study area.

Figure 11: Traffic Analysis Zones

13. The road network in the model study area is encoded in TransCAD. Figure 12 displays the Year 2013 model road network. The network consists of 790 nodes and 980 links, with a total length of 330 kilometers. The transit network includes all the bus lines operating in the model study area. In the Year 2013 model, 19 existing bus lines are encoded.



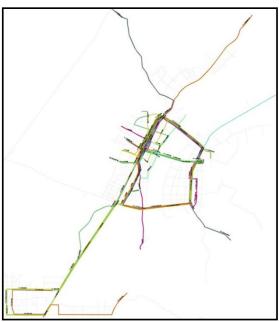



Figure 12: Year 2013 Urban Road Network

Figure 13: 2012 Ji'an Center City Bus Network

14. **Model Validation and Adjustment.** A set of preliminary base year trip tables was derived based on the model structure. The estimated trip tables are then used to adjust the coefficients and parameters of individual model elements. The estimated trip tables were validated by assigning the trip tables and compare the model assigned traffic volumes and ridership volumes on individual road segment or bus route segments with the observed volume data. Table 4 summarizes the comparison of model estimated and observed traffic volumes on the road network and while Table 5 summarizes the comparison of transit passenger volumes on the transit network respectively.

| Site No | Obs.Daily<br>Volume<br>(PCUs) | Model Est.<br>Daily Vol.<br>(PCUs) | Site<br>No | Obs. Daily<br>Volume<br>(PCUs) | Model Est.<br>Daily Vol.<br>(PCUs) |
|---------|-------------------------------|------------------------------------|------------|--------------------------------|------------------------------------|
| 1       | 4,613                         | 4,442                              | 22         | 2,959                          | 3,495                              |
| 2       | 7,096                         | 7,084                              | 23         | 1,799                          | 1,797                              |
| 3       | 914                           | 905                                | 24         | 4,573                          | 4,520                              |
| 4       | 1,244                         | 899                                | 25         | 2,475                          | 2,471                              |
| 5       | 4,409                         | 4,252                              | 26         | 709                            | 711                                |
| 6       | 4,969                         | 4,754                              | 27         | 1,614                          | 1,622                              |
| 7       | 4,594                         | 4,572                              | 28         | 1,204                          | 1,205                              |
| 8       | 10,423                        | 10,230                             | 29         | 2,678                          | 2,673                              |
| 9       | 3,999                         | 3,996                              | 30         | 1,883                          | 1,880                              |
| 10      | 3,846                         | 3,376                              | 31         | 5,878                          | 5,722                              |
| 11      | 4,306                         | 4,229                              | 32         | 9,850                          | 9,753                              |
| Site No | Obs.Daily<br>Volume<br>(PCUs) | Model Est.<br>Daily Vol.<br>(PCUs) | Site<br>No | Obs. Daily<br>Volume<br>(PCUs) | Model Est.<br>Daily Vol.<br>(PCUs) |
| 12      | 2,685                         | 2,691                              | 33         | 5,693                          | 4,448                              |
| 14      | 4,551                         | 4,590                              | 34         | 6,270                          | 6,231                              |
| 15      | 9,895                         | 9,688                              | 35         | 3,341                          | 3,346                              |
| 16      | 3,856                         | 3,165                              | 36         | 1,479                          | 1,478                              |
| 17      | 182                           | 184                                | 37         | 2,164                          | 2,164                              |
| 18      | 9,925                         | 9,384                              | 38         | 3,549                          | 3,546                              |
| 19      | 331                           | -                                  | 39         | 2,672                          | 2,670                              |
| 20      | 1,153                         | 1,115                              | 40         | 3,354                          | 3,354                              |
| 21      | 3,073                         | 3,405                              |            |                                |                                    |

Table 4: Comparison of Observed and Estimated Screenline Vehicle Traffic Volumes

 Table 5: Comparison of Observed and Estimated Screen Line Passenger Volumes

| Screen line | Obs. Daily<br>Pax Vol. | Model Est.<br>Daily Pax Vol. | Screen<br>line | Obs. Daily Pax<br>Vol. | Model Est.<br>Daily Pax<br>Vol. |
|-------------|------------------------|------------------------------|----------------|------------------------|---------------------------------|
| 1           | 8,023                  | 8,178                        | 6              | 2,285                  | 2,331                           |
| 2           | 6,906                  | 7,953                        | 7              | 13,173                 | 12,164                          |
| 3           | 8,087                  | 8,261                        | 8              | 9,315                  | 9,134                           |
| 4           | 19,251                 | 18,191                       | 9              | 8,529                  | 7,819                           |
| 5           | 9,025                  | 8,315                        |                |                        |                                 |

15. Future networks were built according to the master plan. In 2030, the total roadway length of the road network will reach 1020 km. Figure 14 and Figure 15 display the year 2020 and year 2030 road networks respectively.

