Environmental and Social Impact Assessment Report of Reliance Meghnaghat 750 MW Combined Cycle Power Plant

Project Number: 50253-001 October 2017

BAN: Reliance Bangladesh LNG and Power Limited

Prepared by Adroit Environment Consultants Ltd, Bangladesh

The environmental and social impact assessment report is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. Your attention is directed to the "Term of Use" section of this website.

In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area.

ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT REPORT

October 2017

BAN: Environmental and Social Impact Assessment of Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh by Reliance Bangladesh LNG and Power Limited

A Study Conducted by Adroit Environment Consultants Ltd, Bangladesh

CURRENCY EQUIVALENTS

(As of 05 April 2017@ OANDA.COM)

Currency unit	-	Bangladeshi taka (BDT)
\$1.00	=	79.1220

ABBREVIATIONS

AAQS	-	Ambient Air Quality Standards
AAQM	-	Ambient Air Quality Monitoring
ADB	-	Asian Development Bank
AECL	-	Adroit Environment Consultants Ltd
AGI	-	Above Ground Installation
AGP	-	Advanced Gas Path
Aol	-	Area of Influence
APM	-	Architecture & Project Management
ASTM	-	American Society for Testing of Material
BBS	-	Bangladesh Bureau of Statistics
BCSIR	-	Bangladesh Council 0f Scientific and Industrial Research
BDT	-	Bangladeshi Taka
BMD	-	Bangladesh Meteorological Department
BNAAQS	-	Bangladesh National Ambient Air Quality Standard
BNBC	-	Bangladesh National Building Code
BOD	-	Biochemical Oxygen Demand
BPDB	-	Bangladesh Power Development Board
BRTA	-	Bangladesh Road Transport Authority
BUET	-	Bangladesh University of Engineering & Technology
BWDB	-	Bangladesh Water Development Board
CAMS	-	Continuous Air Monitoring Station
CCCW	-	Closed Cycle Cooling Water
CCPP	-	Combined Cycle Power Plant
CD	-	Conservation Dependent
СМВ	-	Chemical Mass Balance
CMSWMF	-	Common Municipal Solid Waste Management Facility
CO	-	Carbon Monoxide
CO ₂	-	Carbon-Di-Oxide
COD	-	Chemical Oxygen Demand
CR	-	Critically Endangered
CSR	-	Corporate Social Responsibility
CTG	-	Combined Turbine Generator

dB (A)	-	A-weighted Decibel
DEPC	-	Department of Environmental pollution Control
DEM	-	Digital Elevation Model
DIFE	-	Department of Inspection for Factories and Establishments
DLN	-	Dry Low NOx
DM plant	-	Demineralization Plant
DMC	-	District Management Committee
DO	-	Dissolve Oxygen
DOE	-	Department of Environment
DPHE	-	Directorate of Public Health Engineering
ECA95	`-	Environment Conservation Act, 1995
EA	-	Environmental Assessment
ECO	-	Emergency Control Organisation
ECC	-	Emergency Control Centre
ECR97	-	Environment Conservation Rules 1997
ED	-	Energy Division
EHS	-	Environment Health & Safety
EIA	-	Environmental Impact Assessment
EMP	-	Environmental Management Plan
EMS	-	Environmental Management System
EN	-	Endangered
EPC	-	Engineering, Procurement, and Construction
EQS	-	Environmental Quality Standards
ESIA	-	Environmental Social Impact Assessment
ESMP	-	Environmental and Social Management Plan
ETP	-	Environmental Treatment Plant
EWP	-	Elevated Work Platform
FGD	-	Focused Group Discussions
FRP	-	Fibre Reinforced Plastic
FSRU	-	Floating Storage and Re-gasification Unit
GDP	-	Gross Domestic Product
GE	-	General Electric
GoB	-	Government of Bangladesh
GPS	-	Global Positioning System

GRC	-	Grievance Redress Committee
GRM	-	Grievance Redress Mechanism
GSB	-	Geological Survey of Bangladesh
GTCL	-	Gas Transportation Company Limited
GTG	-	Gas Turbine Generator
HFO	-	Heavy Fuel Oil
HFL	-	High Flood Level
HFT	-	Himalayan Frontal Thrust
HRSG	-	Heat Recovery Steam Generation
IBAT	-	Integrated Biodiversity Assessment Tool
IEE	-	Initial Environmental Examination
IFC	-	International Finance Corporation
IP	-	Intermediate Pressure
IPD	-	Infrastructure Planning & Design
ISO	-	Indian Standard Organisation
IUCN	-	International Union for Conservation of Nature
IPP	-	Independent Power Producers
LC	-	Least Concern
LILO	-	Loop In Loop Out
LNG	-	Liquefied Natural Gas
LNGT	-	Liquefied Natural Gas Terminal
LP	-	Two-flow low pressure
MBT	-	Main Boundary Thrust
MCT	-	Main Central Thrust
MoEF	-	Ministry of Environment and Forest
MPN	-	Most Probable Number
MSDS	-	Material Safety Data Sheet
MSL	-	Mean Sea Level
MW	-	Megawatt
NABET	-	National Accrediation Board for Education & Training
NCBI	-	National Center for Biotechnology Information
NEAMP	-	National Environmental Management Action Plan
NG	-	Natural Gas
NGO	-	Non-Government Organization

NO _x	-	Oxides of Nitrogen
NOC	-	No Objection Certificate
NT	-	Near Threatened
NTU	-	Nephelometric Turbidity Unit
ODS	-	Ozone Depleting Substances
O&M	-	Operation & Maintenance
OPML	-	Orion Power Meghnaghat Ltd
OSHA	-	Occupational Safety & Health Administration
PCB	-	Poly-Chlorinated Biphenyls
PCU	-	Passenger Car Unit
PGCB	-	Power Grid Company of Bangladesh
PLF	-	Plant Load Factor
PM ₁₀	-	Particulate Matter
PM _{2.5}	-	Particulate Matter
PMU	-	Project Implementation unit
PPP	-	Public-Private Partnership
PS	-	Performance Standard
PSMP	-	Power Sector Master Plan
PUC	-	Pollution Under Control
PVC	-	Polyvinyl Chloride
PWD	-	Public Works Datum
QCI	-	Quality Council of India
RBLPL	-	Reliance Bangladesh LNG and Power Limited
REA	-	Rapid Environmental Assessment
RID	-	Rail Infrastructure Division
RIL	-	Reliance Infrastructure Limited
RPL	-	Reliance Power Limited
SCHM	-	Suggestion and Complaint Handling Mechanism
SEI	-	Significant Environmental Impacts
SO ₂	-	Sulphur dioxide
SMPCL	-	Summit Meghnaghat Power Company Limited
SPL	-	Sound Pressure Level
SPM	-	Suspended Particulate Matter
SPS	-	Safeguard Policy Statement

STG	-	Steam Turbine Generator
TDS	-	Total Dissolve Solid
TOC	-	Total Organic Carbon
TOR	-	Terms of Reference
TPS	-	Thermal Power Station
TRB	-	Transportation, Roads & Bridges
TSS	-	Total Suspended Solid
UGI	-	Underground Installation
UNCED	-	United Nations Conference on the Environment and Development
UNEP	-	United Nations Environment Programme
USEPA	-	United States Environmental Protection Act
VSPL	-	Voyants Solutions Pvt. Ltd.
VU	-	Vulnerable Category
WB	-	World Bank
WHO	-	World Health Organization
WSD	-	Water Sanitation Department
WWTP	-	Waste Water Treatment Plant

NOTES

- (i) The fiscal year (FY) 2017-18 of the Government of Bangladesh ends on June 30, 2017.
- (ii) In this report, "\$" refers to US dollars.

This environmental and social impact assessment is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. Your attention is directed to the <u>"terms of use"</u> section on ADB's website.

In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area.

Table of Contents

0.	EXI	ECU	TIVE SUMMARY	1				
	0.1.	INT	RODUCTION	1				
	0.2.	THE	E PROJECT	2				
	0.3.	THE	E PROJECT PROPONENT	3				
	0.4.	CO	NSULTANT	3				
	0.5.	PO	LICY AND LEGAL CONSIDERATIONS	3				
	0.6.	ANA	ALYSIS OF ALTERNATIVES	4				
	0.7.	BAS	SELINE ENVIRONMENT	5				
	0.7.	.1	Ambient Air Quality	5				
	0.7.	.2	Noise	5				
	0.7.	.3	Water Environment	5				
	0.7.	.4	Ecology & Biodiversity	6				
	0.7.	.5	Climate	6				
	0.8.	IMP	ACT IDENTIFICATION OF THE PROPOSED PROJECT	6				
	0.9.	PR	EDICTION AND EVALUATION OF IMPACTS	7				
	Preconstruction Stage							
	Construction Stage							
	Ope	eratio	on Stage	8				
	0.10.	E	NVIRONMENTAL MANAGEMENT PLAN (EMP)	10				
	0.11.	N	IONITORING PLAN	11				
	0.1	1.1	Monitoring in Construction Phase	11				
	0.1	1.2	Monitoring in Operation Phase	13				
	0.12.	E	MERGENCY RESPONSE AND OCCUPATIONAL HEALTH & SAFETY	14				
	0.13.	S	TAKEHOLDER CONSULTATION AND DISCLOSURE	14				
	0.14.	G	RIEVANCE REDRESS MECHANISM	15				
	0.15.	С	ONCLUSION AND RECOMMENDATIONS	16				
1.	INT	ROD	DUCTION	18				
	1.1	LOO	CATION AND STUDY AREA	18				
	1.2	NE	ED FOR THE PROPOSED PROJECT	20				
	1.3	OB,	JECTIVES OF ESIA STUDY	22				

	1.4	STL	JDY METHODOLOGY	23
	1.4	.1	Baseline Environmental Data Collection	23
	1.4	2	Prediction of Impacts	. 24
	1.5	THE	E ESIA TEAM	. 24
2	DE	SCR	IPTION OF THE PROJECT	. 30
	2.1	SIT	E DESCRIPTION	30
	2.1	.1	Location	. 30
	2.1	2	Plant Layout	. 33
	2.1	.3	Power Generation Technology	. 36
	2.1	.4	POWER EVACUATION	41
	2.2	INF	RASTRUCTURE REQUIREMENTS	43
	2.2	.1	Land	43
	2.2	2	Fuel	44
	2.2	.3	Water	47
	2.2	.4	Outside Plant Boundary Facility: Jetty	50
	2.3	POI	LLUTION CONTROL	50
	2.3	.1	Air Emission	. 50
	2.3	2	Noise Control	51
	2.3.3 2.3.4		Effluent Characteristics, Treatment and Discharge	51
			Water treatment Plant	53
	2.3	.5	Cooling Water System Detail	55
	2.4	PR	DJECT SCHEDULE	55
	2.4	.1	Pre-Construction Period	55
	2.4	2	Construction Period	55
	2.4	.3	Operation Period	55
3	РО	LICY	, LEGAL AND ADMINISTRATIVE FRAMEWORK	58
	3.1	BAC	CKGROUND	. 58
	3.2	POI	LICIES	. 58
	3.2	.1	Industrial Policy 1991	58
	3.2	2	National Environmental Policy 1992	58
	3.2	3	National Environmental Management Action Plan (NEMAP), 1995	59
	3.3 NA		TIONAL LEGISLATION	. 60