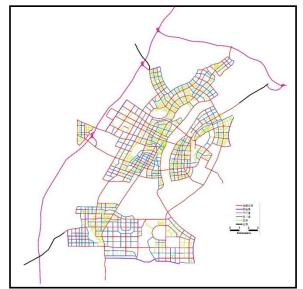



Figure 14: Year 2020 Road Network Plan

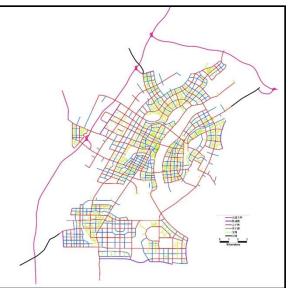



Figure 15: Year 2030 Road Network Plan

16. Future bus routes and the BRT network were built to estimate the future public transport demand and BRT demand.

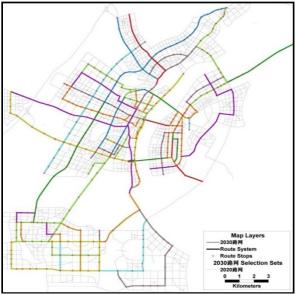



Figure 16: Year 2030 Model Coded Transit Network

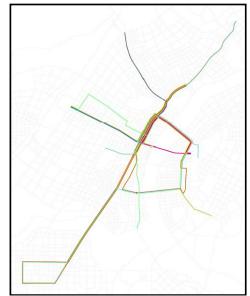



Figure 17: Modelled BRT Route Network

# E. Travel Demand Forecasts

# 1. Regional Person Trips Forecasts

17. The total number of person trips generated by residents in the study area is forecast to increase from 1.27 million in 2013 to 2.76 million in 2030. With the development of outskirt areas, travel distance is expected to increase significantly and hence more trips will be made using motorized modes. As shown in Table 6, the non-motorized modal shares (i.e., walk and bicycle) are expected to decline from 82% in 2011 to 53% in 2030. The share of the auto mode

is expected to increase significantly, from 12% in 2011 to 24% in 2030. At present, the transit mode share, at 6% is expected to increase substantially with the expansion of the urbanized area and implementation of BRT. The transit share is forecast to reach 23% in year 2030.

| Table 6: Forecast Regional Person Trips and Modal Shares |      |      |      |  |  |
|----------------------------------------------------------|------|------|------|--|--|
| Index                                                    | 2013 | 2018 | 2030 |  |  |
| Total Daily Regional Trips (Millions)                    | 1.27 | 1.94 | 2.76 |  |  |
| Model Shares                                             |      |      |      |  |  |
| Walk                                                     | 34%  | 30%  | 29%  |  |  |
| Bike/Moped                                               | 48%  | 34%  | 24%  |  |  |
| Car/Taxi                                                 | 12%  | 21%  | 24%  |  |  |
| Transit                                                  | 6%   | 15%  | 23%  |  |  |

# Table 6: Forecast Regional Person Trips and Modal Shares

Note: The forecast bus shares are under the scenario without any premium bus service such as BRT.

18. In 2030, 550,000 motorized vehicle trips are forecast to be generated in the JUCA per day, an increase from 110,000 in 2013. The increase of passenger vehicle trips is likely to be dramatic, from 106,000 in 2011 to 520,000 in 2030.

| Table 7: Forecast Regional Vehicle Trips per Day |       |       |       |  |
|--------------------------------------------------|-------|-------|-------|--|
|                                                  | 2013  | 2018  | 2030  |  |
| Total Motorized Vehicle Trips (1000s)*           | 111.2 | 327.3 | 551.4 |  |
| Total Passenger Vehicle Trips (1000s)*           | 106.0 | 307.8 | 519.9 |  |

\* Excluding motorcycles or electric bikes.