	3.	3.1	Environment Conservation Act 1995	60
	3.3.2 2003)		Environment Conservation Rules, 1997 (Subsequent Amendments in 20 61)02 and
	3.4	APF	PLICABLE NATIONAL REGULATIONS	62
	3.5	INT	ERNATIONAL REGULATIONS	66
	3.	5.1	ADB Safeguard Policies	66
	3.6	PR	OJECT CATEGORISATION	70
	3.	6.1	ADB Categorization Criteria	70
	3.	6.2	Project Categorization	76
	3.7	AP	PLICABLE ENVIRONMENT STANDARDS	76
	3.	7.1	Ambient Air Quality Standards	76
	3.	7.2	Water Quality Standards	
	3.	7.3	Ambient Noise Standards	79
	3.	7.4	Labor Management Acts	80
	3.	7.5	Bangladesh Explosive Act, 1884	82
	3.8	OTI	HER LEGISLATIONS	83
	3.8.1 Corpora		Environmental and Social Guidelines of the International tionIFC/WB group	Finance
	3.9	EN	VIRONMENTAL CLEARANCE	85
	3.10	PO	WER SCENARIO AND MASTER PLAN IN BANGLADESH	85
	3.11	INS	TITUTIONAL STRUCTURE OF POWER SECTOR IN BANGLADESH	86
	3.12	CO	NCLUSION	87
4	D	ESCR	IPTION OF ENVIRONMENT AND SOCIAL BASELINE	88
	4.1	STU	JDY AREA, PERIOD AND METHODOLOGY	88
	4.	1.1	Climate	89
	4.	1.2	Micro-Meteorology	97
	4.2	PH	YSICAL ENVIRONMENT	98
	4.	2.1	Physiography	98
	4.2.2 4.2.3		Drainage	99
			Soil Type	101
	4.	2.4	Seismicity& Earthquake	101
	4.	2.5	Land use	105
	4.3	AM	BIENT AIR QUALITY	106

	4.3.1		Selection of the Station and Duration	107
	4.3.2		Description of the Stations	107
	4.3.3		Observations of Ambient Air Quality Data	107
	4.3.4		Regional Background Air Quality Data	112
4	.4	AME	BIENT NOISE LEVEL	115
	4.4.	1	Selection of the Noise Monitoring Stations	116
	4.4.	2	Parameters of Noise Monitoring Study	116
	4.4.	3	Description of the Noise Monitoring Stations	116
	4.4.	4	Observations on Ambient Noise Level	117
4	.5	TRA	AFFIC STUDY	119
4	.6	HYD	DROLOGY	122
4	.7	GRO	OUNDWATER HYDROLOGY	122
4	.8	WA	TER ENVIRONMENT	123
	4.8.	1	Surface Water Quality	123
	4.8.	2	Ground Water Quality	127
4	.9	SOI	L CHARACTERISTICS	129
	4.9.	1	Findings on Soil Quality	129
4	.10	BIO	LOGICAL RESOURCES	133
	4.10).1	Industrialization in the Study Area	133
	4.10).2	Methods of sample collection	135
	4.10).3	Observations	135
	4.10).4	Terrestrial Ecology – Flora	136
F	igure	4.3 ⁻	1 : Location for Sampling of Ecological Survey	137
Poi	nt A:	Lat	23°36'24.58"N Long 90°35'29.51"E	137
	4.10).5	Terrestrial Ecology - Fauna	151
	4.10).6	I-Bat Findings	161
4	.11	SOC	CIO-ECONOMIC PROFILE OF THE SITE	162
	4.11	1.1	Population and Demography	162
	4.11	.2	Population of the Project Sonargaon Upazila	164
	4.11	.3	Religion	165
	4.11	.4	Housing Pattern and Ownership	165
	4.11	.5	Health and medical facilities	165

4.11	1.6 Source of Drinking Water and Sanitation	165
4.11	1.7 Literacy	166
4.11	1.8 Household having accessibility to electricity, Sonargaon	167
4.11	1.9 Occupational Pattern	167
4.11	1.10 Agriculture	168
4.11	1.11 Fishing	168
4.11	1.12 Cow Grazing	169
4.12	ARCHEOLOGICAL, CULTURAL HERITAGE AND RELIGIOUS SITE	169
5 IDEI	INTIFICATION OF POTENTIAL IMPACTS	171
5.1	GENERAL CONSIDERATIONS	171
5.2	SCOPING OF IMPACTS	171
6 ANT	TICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES	177
6.1	GENERAL CONSIDERATIONS	177
6.2	IMPACT APPRAISAL CRITERIA	177
6.3	IMPACT DUE TO PROJECT LOCATION	179
6.3.	.1 Land Acquisition	179
6.4	IMPACTS DURING CONSTRUCTION PHASE	180
6.4.	.1 Site Development activities	180
6.4.2	.2 Labor Camp	181
6.4.3	.3 Impact on Ambient Air Quality	182
6.4.4	.4 Impact on Noise Level	184
6.4.	.5 Impact on Water Quality and Resources	186
6.4.6	.6 Impact due to Waste Handling	186
6.4.	.7 Impact on Ecological Aspects	187
6.4.8	.8 Social acceptability of Construction workers to the host communities	188
6.4.9	.9 Impact due to Traffic and Transport	189
6.4.	.10 Health and Safety Hazards	190
6.4.	.11 Impact due to Construction of Associated Facilities	191
6.5	OPERATION PHASE IMPACT	192
6.5.	.1 Impact on Air Quality	192
6.5.2	.2 Dispersion Model results (Cumulative)	202
6.5.3	.3 Impact on Climate Change	204

		6.5.4		Mitigation Measures	205
		6.5.	5	Impact due to Liquid Discharge	205
		6.5.	6	Impact due to Solid & Municipal Waste	208
		6.5.	7	Impact of Hazardous Waste	209
		6.5.8		Noise and Vibration Impacts	210
		6.5.	9	Occupational Health	213
		6.5.	10	Impact on Ecology	214
		6.5.	11	Impact on Fishing Activities	214
		6.5.	12	Socio-economic Impacts	215
	6	.6	IMP	ACT DURING DECOMISSIONING	216
		6.6.	1	Impacts	216
		6.6.	2	Mitigation Measures	216
		6.6.	3	Impact Significance	216
7		EN\	/IRO	NMENTAL AND SOCIAL MANAGEMENT PLAN (ESMP)	224
	7.	.1	BAC	CKGROUND	224
	7.	.2	SYS	TEM OF ENVIRONMENTAL AND SOCIAL MANAGEMENT	225
	7.3 RC		ROL	ES AND RESPONSIBILITY	225
		7.3.	1	EMP Implementation during Construction Phase	225
	7.3.2		2	EMP Implementation during Operation Phase	226
		7.3.	3	Construction stage	227
		7.3.	4	Operation phase	228
	7.	.4	MIT	IGATION/BENEFIT ENHANCEMENT MEASURES	229
	7.	.5	MOI	NITORING PLANS AND SCHEDULES	245
		7.5.	1	During Construction Phase	245
		7.5.	2	Operation Phase	246
	7.	.6	MOI	NITORING PARAMETERS	248
		7.6.	1	Construction Period	248
		7.6.	2	Operational Period	249
	7.6.3		3	Monitoring cost	252
	7.	.7	COF	RPORATE SOCIAL RESPONSIBILITY (CSR)	253
	7.	.8	GRE	EEN BELT DEVELOPMENT	254
		7.8.	1	Resources and Implementation	255

	7.8	.2	In house capabilities of RBLPL for Environmental Monitoring	255
	7.8	.3	Decommissioning and Dismantling	256
	7.9	ESI	MP MONITORING AND REVIEW	257
	7.9	.1	Review of the ESMP	257
8	EN	IERG	ENCY RESPONSE AND DISASTER MANAGEMENT PLAN	259
	8.1	INT	RODUCTION	259
	8.2	ON	SITE EMERGENCY	259
	8.3	OFI	F SITE EMERGENCY	259
	8.4	EM	ERGENCY SITUATIONS AT 750 MW CCPP PROJECT SITE	260
	8.5	RIS 262	K ASSESSMENT OF POSSIBLE EMERGENCIES AND CONTROLS MA	TRIX
	8.6	PLA	ANT FACILITIES FOR EMERGENCY	270
	8.7	EM	ERGENCY CONTROL ORGANIZATION [ECO]	271
	8.7	'.1	Emergency Control Centre (ECC)	271
	8.7	.2	Emergency Siren	271
	8.7	.3	Emergency mitigation teams	271
	8.7	.4	Roles and Responsibilities	272
	8.8	TR/	AINING & MOCK DRILLS	276
	8.8	5.1	Training	276
	8.8	.2	Mock Drills	276
	8.8	.3	Review of Mock Drill	276
	8.9	EM	ERGENCY RESPONSE PROCEDURE - FIRE INCIDENT	277
	8.9).1	Emergency response procedural steps	277
	8.9	.2	Clean-up and/or restoration	277
	8.9	.3	Reporting	277
	8.10	OTI	HER EMERGENCIES	277
	8.11	EX	CAVATION CAVE-IN	278
	8.1	1.1	Explosions	278
	8.1	1.2	Facility Blackout - loss of electric power	278
	8.1	1.3	Fire, caused from other sources (with a less magnitude of severity)	278
	8.1	1.4	Typical extinguishers and their uses	279
	8.12	ME	DICAL CONDITIONS/ EMERGENCIES SERIOUS INJURIES	. 279