### 2. Demand forecasts for ADB financed project components

19. **Network Performance.** Figures 18 and 19 display road network flow diagrams of the "Build All" scenarios for 2020 and 2030. Most of the road segments will be operated under capacity in 2020, except for few road segments in the city core and the three bridges crossing river. In 2030, there will be more road segments operating over capacity, for example, the two bridges and the roads on the west bank of the river in the center core area. For road segments in the City West District, where the ADB project roads are located, the projected traffic volumes in 2030 are moderate.

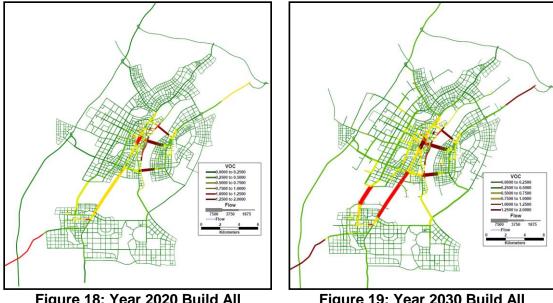



Figure 18: Year 2020 Build All Scenario Road Network Traffic Flow

Figure 19: Year 2030 Build All Scenario Road Network Traffic Flow

20. Table 8 summarizes the performance statistics of the road network under the various scenarios for 2030. The forecasts indicate that the ADB road projects are expected to reduce the regional vehicle-kilometers by about 48,000 daily, and the regional vehicle-hours by about 3,700 daily by providing more direct connections by 2030.

| Table 8: 203     | Table 8: 2030 Passenger Vehicle Operation Statistics under Various Scenarios |                                  |                             |                                |           |
|------------------|------------------------------------------------------------------------------|----------------------------------|-----------------------------|--------------------------------|-----------|
|                  | No Build                                                                     | Build Yangming<br>West Road Only | Build Junhua<br>Avenue only | Build Yanming<br>& Junhua Road | Build All |
| Passenger Car    |                                                                              |                                  |                             |                                |           |
| Veh-Km           | 5,205,534                                                                    | 5,190,264                        | 5,189,847                   | 5,170,061                      | 5,170,214 |
| Veh-Hr           | 153,377                                                                      | 151,882                          | 152,085                     | 150,468                        | 150,264   |
| Veh Trips (pcu)  | 605,516                                                                      | 605,516                          | 605,516                     | 605,516                        | 605,516   |
| Pax-Km           | 6,767,194                                                                    | 6,747,344                        | 6,746,802                   | 6,721,079                      | 6,721,278 |
| Pax-Hr           | 199,391                                                                      | 197,447                          | 197,711                     | 195,608                        | 195,344   |
| Person Trips     | 787,171                                                                      | 787,171                          | 787,171                     | 787,171                        | 787,171   |
| Moped/Motorcycle |                                                                              |                                  |                             |                                |           |
| Veh-km           | 4,137,877                                                                    | 4,113,869                        | 4,128,925                   | 4,105,120                      | 4,093,286 |
| Veh-Hr           | 276,128                                                                      | 274,466                          | 275,517                     | 273,889                        | 273,110   |
| Veh Trips        | 693,591                                                                      | 693,591                          | 693,591                     | 693,591                        | 693,591   |
| Truck            |                                                                              |                                  |                             |                                |           |
| Veh-Km           | 602,635                                                                      | 601,241                          | 601,322                     | 599,878                        | 599,685   |
| Veh-Hr           | 15,575                                                                       | 15,514                           | 15,524                      | 15,473                         | 15,463    |
| Veh-Trips        | 62,399                                                                       | 62,399                           | 62,399                      | 62,399                         | 62,399    |
| Total            |                                                                              |                                  |                             |                                |           |
| Veh-Km           | 7,049,532                                                                    | 7,025,666                        | 7,029,847                   | 7,001,475                      | 6,997,884 |
| Veh-Hr           | 251,790                                                                      | 249,736                          | 250,264                     | 248,108                        | 247,660   |
| Veh-Trips (pcu)  | 875,992                                                                      | 875,992                          | 875,992                     | 875,992                        | 875,992   |

21. **Jingangshan Avenue BRT Ridership Forecasts.** The transit networks used in the two forecast years (i.e., 2020 and 2030) were developed by expanding the existing transit service along with population growth and development patterns. The enhanced transit network was examined by the study team to determine if additional bus routes need to be added to cover the

new development areas. The service frequencies of new bus routes are set to 5 minutes for routes within the center city area and 10-20 minutes for routes serving the urban fringe areas. The base bus fare is kept the same "price value" as current year (i.e., to be adjusted following the CPI index).