	8.1	2.1	General Rescue Procedures:	280
8.13 PA		PAI	NDEMICS/EPIDEMICS/ OUTBREAKS OF COMMUNICABLE DISEAS	SE 281
	8.1	3.1	Traffic accidents	281
	8.1	3.2	Natural calamities	281
8	8.14	AC	TIONS TO BE TAKEN	
	8.1	4.1	Recovery action	
8.15 DISASTER MANAGEMENT PLANNING FRAMEWORK DURING CALAMITIES		NATURAL 		
9 ANALYSIS OF ALTERNATIVES			284	
ę	9.1	SIT	E DESCRIPTION	
ę	9.2	SIT	E SUITABILITY	
	9.2	.1	Land	
	9.2	.2	Accessibility	285
	9.2	.3	Fuel	
	9.2	.4	Water	
	9.2	.5	Power Evacuation	285
	9.2	.6	Resettlement and Rehabilitation	286
ę	9.3	AL٦	FERNATIVE TECHNOLOGY OPTIONS	286
	9.3	.1	Alternative Technology Option with respect to configuration	286
9.3.2 Single v/s Combined Cycle		286		
ę	9.4	СО	NCLUSION	287
10	INF	ORI	MATION DISCLOSURE, CONSULTATION, AND PARTICIPATION	288
	10.1	STA	AKEHOLDERS CONSULTATION	288
	10.2	IDE	NTIFICATION OF THE STAKEHOLDERS	288
	10.3	OB	JECTIVES OF STAKEHOLDERS CONSULTATION	289
	10.4	СО	NSULTATION PROCESS	290
	10.5	PR	OJECT DISCLOSURE: AWARENESS ABOUT THE PROJECT	290
	10.6	ST	AKEHOLDER CONSULTATION TECHNIQUE	291
	10.7	ST	AKEHOLDERS CONSULTED	291
	10.	7.1	Informal Stakeholder Consultation	291
	10.	7.2	Formal Stakeholder	
	10.	7.3	Alternate Grazing Ground	

10.8 STAKEHOLDER CONCERNS AND RECOMMENDATIONS	300
10.8.1 Community Concerns	300
10.8.2 Resettlement/ Relocation	300
10.8.3 Local Employment	300
10.8.4 Compensation	300
10.9 COMMUNITY RECOMMENDATIONS	301
10.10 LOCAL GOVERNMENT & OTHER REPRESENTATIVES	301
10.11 FORMAL STAKEHOLDER CONSULTATION	301
10.11.1 Public Notice	301
Photographs of the Public consultation	302
10.12 FUTURE STAKEHOLDER ENGAGEMENT PLAN	302
11 GRIEVANCE REDRESSAL MECHANISM	303
11.1 GRIEVANCE REDRESSAL MECHANISM FOR EMPLOYEES CONTRACTUAL WORKERS	AND 306
11.2 SUGGESTIONS AND COMPLAINT HANDLING MECHANISM:	308
11.3 FUNCTIONAL PREMISES OF GRC FOR GRIEVANCE REDRESSAL:	
	308
11.4 MONITORING AND EVALUATION:	308 308
11.4 MONITORING AND EVALUATION:11.5 DISCLOSURE OF THE GRIEVANCE REDRESSAL MECHANISM:	308 308 309
 11.4 MONITORING AND EVALUATION: 11.5 DISCLOSURE OF THE GRIEVANCE REDRESSAL MECHANISM: 11.6 BUDGETING 	308 308 309 309
 11.4 MONITORING AND EVALUATION: 11.5 DISCLOSURE OF THE GRIEVANCE REDRESSAL MECHANISM: 11.6 BUDGETING	308 308 309 309 310
 11.4 MONITORING AND EVALUATION: 11.5 DISCLOSURE OF THE GRIEVANCE REDRESSAL MECHANISM: 11.6 BUDGETING 12 CONCLUSION 12.1 RECOMMENDATION FOR THE PROJECT 	308 308 309 309 310 312
 11.4 MONITORING AND EVALUATION: 11.5 DISCLOSURE OF THE GRIEVANCE REDRESSAL MECHANISM: 11.6 BUDGETING 12 CONCLUSION 12.1 RECOMMENDATION FOR THE PROJECT 740. Continuation of the baseline air monitoring study 	308 308 309 309 310 312 312
 11.4 MONITORING AND EVALUATION: 11.5 DISCLOSURE OF THE GRIEVANCE REDRESSAL MECHANISM: 11.6 BUDGETING 12 CONCLUSION 12.1 RECOMMENDATION FOR THE PROJECT 740. Continuation of the baseline air monitoring study 741. Continuation of the Stakeholder Consultation: 	308 308 309 309 310 312 312 312

List of Tables

Table 1-1: Salient features of Project	. 19
Table 2-1: Environmental Setting of the site	. 30
Table 2-2: Existing Industries near the Project Site	. 35
Table 2-3: Gas Turbine Main Parameters	. 38
Table 2-4: Gas Turbine Exhaust Gas Composition	. 38
Table 2-5: Water Requirement Calculation	. 47
Table 2-6: Available dependable flow in the Meghna River	. 48
.Table 2-7: Stack and Emissions	. 51
Table 2-8: Noise Generating Sources and Abatement Measures	. 51
Table 2-9: Meghna river water quality for design raw water analysis	. 53
Table 3-1: National Regulation Applicable in Thermal Project	. 62
Table 3-2: Application of ADB Safeguard Policies to the Project	. 67
Table 3-3: comparison between ADB and DOE requirements	. 71
Table 3-4: National Ambient Air Quality Standards	. 77
Table 3-5: WHO Air Quality Guidelines	. 77
Table 3-6: Standards for Gaseous Emission from Industries	. 78
Table 3-7: Primary Water Quality Criteria for Designated-Best-Use-Classes	. 78
Table 3-8: Standards for Drinking Water	. 79
Table 3-9: Treated Sewage Discharge Guideline IFC	. 79
Table 3-10: Ambient Noise Standards	. 79
Table 3-11: Ambient Noise Standards by IFC	. 80
Table 3-12: Standards for Occupational Noise Exposure	. 80
Table 4-1: Attributes of Environment Data	. 88
Table 4-2: Monthly Average Rainfall in the project area (2001- 2015)	. 91
Table 4-3: Average Monthly Relative Humidity of the Project Area (2006-2015)	. 92
Table 4-4: Monthly Prevailing Wind Speed and Direction in Knots of Dhaka (2006-2015)	. 93
Table 4-5: Monthly Average Minimum Temperature	. 96
Table 4-6: Monthly Average Maximum Temperature	. 96
Table 4-7: Summary of Micrometeorological Condition at site	. 97
Table 4-8: Description of the Air Monitoring Stations	107
Table 4-9: Summary of the Ambient Air Quality in the study area	109

Table 4-10: Noise Monitoring Stations 116
Table 4-11: Noise Level in Study Area
Table 4-12: Passengers Car Unit Factors in Bangladesh 120
Table 4-13: Traffic Volume Data (Road Traffic, Location: Mograpara Bus Stop) 120
Table 4-14: Traffic Volume Data (River Traffic, Location: Char Balaki)
Table 4-15: Flow at the Meghna River (m³/s) 122
Table 4-16: Water Sampling Points
Table 4-17: Meghna River water quality
Table 4-18: Ground Water Sampling Locations
Table 4-19: Ground Water Quality 127
Table 4-20: Soil Sampling Points 129
Table 4-21: Soil Quality Parameters and Their Values 129
Table 4-22: Plant Species of the Proposed LNG-based Power Plant Area
Table 4-23: Aquatic Species in the Proposed Study Area
Table 4-24: Redlist categories and existing DAFOR status of the recorded vegetation in theproposed LNG-based power plant area area144
Table 4-25: Odonates recorded during the survey 152
Table 4-26: List of fish fauna recorded during the survey as mentioned by the local people and fishermen 153
Table 4-27: List of dragonfly species recorded from the study area
Table 4-28: Damselfly species recorded from the study area 154
Table 4-29: Interspecific K2P sequence divergence at the COI barcode region among the Odonates
Table 4-30: List of butterflies of the survey area
Table 4-31: List of Molluscs found in survey areas 158
Table 4-32: List of small fishes captured during survey period in the power plant area 158
Table 4-33: List of fish fauna recorded during the survey as mentioned by the local people and fishermen 159
Table 4-34: List of zooplanktons recorded from the water samples of the study area 160
Table 4-35: List of phytoplanktons recorded from the water samples of the river Meghna near the proposed
Table 4-36: Population and demographic characteristics surrounding the project area (Zila,Upazilas and Paurashavas)163

Table 4-37: Population and demographic characteristics surrounding the project area unions of Sonargaon 164
Table 4-38: Type of Religion of the sample households Sonargaon Upazila Adjacent to Project Area 165
Table 4-39: Types of House by structure
Table 4-40: Access to Drinking Water
Table 4-41: Access of sanitary Latrine in percentage 166
Table 4-42: Rate of literacy for male and Female
Table 4-43: Electricity Facility
Table 4-44: Occupational Patterns of the Households of Sonargaon Upazilla
Table 5-1: Impact Identification Checklist for Proposed Power Project
Table 6-1: Impact Appraisal Criteria
Table 6-2: Impact Significance Criteria
Table 6-3: Impact Significance on Land Resource 180
Table 6-4: Impact Significance on Land Use 181
Table 6-5: Impact Significance for Labor camp 182
Table 6-6: Impact Significance on Air Quality
Table 6-7: Impact Significance on Noise Level
Table 6-8: Impact Significance for Water Resources
Table 6-9: Impact Significance due to Solid Waste Disposal
Table 6-10: Impact Significance on Ecological Aspects
Table 6-11: Impact Significance on Ecological Aspects
Table 6-12: Impact Significance due to Traffic and Transport
Table 6-13: Impact Significance on Health and Safety Aspect
Table 6-14: Impact Significance of Jetty
Table 6-15: The exhaust specifications and stack parameters
Table 6-16: Comparison Ambient air quality guideline for NOx 195
Table 6-17: The exhaust specifications of "Meghnaghat Power Company Ltd." 201
Table 6-18: The exhaust specifications of Summit Meghnaghat Power Ltd 201
Table 6-19:Comparison Ambient air quality guideline for NO2
Table 6-20: Impact Significance on Air Quality 204
Table 6-21: Comparison of IFC CO_2 Emission rate and the specification 204
Table 6-22: Impact Significance on Climate Change 205

Table 10-1: Identified Key stakeholders 289				
Table 8-1: Supportive resources exclusively maintained for emergency response activities 270				
Table 7-15: Cost estimate for setting Environmental Laboratory 255				
Table 7-14: Suitable plant Species for "Green Belt Development"				
Table 7-13: Cost estimate for training during operational phase				
Table 7-12 Cost estimate for environmental monitoring during operational phase				
Table 7-11: Cost estimate for environmental monitoring and environmental management during construction				
Table 7-10: Standards to be followed during monitoring according to DOE and IFC/WB: 250				
Table 7-9: Monitoring plan during operational phase of the project 249				
Table 7-8: Monitoring plan during construction phase of the project (Analytical)				
Table 7-7: Monitoring plan during construction phase of the project				
Table 7-6: Potentially significant environmental impact during operation phase and mitigation measures 247				
Table 7-5: Potentially Significant Environmental Impact during Construction Phase and Mitigation Measures 245				
Table 7-4: Identification of Impacts, Mitigation measures, Monitoring and Management during Operational period				
Table 7-3: Identification of Impacts, Mitigation measures, Monitoring and Management during Construction period 230				
Table 7-2: Roles and Responsibilities of EMP Implementation During Operation Stage 227				
Table 7-1: Roles and Responsibilities of EMP Implementation during Construction Stage 226				
Table 6-32- Summary of Environmental and Social Impact of the Operation Phase				
Table 6-31: - Summary of Environmental and Social Impact of the Construction Phase 217				
Table 6-30: Impact Significance for Decommissioning 216				
Table 6-29: Impact Significance on Ecological Aspects				
Table 6-28: Impact Significance on Ecology				
Table 6-27: Impact Significance on Occupational Health 213				
Table 6-26: Impact Significance on Noise quality 213				
Table 6-25: Impact Significance on Hazardous Waste 210				
Table 6-24: Impact Significance on Solid and Municipal Waste				
Table 0-23. Impact Significance of Water Quality				

List of Figures

Figure 1.1: Project location map	. 20
Figure 1.2: Peak power demand forecast by 2030	. 21
Figure 1.3: Power generation target by 2030	. 22
Figure 2.1: Location of the proposed power Plant	. 32
Figure 2.2: Satellite imagery of the project location	. 33
Figure 2.3: Existing industries near the project site	. 34
Figure 2.4: Plot Plan of the Proposed Plant	. 39
Figure 2.5 : Transmission Line Network from GIS to LILO Point	. 43
Figure 2.6: Alignment Details of the Transmission Line	. 46
Figure 2.7: Proposed Water Balance Diagram	. 49
Figure 2.8: Schematic Diagram of ETP	. 56
Figure 2.9: Project Schedule	. 57
Figure 3.1: Institutional structure of Power Sector in Bangladesh	. 87
Figure 4.1: Area of Influence	. 90
Figure 4.2: Distribution of Average Monthly Rainfall during 2001- 2015	. 91
Figure 4.3: Distribution of Average Monthly Relative Humidity during 2006- 2015	. 92
Figure 4.4: Wind rose Representation for the Period 1981-2010	. 95
Figure 4.5: Distribution of Average Monthly Maximum and Minimum Temperature dur 2007-2015	ring . 97
Figure 4.6: Wind Rose (September to December, 2016) near the Project Site of Relia Meghnaghat 750 MW CCPP	nce . 98
Figure 4.7: Physiography of Bangladesh	100
Figure 4.8: Drainage map of the Region	101
Figure 4.9: Regional tectonic setup of Bangladesh with respect to plate configuration	102
Figure 4.10: Digital Elevation Model (DEM) of Bangladesh and surroundings show geological faults – potential sources of major earthquakes in Bangladesh	ving 103
Figure 4.11: Seismicity Map of Bangladesh	104
Figure 4.12: Seismic Activity of Bangladesh	105
Figure 4.13: Land use of Project Site	106
Figure 4.14: Air Monitoring Locations near the Project	108
Figure 4.15 : PM _{2.5} Concentration at Different monitoring locations	110
Figure 4.16: PM ₁₀ Concentration at Different monitoring locations	111

Figure 4.17: SO ₂ Concentration at Different monitoring locations
Figure 4.18: NO ₂ Concentration at Different monitoring locations
Figure 4.19: CO Concentration at Different monitoring locations
Figure 4.20: Seasonal distribution of PM ₁₀ concentration during 2008-2011 113
Figure 4.21: Seasonal distribution of PM _{2.5} concentration during 2008-2011
Figure 4.22: Seasonal distribution of NO ₂ concentration during 2008-2011
Figure 4.23: Seasonal distribution of SO ₂ concentration during 2008-2011 114
Figure 4.24: Seasonal distribution of CO concentration during 2008-2011
Figure 4.25: Noise Monitoring Stations
Figure 4.26: Graphical representation of Leq Day119
Figure 4.27: Graphical representation of Leq Night
Figure 4.28: Water Sampling Locations 124
Figure 4.29: Soil Sampling Locations
Figure 4.30: Conceptual framework for ecosystem assessment
Figure 4.31(A) : Correlation of IUCN Red List categories based on the extent of extinction risk
Figure 4.32: Species composition of the the proposed LNG-based power plant area 149
Figure 4.33: Cotyledonary status of the recorded plant species in the proposed LNG-based power plant area
Figure 4.34: Habit categories of the recorded plant species of the present power plant sites.
Figure 4.35: Habitat categories of the recorded plant species of the present power plant sites
Figure 4.36: Abundance of zooplankton at different sampling locartions
Figure 4.37: Religiously, Archaeologically and Historically Important Places around the Project Site
Figure 6.1: Noise Intensity in respect to Distance from Noise Source
Figure 6.2: Emission contour map showing the NOx concentration (1 hour average up to 1000m)
Figure 6.3: Emission contour map showing the NOx concentration (annual average up to 1000m)
Figure 6.4: Emission contour map showing the NO _x concentration (1 hour average) combined source
Figure 6.5: Emission contour map showing the NO _x concentration (annual average) combined source

Figure 6.6: Septic tank details
Figure 6.7: Plot of output noise power level in dB(A)vs Radius in meter
Figure 7.1: Organizational Structure during Construction Phase
Figure 7.2: Organizational Structure during Operation Phase
Figure 8.1: Emergency Control Organization Chart
Figure 8.2: Disaster Management Planning Framework
Figure 10.1: Consultation with Local Government Representative (Chairman and Secretary of Pirojpur Union Parishad)
Figure 10.2: Consultation with Local Community
Figure 10.3: Consultation with NGOs
Figure 10.4: Consultation with Fishermen (FGD) 294
Figure 10.5: Types of Fishes Caught in the Area 295
Figure 10.6: Areas of Fish availability in the Monsoon
Figure 10.7: Consultation with Local Cow Owners (Mongoler Gaon)
Figure 10.8: Consultation with Local Cow Owners (Mongoler Gaon)
Figure 10.9: Alternative Grazing Ground after the Completion of the Project
Figure 11.1: Flowchart of Complaints/Grievance Procedure
Figure 11.2: Grievance Redressal Mechanism for Employees and Contractual Workers 307

List of Annexures

Annexure No.	Description
1.1	Land Allotment letter by BPDB
3.1	Environment Conservation Rules
3.2	Cyclone Prone Area Map
4.1	Ambient Air Quality
4.2	Ecology Flora
4.3	Ecology Fauna
4.4	I-BAT Findings
6.1	EHS Norms
7.1	SOP of Hazardous waste Management Plan
10.1	Format of FGD and Evidence of Participation
10.2	Public Consultation Process
11.0	EIA Approval Letter from DoE, Bangladesh

0. EXECUTIVE SUMMARY

0.1. INTRODUCTION

- Reliance Bangladesh LNG and Power Limited (herein after referred as 'RBLPL,' or 'proponent') proposes for development of a 750 Megawatt (MW) gas based combined cycle power plant (CCPP) projectat Village Meghnaghat, sub-district Sonargaon, District Narayanganj, Bangladesh. Bangladesh is a one of the fastest growing economy in south Asia. As per the estimates only around 72% of the total population of Bangladesh had access to electricity but reliable and quality supply of power is still a faraway. The demand for electricity is steadily increasing in Bangladesh as per Ministry of Power and Mineral Resources.
- 2. To meet the existing power shortage and the demand-growth in future years the Government of Bangladesh (GoB) is planning for power generation target of 39,000 MW by 2030. The Bangladesh government has taken several steps to initiate the augmentation of electricity gap by placing Power Sector Master Plan (PSMP) 2010. In order to achieve the said target, the Government of Bangladesh (GoB) planning to develop power sector projects through public private partnership. Therefore, the development of the proposed 750MW Combined Cycle Power Project at Meghnaghat will aid in securing both current as well as future electricity demand of Bangladesh. The present project is in line with Ministry of Power, Energy and Mineral Resources provided an in-principle approval to the project. The proposed project also has obtained the site clearance vide letter Memo No. 22.07.67700.140.72.064. 16-18 dated 15. 01. 2017
- 3. In Bangladesh, natural gas is the most important indigenous source of energy that accounts for 73% of the commercial energy of the country. To provide access to affordable and reliable electricity to all by 2021 as well as to comply with the policy of Government of Bangladesh (GoB) RBLPL intends to construct a new 750 MWCCPP in the Government allotted land. The proposed area of the plant is located at Meghnaghat inside the vicinity of BPDB's allocated 35 acres government land.
- 4. The Reliance Meghnaghat 750 MW CCPPproject will be implemented by RBLPL and financed by Asian Development Bank (ADB)and other lenders. The objective of this study is to provide an examination and assessment of the major environmental and social impacts arising due to the proposed project activity during its construction and operation phase. The study will also focus on suggesting the possible mitigation measures for any adverse impacts. A management and monitoring plan to evaluate the effectiveness of the mitigation measures will be suggest as a part of Environment Management Plan.
- 5. This Environment and Social Impact Assessment(ESIA) report is prepared in accordance with the ADB's safeguard policy statement SPS 2009 and IFC Performance Standards as well as EIA guideline in Bangladesh which are set out in "Rules and Regulations under the 1995 Environmental Protection Acts".

0.2. THE PROJECT

ReliAnce

6. RBLPL, proposes for development of a 750 Megawatt (MW) gas based combined cycle power plant (CCPP) project at Village Meghnaghat, sub district Sonargaon, District Narayanganj, Bangladesh. Fuel requirement of Liquidified Natural Gas (LNG) for the project shall be supplied through a proposed 24 inches Gas Pipeline from Kutumbpur to Meghnaghat being set up by GTCL (Gas Transportation Company Limited). Electricity generated from the power plant will be evacuatedat Power Grid Company of Bangladesh(PGCB) 400 kV transmission network available at Meghnaghat. The salient feature of the project is highlighted below:

Name of the Project	Reliance Meghnaghat 750 MW Combined Cycle Power Plant		
Location of the Project			
Village	Meghnaghat		
Sub district	Sonargaon		
District	Narayanganj		
Latitude and Longitude	23° 36'29" N & 90° 35' 39" E		
Project Proponent	Reliance Bangladesh LNG & Power Ltd.		
General Climatic Conditions			
Monthly Mean Maximum Temperature	37.0° C		
Monthly Mean Minimum Temperature	5.3° C		
Relative Humidity	52-84%		
Annual Rainfall	2347 mm		
Accessibility			
Road Connectivity	National Road No1(Dhaka-Chittagong Highway) 2 km		
Airport	Dhaka Airport 45 km		
Historical/Important Places within 5 km study area			
Archaeological Site	None		
Historically Important Site	Domed Mosque by Jalaluddin Fatheh Shah in Panam Nagar, Tomb of Sultan, Goaldi Mosque		
Sensitive Places	None		
Sanctuaries/National Parks	None		
Nearest Industries	Summit Meghnaghat Power Company Ltd,		
	Pendekar Meghnaghat Power Plant		
	Unique Power Plant Ltd.		
Interstate Boundary	None		

Reliance

Seismic zone	Zone II
Type of Project	Combined Cycle power plant
Total Area of Land	35 acres
Fuel Requirement	RLNG/Natural Gas: 130mmscfd @ 100% load
Water Requirement & Source of Water	1076 m ³ /h; Source: Meghna River
Quantity of Discharge Water	206 m ³ /hr

7. The project will comprise of "Closed Loop Cooling" system for steam condensation which will decrease the amount of water discharge significantly.