The travel demand model was applied to forecast regional transit trip tables for 22. scenarios without and with the BRT. Table 9 summarized the totals of regional transit trips under various scenarios. Under the no-BRT condition, the total number of regional transit trips increase from 75,000 in 2013 to 290,000 in 2020, and further increase to 620,000 in 2030. With the planned expansion of the center city, more people will have to use transit for daily travel. With the implementation of the BRT system, the numbers of regional transit trips will increase, by about 7,000 in 2020 and 12,300 in 2030, reflecting that more people will use transit trips due to the service improvement.

| Table 9: Forecast Transit Trips under Various Scenarios |                        |                        |  |  |
|---------------------------------------------------------|------------------------|------------------------|--|--|
| Year/Scenario                                           | Total Transit<br>Trips | Change from No-<br>BRT |  |  |
| 2013                                                    | 75,002                 | -                      |  |  |
| 2020 No-BRT                                             | 288,975                | -                      |  |  |
| 2020 BRT                                                | 295,942                | 6,967                  |  |  |
| 2030 No-BRT                                             | 621,759                | -                      |  |  |
| 2030 BRT                                                | 634,038                | 12,279                 |  |  |

23. Figure 20 and Figure 21 illustrate the bus passenger flows of the regional transit network under the "2020 BRT" and "2030 BRT" scenarios. The figures reveal that while the BRT corridor is the major transit corridor with high passenger demand. In 2030, the transit passenger flow on major arterials connecting the new development areas will also be substantial, in particular on corridors connecting the Economic Development District to the south of the center city and the new areas west of the center city.

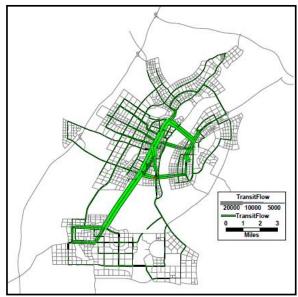
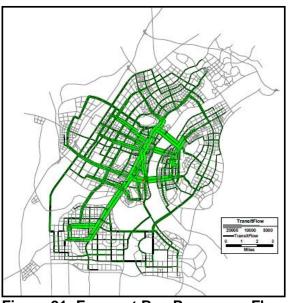




Figure 20: Forecast Bus Passenger Flow Figure 21: Forecast Bus Passenger Flow under 2020 BRT Scenario



under 2030 BRT Scenario

24. Table 10 summarizes the operating statistics of the transit service under the "No-BRT" and "BRT" scenarios. As shown in the table, with BRT operation, total numbers of system-wide passenger kilometers and passenger hours increase. This is due to the increase of total passenger trips (about 7,000 more daily in 2020 and 12,000 more in 2030). For the BRT routes, which would operate outside the BRT corridor for some part of the routes, the total number of passenger kilometers on these routes is about 979,000 in 2020, accounting for more than half of the system-wide passenger kilometers (1,653,000). On the other hand, the total number of vehicle kilometers of the BRT routes is about 25,000 in 2020, accounting for less than 30% of the number of system-wide vehicle kilometers.

|                      | 2020<br>No BRT | 2020<br>Build BRT | 2030<br>No BRT | 2030<br>Build BRT |
|----------------------|----------------|-------------------|----------------|-------------------|
| System-Wide          |                |                   |                |                   |
| Passenger Kilometers | 1,561,846      | 1,653,762         | 4,243,876      | 4,405,155         |
| Passenger Hours      | 91,173         | 91,537            | 243,800        | 243,421           |
| Passenger Boardings  | 363,502        | 374,404           | 946,620        | 967,651           |
| Passenger Trips      | 288,975        | 295,942           | 621,759        | 634,038           |
| Vehicle Kilometers   | 88,235         | 88,235            | 151,937        | 151,937           |
| Vehicle Hours        | 5,167          | 4,935             | 8,828          | 8,578             |
| BRT Lines            |                |                   |                |                   |
| Passenger Kilometers |                | 977,812           |                | 1,934,372         |
| Passenger Hours      |                | 52,450            |                | 103,317           |
| Passenger Boardings  |                | 166,124           |                | 316,930           |
| Vehicle Kilometers   |                | 25,139            |                | 25,152            |
| Vehicle Hours        |                | 1,343             |                | 1,344             |
| BRT Corridor         |                |                   |                |                   |
| Passenger Kilometers |                | 293,247           |                | 566,030           |
| Passenger Boardings  |                | 81,782            |                | 154,410           |