0.3. THE PROJECT PROPONENT

- 8. RBLPL is a subsidiary of Reliance Power Limited (RIL). RIL is a part of the Reliance Group, one of India's largest business houses in India. The group operates across multiple sectors, including telecommunications, financial services, media and entertainment, infrastructure and energy. The energy sector companies include Reliance Infrastructure Ltd and Reliance Power Ltd.
- 9. Reliance Group ranks among India's top three private sector business houses. Reliance Group has assets worth more than US\$ 44.3 billion and net worth more than US\$ 15.2 billion. The Reliance Group has a business presence that is spread over 4,500 towns and 300,000 villages in India, and 5 continents across the world. The interests of the Reliance Group span communications, financial services, generation, transmission and distribution of power, infrastructure and entertainment.

0.4. CONSULTANT

10. Adroit Environment Consultants Ltd. (AECL) has prepared this report under the guidance and supervision of Dr. Nasir Uddin Khan. An interdisciplinary team of experts were involved to execute this Impact Assessment. Subsequently, the ESIA report has been re written by M/s Voyants Solutions Pvt. Ltd.; Gurgaon, India, in-line with ADB SPS requirement as well as to address the observations given by ADB to fulfil the ADB SPS requirement including the local applicable environmental laws.

0.5. POLICY AND LEGAL CONSIDERATIONS

- 11. This ESIA report has been prepared following the methodology prescribed in the EIA guidelines for industries of DOE, ECA95 and ECR97 that are the main legislative documents relating to environment protection in Bangladesh.
- 12. The environmental classifications for industrial projects in Bangladesh are based on "inclusion lists" given in the ECR97 with "RED" being the highest category. Power Plant is listed in the "Red Category" in ECR97 (i.e., serial no.6 in the ECR97 Red list in Schedule-1.).

International Safeguard Requirements - ADB Policy

- 13. ADB requires the consideration of environmental issues in all aspects of ADB's operations, and the requirements for environmental assessment are described in ADB SPS, 2009. This states that ADB requires environmental assessment of all project loans, program loans, sector loans, sector development program loans, loans involving financial intermediaries, and private sector loans.
- 14. **Screening and categorization.** The nature of the environmental assessment required for a project depends on the significance of its environmental impacts, which are related to the type and location of the project; the sensitivity, scale, nature, and magnitude of its potential impacts; and the availability of cost-effective mitigation measures. Projects are screened for their expected environmental impacts, and are assigned to one of the following four categories:
- (i) **Category A.** Projects could have significant adverse environmental impacts. An EIA is required to address significant impacts.
- (ii) Category B. Projects could have some adverse environmental impacts, but of lesser degree or significance than those in category A. An IEE is required to determine whether significant environmental impacts warranting an EIA are likely. If an EIA is not needed, the IEE is regarded as the final environmental assessment report.
- (iii) **Category C.** Projects are unlikely to have adverse environmental impacts. No EIA or IEE is required, although environmental implications are reviewed.
- (iv) Category FI. Projects involve a credit line through a financial intermediary or an equity investment in a financial intermediary. The financial intermediary must apply an environmental management system, unless all projects will result in insignificant impacts.
- 15. Environmental Management Plan: An EMP, which addresses the potential impacts and risks identified by the environmental assessment, shall be prepared. The level of detail and complexity of the EMP and the priority of the identified measures and actions will be commensurate with the project's impact and risks.
- 16. According to ADB classification, the project falls under Category "A"fromEnvironmental aspect.
- 17. According to ADB classification the project falls under category "C"form the Social aspects
- 18. However, this being a combined cycle power plant, According to ADB classification, the project falls under Category "A".

0.6. ANALYSIS OF ALTERNATIVES

19. After understanding the resource limitation of Bangladesh, it is evident that the best possible technology for power generation is combined cycle technology. So, no other power generation technology is recommended.

- 20. After the analysis of air quality modeling, it is evident that the air quality of the project site is satisfactory and the air quality parameters are all within limit. Better air environment is not easily found in an industrial area like Narayanganj district.
- 21. As the project site is far from locality and in a power hub, the power plant will not affect the nearby people. Also, the power plant technology will contribute very little NO_x to the existing ambient air and very little CO_2 will be contributed overall.
- 22. The power plant will use the first ever closed loop cooling system in Bangladesh.
- 23. The proposed power plant site is an empty government acquired land and no further land acquisition was required. As there is no relocation needed, no alternative is required for the proposed project site.
- 24. After analysis of various possible alternatives, this ESIA finds the plant's environmental impacts at the selected site are acceptable if the management procedures delineated are properly implemented. Therefore, the site has been considered suitable for the plant.

0.7. BASELINE ENVIRONMENT

25. Baseline environment is concerned with existing physical, chemical and biological conditions of the area where the plant is going to be set up. The surface water, ground water, ambient air quality and noise level have been analyzed to evaluate the primary baseline of the area. The data from the monthly monitoring data of proposed Reliance Meghnaghat 750 MW CCPP have also been used to evaluate the monthly concentrations of PM_{2.5} and PM₁₀ in the project area.

0.7.1 Ambient Air Quality

26. The data from the DOE CAMS (continuous air quality monitoring stations) is not available near the project area. So, to establish a realistic baseline air quality, AECL has conducted 24 hours air sampling at 6 locations twice a week at each location12 weeks. The baseline levels for criteria pollutants i.e., PM_{2.5}, PM₁₀,CO, NO₂ and SO₂ are compliant with DoE and Asian Development bank/IFC standard.Gaseous pollutants were within the national and international limits whereas particulate matter though observed to be complying with ECR, 2005. The pollutant levels (24 hourly averages) at these sampling stations reflect that the regional background, i.e. PM10 is 72.8- 125 μg/m³ and PM_{2.5} ranged between 33.3 and 47.5 μg/m³. The concentrations of SO₂ are in the range of 7.1-8.8 μg/m₃ and NO_x is in the range of 6.8- 9.4 μg/m₃ respectively during the study period.

0.7.2 Noise

27. The noise levels during daytime were found in the range of 48.1 to 71.2 dB(A) and during night time L_{eq} value was between 50.4 and 68.1 dB(A). In general noise level was found within the prescribed standards in absence of any major noise source. Since there is no habitat within the 1 km radius of the proposed project, so, the noise emission from the project or anywhere nearby would not create any harm to the neighboring community.

0.7.3 Water Environment

28. River Meghna which is adjacent to the site is the main surface water body. The quality of the river water was collected and analysed at three locations around the project and the

existing water quality of the Meghna River near the project area found to comply when compared with the standards. According to Bangladesh Water Development Board, the ground water level of Sonargaon Upazila is about 7.0 m. Ground water is the source of water for domestic use in this area. Water from underground source is assumed to be available as most of the period of the year the area remains under water. The ground water from the threelocations was collected and analysed form the buffer zone around the site. No parameter was found to be above the national and international safe limit.

0.7.4 Ecology & Biodiversity

29. Ecological survey at the study area recorded 192 floral species of which one vulnerable and one is in near threatened category. The Number of fish species recorded during the survey was 28. There were 15 odanta and 11 species. There are no wildlife, natural forest and vegetation, endangered species of present in and around the plant site. Although the plant site is mostly barren, there are a number of different types of trees like jack fruit, mehogoni, krisnochura etc. along with few other shrubs around the plant site.

0.7.5 Climate

ReliAnce

30. The climate of the region is of tropical monsoon type. According to Bangladesh Meteorological Department, the maximum temperature of 2013 at project site is 37.0° C in June and July and minimum temperature is 5.3 °C in January. Mean relative humidity for an average year (2013) is recorded as 73% and on a monthly basis; it ranges from 54% in March to 81% in August. At normal times, the maximum and minimum wind speeds at Dhaka (no meteorological station in Narayanganj) are 3.2 Knots/hr and 2.1 Knots/hr respectively in 2013. The rainfall is mostly confined in the monsoon season i.e., between May to October. Maximum and minimum rainfall in May 2015 is 623 mm and 0 mm in November respectively.

0.8. IMPACT IDENTIFICATION OF THE PROPOSED PROJECT

- 31. The purpose of impact evaluation is to assign relative significance to the predicted impacts associated with the project, and thus determine the order in which impacts are to be avoided or mitigated. It should be noted that impact evaluation issomewhat subjective as the impacts can't always be quantified before the event.
- 32. The following are the main objectives of impact evaluation: (i) Distinguish between impacts that are of most concern (need to be avoided/ mitigated) and those that are considered to be less important; (ii) Organize measures of significance in a way that allows a comparison of alternative project proposals; and (iii) Facilitate the communication of results to the concerned public and to decision makers.
- 33. Key elements for assessing impact significance are: (i) Scientific and professional judgment; (ii) Disturbance/disruption of valued ecological systems; (iii) Degree of negative impact on social values and quality of life; and (iv) Public perception versus the scientific/professional opinion of the risks/benefits involved.
- 34. Identification of potential impacts due to the plant location, construction and operation of the plant has been done using a checklist. The checklist contains the environmental effects and

impacts designated to stimulate the analysis and to consider broadly the possible consequence of contemplated actions.

35. The significant impacts in different phases i.e., (i) due project location and design, (ii) construction phase and (ii) operation phase have been identified using the process. There are some impacts during construction of the power plant are air quality, surface water quality and drainage pattern are concern. The impacts due to operation are most important, which are: (i) Air Emissions especially NO₂ (ii) Noise, (iii) Water pollution, and (iv) Occupational health

0.9. PREDICTION AND EVALUATION OF IMPACTS

Preconstruction Stage

ReLIANCE

36. The power project would have minor impacts due to the location of the project such as Impact on land use pattern in terms of Loss of Homestead land, historical and Aesthetic Loss, Loss of sensible places, change in landscape, disruption of earth surface, etc. All the impacts have been discussed and mitigation measures have been recommended in the ESIA report.

Construction Stage

- 37. The power project would have significant environmental impacts during the construction period. The potential impact would be divided into two parts as 1) Impact due to construction associated facilities and 2) Impact during project construction.
- 1. Impact due to construction of associated facilities: These include the following:
 - Construction of Jetty
 - Construction of Labour Shed and Site Office
 - Construction of Access Road
 - Construction of Transmission Line
- 2. Impact during project construction: These include the following:
 - Impact on air quality
 - Impact on surface and ground water quality
 - Impact on noise quality
 - Impact on solid waste management
 - Impact due to sanitation and drinking water hazard
 - Social acceptability of migratory and foreign workers at site
 - Workers accident and Occupational safety
 - Traffic congestion
 - Hazardous waste management at site
- 38. Since the project would be implemented on the preoccupied and developed land of BPDB for the power project and situated at the designated power village of BPDB, resettlement will not be an issue in this case.Detailed environmental impacts andits mitigation measured

have been discussed in the ESIA report and proper management & monitoring plan have been suggested to control the above impacts. The EPC contractor and the project company – RBLPL will ensure the necessary implementation and monitoring of EMP to comply the national and ADB SPS /IFC/WB guideline during the construction period.

Operation Stage

ReLIANCE

39. As explained, the main potential environmental impacts, which may arise as a result of operation of the project have been summarized below.

a) **Atmospheric Emission and Air Quality:** As the proposed power plant will utilize Natural gas as fuel, the pollutants of potential concern will only be the Oxides of Nitrogen (NO_x) during the operation period of the project. The Heat Recovery Steam Generation (HRSG) system which produces steam by using the waste heat from the Gas turbine will reduce the exhaust heat temperature to 365° C. The ground concentration of NO_x emission has been determined by emission dispersion modeling (USEPA approved AERMOD 9.2.0 model). The air quality modeling has been done for individual emission from this particular power project as well as the cumulative emission from the all power projects in the area.

Bangladesh National Ambient air quality standard NO_x level set for annual average. As the primary data is not available throughout the year to measure at an annual basis, Continuous Air Monitoring Station secondary data available from Narayanganj CAMS station (Article 4.6) of DOE was used for analysis. The Narayanganj CAMS station (23.63N and 90.51E) is around 10km away from the project site and the concentration of Narayanganj is much higher than the project area considering the volume of industrial activity and emission level. Even considering the highest concentration of NO_x at Narayanganj CAMS, still the aggregated NO_x concentration (35.77 μ g/m³ and 36.47 μ g/m³) is within the limit of IFC/WB and Bangladesh standard. But the maximum andminimum 24hr NO_x concentration has been found in our baseline study at Vatibalaki as 11.9 μ g/m³ on November and 5.1 μ g/m³ on October respectively.

Pollutants	Average	Ambient	Concentration	Total	Standard in µg/m ³		
	Period	concentration	From RPLBL		BNAAQS***	WHO/IFC 2007*	US EPA
NO _x	1 hr	-	10	-		200**	188
	Annual	35.67****	0.10	35.77	100	40**	100

Comparison	Ambient air	quality	guideline	for NOx	(individual	stack	emission)
			•		`		,

Comparison Ambient air quality guideline for NO₂ (cumulative stack emission)

Pollutants	Average	Ambient	Concentration	Total	Standard in µg/m ³		
	period	concentration	From RPLBL		BNAAQS***	WHO/IFC 2007*	US EPA
NO _x	1 hr		30			200**	188
	Annual	35.67****	0.80	36.47	100	40**	100

* IFC Environmental Health & Safety Guidelines 2007

** Ambient air quality standard for small combustion facility using gas fuel and spark engine

***Bangladesh National Ambient Air Quality Standard

****Maximum Annual average of NO_x as per Narayanganj CAMS

b) **Noise:** The gas turbine and the steam turbine will have internal noise level of around 85dBA which will be minimized by sophisticated acoustic power house building design so as to minimize the noise up to standard. The heat recovery steam generator stack will emit a noise level of 85dBA after providing the silencer. To reduce the effect, the most effective and technologically advanced Critical Type Silencer will be used in the stack.

In particular, significant noisy components such as the gas turbine sets are enclosed in buildings acoustically designed, providing Styrofoam filler of 50 mm width in between 300 mm thick brick walls around the power house building. Moreover, thick doors are provided and holes which may create sound pollution are sealed with sound proof materials. Vibration pad will also be used at the bed of all power generation units to prevent the vibration. The stack noise emission dispersion has been predicted by means of noise impact modeling. It is observed from the noise emission modeling that the max noise level within the 50m radius is 32.16dB(A).

The resultant noise calculation with the ambient noise level shows that the noise level after 300m from the power plant will not affect the ambient noise level of the area, so, there would not create any noise problem due to the power plant to the nearest settlement.

c) **Liquid Discharge:** The estimated water consumption is 1098 m³/hr and discharge will be 206 m³/hr in the proposed Reliance Meghnaghat 750 MW CCPP project. The low amount of water discharge is due to adoption of COC 5 and use of "Closed Circuit Cooling System". Owing to the low amount of discharge and use of closed circuit cooling, there will be no significant impact on river water temperature, considering the amount of discharge from the other power plants near the project premises using once through cooling system and the maintaining the discharge standards of temperature of +/- 3°C than the ambient water temperature in any season.

The domestic liquid wastes would be disposed through a septic tank system. It has been planned that the surface drainage network would be connected with an interceptor prior to discharge to surface drainage system. All other surface water coming from cooling tower blow down, DM plant rejects and service water will be taken to wastewater treatment plant prior to discharge to natural water. The capacity of the WWTP is 20 cu.m/hour and detail of the WWTP has been given in the ESIA report.

The other potential impact during the project operation will be as following:

- Solid and municipal Waste
- Lubricating oil
- Hazardous waste management
 - E waste
 - o Battery waste
- Occupational Health & safety
- Ecological Impact
 - o Flora & Fauna

- o Fishery
- o Forest
- $\circ \quad \text{Wild life} \\$
- \circ Agriculture
- \circ Hydrology
- o Archaeological & cultural resources
- Socioeconomic Impact
- Impact on climate change
- beneficial impact
- 40. Detail of the above impacts and the mitigation measures have been discussed in the ESIA report and proper management & monitoring plan have been suggested to control the above impacts.

0.10. ENVIRONMENTAL MANAGEMENT PLAN (EMP)

- 41. In the context of a project, Environmental Management Plan (EMP) is concerned with the implementation of the measures necessary to minimize and offset the adverse impacts and to enhance beneficial impacts. Unless the mitigation and benefit enhancement measures are identified in ESIA and fully implemented, the prime function of the ESIA cannot be achieved.
- 42. The objectives of EMP for the present project are: (i) Identification of Monitoring requirements and Monitoring indicators; (ii) Mitigation measures to reduce or eliminate negative impacts; and (iii) Enhancement measures to maximize positive impacts. Environmental management plan has to be considered as part of the plant's overall management and it would be part of the plant operational manual.

Management in Construction Stage

43. General construction management and control over conducting technological process during construction works will be assigned to the contractor and RBLPL project management. The contractor, in turn, concludes contracts with subcontract organizations performing works at the construction site. The RBLPL authority bears responsibility under Project Implementation unit (PMU) for selection and assessment of subcontract organizations. Control functions over contract organizations activity in the field of labor safety, industrial safety and preservation of the environment are also assigned to the Consortium.

Management in Operation Phase

44. RBLPL Management will be responsible to operate the power project under Operation & Maintenance unit (O&M) during the operation phase and will be responsible to maintain the environmental and social standardsfor the project.

Mitigation Enhancement Measures

45. For effective and environment friendly operation of a project, a set for guiding tools and suggestions are necessary which need to be followed at various stages of plant installation,

operation and maintenance. This plan generally has various components of management depending on the type of project or plant activity and types of discharge and their pollution potential. This Environmental and Social Management Plan (ESMP) once prepared forms the basis of environmental management actions from the part of the project authority may need modification or up-gradation because of changes in the plant operation or accurate pollution load/environmental problems detected afterwards.

0.11. MONITORING PLAN

ReliAnce

- 46. Monitoring of the performance of a plant is very important and sometimes vital. Industrial units in Bangladesh generally do not monitor the environmental parameters related to plant operation, thereby neglecting the environment. For surveillance of the environmental performance of an industry, and monitoring of the quality of the local environment, environment in the work-zone and the general impact zone have to be performed on a regular basis.
- 47. A management team set up has to be created for the environmental monitoring program which can ensure compliance with national environmental standards. A committee (Environmental Management and Safety Committee) will be created with plant manager as head and with 2-4 other members. The committee must meet at least once in a quarter and discuss about the environmental status of the plant. The main emission from the plants (i.e., air emissions, noise and any other) are to be analyzed as per monitoring plan. The "the quarterly and annual environmental monitoring reports will be submitted to DOE, ADB and will also be placed on the company website for public scrutiny.

0.11.1 Monitoring in Construction Phase

48. The environmental monitoring program should be carried out as an integral part of the planning and execution of the construction phase. It must not be seen merely as an activity limited to monitoring and regulating activities against a pre-determined checklist of required actions. Rather it must interact dynamically as project implementation proceeds, dealing flexibly with environmental impacts, both expected and unexpected. There are two types of monitoring during construction, 1) Visual Monitoring and 2) Analytical Monitoring. The following are the visual monitoring, its parameters and monitoring frequency for the RBLPL750 MW CCPP:

Issue	Key aspects	Monitoring Frequency	Responsibility	
Traffic volume	Incoming & outgoing traffic, traffic movement records	Monthly	EPC Contractor/ Consultant	
Site Security	Proper fencing, isolation of site from general access, marked passage for workers and visitors	Monthly	EPC Contractor/ Consultant	
Personal Protective Equipment	Ensure every single person involved in the construction activity wear proper PPE	Monthly	EPC Contractor/ Consultant	

Visual Monitoring and Observationduring Construction Phase

Issue	Issue Key aspects		Responsibility
Incident record & reporting	ncident record & Documented record of all incident, reporting accident, near misses etc. and its remedial process.		EPC Contractor/ Consultant
Solid waste	Quantity of solid waste, segregation and disposal process	Monthly	EPC Contractor/ Consultant
Oily waste generation & disposal system	Quantity of oily waste, storage and disposal process	Monthly	EPC Contractor/ Consultant
Worker's health	Monitoring process of worker's health	Monthly	EPC Contractor/ Consultant
Complain from neighbours	Any significant complain from neighbours and it's remedial procedure	Monthly	EPC Contractor/ Consultant
Safety orientation & training of workers	Frequency of training & orientation of workers for safety	Monthly	EPC Contractor/ Consultant
Sanitation & drinking water facility to workers	Availability of safe drinking water and sanitation to the workers	Monthly	EPC Contractor/ Consultant
Site Drainage	Maintaining proper drainage	Monthly	EPC Contractor/ Consultant

Analytical monitoring and observation during Construction Phase

Issue	Parameters	Monitoring Frequency	Responsibility
Ambient air Quality	PM ₁₀ and PM _{2.5}	Monthly	EPC Contractor/ Consultant
River water	Water temp., DO, BOD ₅ , COD, Oil and Grease and heavy metals (Cr, Cd, Pb)	Monthly	EPC Contractor/ Consultant
Groundwater	Groundwater level, pH, TDS, Ammonia, Nitrate, Phosphate, As, Fe, Mn and Coliforms	Once in 6 months	EPC Contractor/ Consultant
Soil quality	Cr, Cd, Pb and Oil and Grease	Once in 12 months	EPC Contractor/ Consultant
Noise level	Noise at different locations	Monthly	EPC Contractor/

Issue	Parameters	Monitoring Frequency	Responsibility
			Consultant
Drinking water	pH, Ammonia, Nitrate, Phosphate, As, Fe, Mn and Coliforms	Monthly	EPC Contractor/ Consultant

0.11.2 Monitoring in Operation Phase

49. Most of the environmental parameters will experience beneficial effects during the operation phase of the power plant project. The following are the monitoring parameters and monitoring frequency for the RBLPL 750 MW CCPP east during operation:

Issue	Parameters	Monitoring Frequency	
Stack emissions	NO _x , and temperature	Continuous	
Ambient air quality	CO, NO _x , PM ₁₀ , PM _{2.5} , SO ₂	Quarterly at four locations, seasonal or half yearly monitoring at other sensitive receptors	
River water	Water temperature and DO, PH, COD. BOD, TOC, DO, TSS, oil & grease etc.	Monthly	
Effluent quality	pH, DO, Water temperature,Sulphate, TSS, TDS, BOD, COD, Total N, Total P	Monthly	
Groundwater	pH, Colour, Turbidity, TDS, Ammonia, Nitrate, Phosphate, As, Fe , Mn and Coliforms; Groundwater level	Once in 6 months	
Noise level	Noise at different locations	Once in 3 months	
Fisheries, Plankton,Zooplankton,Vegetation etc.	Number and Condition	Once in 6 months	
Occupational health and safety	Health status and safety	Once in 3 months	

50. The cost of the Environmental Management Plan (EMP) is divided into several parts to reflect the different phases of the project and the requirements of each phase. The cost of EMP must include the costs of the capacity building, public consultation and the quality

control requirements for a period of 5 years of operation. An allocation will be made for EMP every year in budget estimated for the project.

0.12. EMERGENCY RESPONSE AND OCCUPATIONAL HEALTH & SAFETY

- 51. Under the supervision of the 'Environment Management and Safety Committee', all plant personnel will have responsibilities assigned to them during emergency. The documented responsibility will be included in a program manual which can constitute a part of the plants operation manual. Compliance with the responsibilities should be monitored and if these are not carried out for any reason, corrective measures should be taken.
- 52. The plant management will prepare an occupational health safety policy manual which should be updated from time to time. The policy should be signed and dated by the Chief Safety Officer ormay be the Plant Manager. The policy should be discussed with all the plant personnel. The Chief Safety Officer should periodically review the policy and re-issue the policy.

0.13. STAKEHOLDER CONSULTATION AND DISCLOSURE

- 53. Stakeholder consultations are very important and sensitive issues for setting up a new industry in any area of Bangladesh. The process was initiated with an open objective to ensure people's participation right from the planning stage of the project. Furthermore, this was aimed at improving the study taking into account opinions from the people of the impacted area. Meetings with stakeholders consisted of community consultation meetings, focus group discussions, and in-depth interviews with men and limited focus-group discussions with women.
- 54. In recognition of the diversity of views within any community, it is very important to obtain a clear understanding of the different stakeholders and to analyze their capacity and willingness to be involved in some or all of the project and its planning process. It is important to be aware of how different power relations can distort participation. It is also important to examine how community skills, resources, and 'local knowledge' can be applied to improve project design and implementation. All of this can be achieved by careful use of the various tools of Stakeholder Consultation.
- 55. In the series of informal profess of consultation various stakeholders have been consulted e.g. local communities, men, women and local elders, local government representatives, NGOs, local fishermen and their family, local cow owners etc. The most important consultation was the consultation of local fishermen and cow owners.
- 56. A formal public consultation has been conducted on 28th August 2017 at the Sonargaon Upazilla complex. There were Member of the Parliament, representatives of the Local Chairman, UNO of Sonargaon Upazilla, representatives of Local NGOs, headmasters of local schools, local political & religious leaders and member of the publics were present in the consultation. All the speakers and guests were very positive about the project and discussed about various issues related to construction and operation of the project.

Consultation of local fishermen

57. The fishing village, Char Balaki, has roughly 200 families living there nearly for many years. Most of the households depend on the fishing for their livelihood. On the aspect of livelihood currently their greatest needs are lack of safe landing station for travelers, commodities and goods, no proper communication means to reach from mainland to the char, lack of variety of fish nets, seasonal variation of number of fishes found.

- 58. Fishermen in the village do fishing within 5-6 kilometers around the char including 40-50 meters from the outfall. Some fishermen do fishing in other areas sometimes. Each fishermen consisting of two members can catch 5-10 kg fish per day in rainy season and 1.5 2 kg per day in winter season. Per kg of fish is sold ranging from BDT 500 to BDT 700.
- 59. The participants including men and women were noticed from the local people about installation of Reliance Meghnaghat 750 MW CCPP and they reportedly mentioned that do not find any negative impact on their livelihood/fishing. Instead they welcome the power generation activities for the betterment of the country, but they reportedly regret being deprived of electricity till days. In the past, they didn't find the activities of the power plants detrimental to the fishing activity.

Consultation of Cow Owners

ReLIANCE

- 60. There are no formal cattle farms near the project area but some people living near the project area used to graze some of their domestic cows on the project land since the land is unprotected and has no fencing. The number of cows is merely 25-30 and there are plenty of green fields in the vicinity of the project area where they could find alternative grass land for the grazing of their cows. They are aware of the project and they informed that they will drive their cows elsewhere once the proposed land is occupied.
- 61. The stakeholders' consultation process will be continued in the operation phase of the plant as well, so that issues of public concern can be addressed.
- 62. According to the cow owners, the Project site is not the only place they use for grazing their cows. They graze their cows wherever they can manage an empty piece of land covered with grass. The project will not occupy the entire land; therefore, the remaining land can be used as a grazing ground.
- 63. The ESIA report will be uploaded in the Company's website and a copy of ESIA is kept at the plant for public review. The executive summary will be translated into Bangla and will also be made available to the public.

0.14. GRIEVANCE REDRESS MECHANISM

- 64. The Project Management has established a procedure to answer to project-related queries and address complaints and grievances about any irregularities in application of the guidelines adopted for assessment and mitigation of environmental safeguards impacts. The complaints related to plant operation that may create inconveniences to agency/individual should be addressed based on consensus, the procedure will help to resolve issues/conflicts amicably and quickly without resorting to expensive, timeconsuming legal actions.
- 65. To ensure impartiality and transparency, hearings on complaints will remain open to the public. The GRC will record the details of the complaints and the reasons that led to acceptance or rejection of the particular cases. The GRC will keep records of all resolved

and unresolved complaints and grievances and make them available for review as and when asked for by appropriate authority, WB and any organizations known to be working with urban development issues. However, it should be noted that the GRC process will not pre-empt and aggrieved person's right to seek redress in the courts of law.

0.15. CONCLUSION AND RECOMMENDATIONS

- 66. The present ESIA report finds that though there are certain environmental impacts associated with the industrial unit under consideration, these are manageable.
- 67. The project is indispensable in view of the current energy shortage scenario in Bangladesh. The impact on the social environment is positive given the employment and business opportunities created for local residents from the project. The project will help in the industrialization, accelerating socioeconomic growth, and improving quality of life. One of the most critical issues for the project is safety. This has been adequately addressed through compliance with national building code (BNBC) in the construction to ensure safety during natural disasters like earthquake and cyclone.
- 68. The project has been designed to comply with the country's environmental laws and regulations, especially on air emissions, ambient air quality, wastewater effluent, and noise. The project management has taken steps to ensure that the plant meets the DOE/World Bank/ADB's environmental standards. Given the management measures and monitoring commitments by the RPL for the project, environmental impact of the project will be manageable.
- 69. No development can be expected without any adverse impact on the environment. The beneficial impacts on the nation as well as human beings would only be meaningful and sustainable development would only be possible if adverse impacts are minimized through strict maintenance and control measures as mentioned for this project. All this would need vigilant care and cost money, and the project authority should take these into considerations. However, the following are the recommendations should be followed by the RBLPL during the construction and operation of the project:
- 70. The Environmental Monitoring Plan should be followed properly and review of the EMP should be done as per plan.
- 71. **Continuation of the baseline air monitoring study:**Since the baseline air monitoring study has been conducted from September-December, a follow up baseline air quality monitoring should be conducted at July-August and January-February so that the proper monsoon and dry season data would be reflected.
- 72. **Continuation of the Stakeholder Consultation:** To evaluate the true consequences of the project, the Stakeholder consultations should be continued during the Construction and operation of the project in a regular interval.
- 73. **Post Environmental Impact Assessment:** A post ESIA should be conducted after the implementation of the project to compare the ESIA mitigation measure that suggested are logical and working properly.

74. Given the proponent's commitments, actions undertaken for further measures to be adopted in due course of time as required, the Reliance Meghnaghat 750 MW CCPPproject is going to be a nationally important and environmentally sustainable industrial venture.

1. INTRODUCTION

ReliAnce

- 75. Access to modern energy services not only contributes to economic growth but also to the improved quality of life that comes with better education and health services. Reliable sources of energy are important to get out from the poverty circle, social instability and under-development. It is recognized that the pace of power sector development need to be accelerated to achieve overall economic development of the country. To uplift the socio-economic condition and lighten poverty, energy security is one of the important concerns of any country.
- 76. Bangladesh is a densely-populated country situated in South Asia. According to 2011 census, approximately 144 million people live in a total area of 147,500 km2. As per the 'Global Tracking Framework Report' published by World Bank, Bangladesh ranks third among the top 20 countries where people have lack access to electricity as well as where per capita energy consumption is very low. As per the estimates only around 72% of the total population of Bangladesh have access to electricity but reliable and quality supply of power is still a faraway. Bangladesh is a one of the fastest growing economy in south Asia. The demand for electricity is steadily increasing in Bangladesh as per Ministry of Power and Mineral Resources.
- 77. To meet the existing power shortage and the demand-growth in future years the Government of Bangladesh (GoB) is planning for power generation target of 39,000 MW by 2030. The Bangladesh government has taken several steps to initiate the augmentation of electricity gap by placing Power Sector Master Plan (PSMP) 2010. In order to achieve the said target, the Government of Bangladesh (GoB) is planning to develop power sector projects through public private partnership. Therefore, the development of the proposed 750MW Combined Cycle Power Project (CCPP) at Meghnaghat will aid in securing both current as well as future electricity demand of Bangladesh. The present project is in line with Ministry of Power, Energy and Mineral Resources has already granted an in-principle approval to the project. The proposed project also has obtained the site clearance vide letter Memo No. 22.07.67700.140.72.064. 16-18 dated 15. 01. 2017
- 78. In Bangladesh, natural gas is the most important indigenous source of energy that accounts for 73% of the commercial energy of the country. To provide access to affordable and reliable electricity to all by 2021 as well as to comply with the policy of GOB RBLPL intends to construct a new 750 MW CCPP in the Government allotted land. The proposed area of the plant is located at Meghnaghat inside the vicinity of BPDB's allocated 35 acres government land.

1.1 LOCATION AND STUDY AREA

79. The proposed site is located at village Meghnaghat, sub district Sonargaon, District Narayanganj, Bangladesh. The distance from the National Road No 1 is about 2 km. The nearest airport, Dhaka is at 45 km from the proposed site. The location map is shown in **Figure 1-1**.

ReliAnce

- 80. The following factors, which influence location of the plant, have been considered for selection of site for the proposed thermal power plant.
 - Land for the power plant
 - Power evacuation corridors
 - Approach to the site
 - Availability of resources
 - Environmental Concerns

Salient features of the study area

81. The study area is 5 km radial distance surrounding the project site. The salient features are described in Table 1-1. The location map of the proposed site is shown in Figure 1-1.

Name of the Project	Reliance Meghnaghat 750 MW Combined Cycle Power Plant			
Location of the Project				
Village	Meghnaghat			
Sub district	Sonargaon			
District	Narayanganj			
Latitude and Longitude	23° 36'29" N & 90° 35' 39" E			
Project Proponent	Reliance Bangladesh LNG & Power Ltd.			
General Climatic Conditions				
Monthly Mean Maximum Temperature	37.0° C			
Monthly Mean Minimum Temperature	5.3° C			
Relative Humidity	52-84%			
Annual Rainfall	2347 mm			
Accessibility				
Road Connectivity	National Road No1(Dhaka-Chittagong Highway) 2 km			
Airport	Dhaka Airport 45 km			
Historical/Important Places within	5 km study area			
Archaeological Site	Nine			
Historically Important Site	Domed Mosque by Jalaluddin Fatheh Shah in Panam Nagar, Historical Masjid of Shaikh Mohammad Yusuf at Mograpara (~3 Kms), Tomb of Sultan Giasuddin Azam Shah (~4 kms), Goaldi Mosque (~6.0 Kms)			
Sensitive Places	None			

Table 1-1: Salient features of Project

ReLIANCE

Sanctuaries/National Parks	None
Nearest Industries	Summit Meghnaghat Power Company Ltd,
	Pendekar Meghnaghat Power Plant
	Unique Power Plant Ltd.
Interstate Boundary	None
Seismic zone	Zone II
Type of Project	Combined Cycle power plant
Total Area of Land	35 acres
Fuel Requirement	RLNG/Natural Gas: 130mmscfd @ 100% load
Water Requirement & Source of Water	1100 m ³ /h; Source: Meghna River
Quantity of Discharge Water	206 m ³ /hr

Figure 1.1: Project location map

1.2 NEED FOR THE PROPOSED PROJECT

82. Bangladesh is facing a major electrical power shortage for the last one decade. The shortfall aggravated during recent years and the scenario in the power sector has become a cause for great concern. The unbalanced supply-demand situation in this sector will significantly hamper the development in all sectors of life including those in agricultural, industrial, commercial and domestic sectors.

ReliAnce

83. As of 2015, only around 72% of the total population of Bangladesh had access to electricity but reliable and quality supply of power is still a faraway. Moreover, the demand of electricity has been increasing overwhelmingly over the years. According to the Master Plan the forecasted demand would be 19,000 MW in 2021 and 34,000 MW by 2030. To meet this demand, the generation capacity should be 34,000 MW in 2030. Peak demand forecast by 2030 is shown in **Figure 1-2**.

Source: Bangladesh Power Development Board

Figure 1.2: Peak power demand forecast by 2030

- 84. In order to develop the Bangladesh power sector, the government had put in place a Power Sector Master Plan (PSMP) in 2010. The new PSMP 2010 considered attainment of stable power supply up to the year 2030 in consideration of the diversification of fuel resources. PSMP was developed with the fundamental conditions of the development e.g. demand forecast, procurement of primary energy resources, optimum power development plan, and future optimum power supply. The PSMP 2010 fuel diversification plan is shown in **Figure 1-3**.
- 85. There is no alternative than to add more power generating units to the existing power system of Bangladesh within the shortest possible time frame. The urgency is not only because of the ever-increasing demand for electricity but also due to the fact that many existing power generating units are nearing the end of their life cycle. The government has been promoting the development of infrastructure through the promotion of Public-Private Partnership (PPP) or invitation of Independent Power Producers (IPP) as the policy to develop power sector via private sector investment. The proposed 750 MW combined cycle power plant at Meghnaghat, Narayanganj will certainly will help

improving power demand situation to a considerable extent. The land allotment letter from BPDB is enclosed as **Annexure 1.1**.

Source: Power Division, Ministry of Power, Energy and Mineral Resources, Bangladesh

Figure 1.3: Power generation target by 2030

1.3 **OBJECTIVES OF ESIA STUDY**

- 86. This report presents the finding of an Environmental & Social Impact Assessment (ESIA) of the project proposed by Reliance Bangladesh LNG & Power Ltd., a 750 MW gas based CCPP. The proposed plant is located at Meghnaghat, Sonargaon, Narayanganj. The objective of the study is to provide an examination and assessment of the principal environmental impacts of the proposed plant. The outline of an environmental management plan also suggested with an indication of the extent of work to be done to keep the development and environment compatible. In this context, it should be noted that the term "environment" and its derivatives have been used in a wide sense, which covers not only physical and chemical aspect, but also the human dimension. The specific objectives of this ESIA are to:
 - Present a brief discussion on the ESIA process and its role in the planning and implementation of development projects;
 - Present a general description of the project and the process;
 - Present a description of the pre-project environment;
 - Delineate the significant environmental issues found and believed to be involved;

RELIANCE

- Identify the environmental impacts of the project and quantify them to the extent possible;
- Suggest the plan for management of the environment, during the implementation and operation of the plant.

1.4 STUDY METHODOLOGY

- 87. Based on the above Scope of Work, the following steps were followed during the ESIA process:
 - Undertaking a field survey towards collection of primary Baseline Social and Environmental information and data pertaining to the project area;
 - Collection of Secondary data;
 - Understanding the technical aspects of the proposed power plants
 - Conducting modeling exercise to analyze environmental impact;
 - Undertaking identification of potential environmental impacts (along with residual impacts and cumulative impacts, if any) and evaluation of socio- economic consequences of such impacts.
- 88. Identification of impacts was done using Checklists method. All the relevant social and environmental risks and potential impacts have been taken due care of as part of the assessment in compliance of the Performance Standards set by the Asian Development Bank (ADB) following the guidelines set forth by Department of Environment (DOE), Ministry of Environment and Forest, Government of Bangladesh.

1.4.1 Baseline Environmental Data Collection

1.4.1.1 Study Period

89. The EIA study was carried out for post-monsoon season, September to December months, 2016. The micro climatic parameters were recorded using automatic weather monitoring station for the study period. Wind speed, wind direction, temperature and relative humidity were recorded on hourly basis.

1.4.1.2 Air Environment

- 90. The existing status of the ambient air quality within the study area was assessed by establishing a monitoring network of 6 Ambient Air Quality sampling stations in and around the proposed site especially taking into account the wind rose of the area. The frequency of air sampling was twice a week for 12 weeks. Samples were collected for SPM, Particulate Matter (PM₁₀, PM_{2.5}), NO_x, SO₂.
- 91. The data collected were compared with prescribed standards and was assessed through ground level concentration contour maps.
- 92. Impact predictions on the quality of the ambient air due to pollutant emissions from different point sources within in the plant were carried out by using mathematical modeling.

1.4.1.3 Noise Environment

ReLIANCE

93. Noise levels were observed at 9 locations covering 3 locations at the project site. The noise survey was conducted for 24-hour period at each location on hourly basis. Noise levels were calculated in terms of day, night and day-night equivalent levels. The noise levels were compared with prescribed standards.

1.4.1.4 Water Environment

94. Baseline Water Quality monitoring was carried out in the Study Area. Three surface water and three ground water samples were collected from the study area (taking into account upstream and downstream) and analysed for physical, Chemical and biological standards.

1.4.1.5 Land Environment

95. Secondary data collections as well as field investigations were carried out to assess the land environment information namely land use and land cover pattern of the study area. To assess the quality of soil, four samples were collected from different locations and were analyzed for various parameters.

1.4.1.6 Socio-economic status

- 96. All secondary demographic data are compiled using the latest Census. Demographic Characteristics namely distribution and density of population, age structure, sex ratio, social structure, literacy rates, and occupational structure of people are studied.
- 97. Secondary data collected from covering Information on drinking water supply, facilities for education, health, sanitation, recreation, transportation and communication and power supply were reviewed for their adequacy based on the surveys.

1.4.2 **Prediction of Impacts**

- a. Assessment studies were carried out for the identified impacts, for the proposed project.
- b. Impact prediction studies were carried out on project activities under different phase of the project.
- c. Resource consumption details, emissions and discharges from the resource and raw material consumption were critically examined.
- 98. Qualitative and quantitative assessment of impacts due to air emissions, wastewater treatment & discharge, generation of noise, solid and hazardous wastes was carried out as part of the assessment in compliance of the performance standards set by the Asian Development Bank following the guideline set forth by DoE. The predictions made were compared with National as well as ADB guidelines and IFC standards.

1.5 THE ESIA TEAM

99. Adroit Environment Consultants Ltd. (AECL) has prepared this report under theguidance and supervision of Dr. Nasir Uddin Khan. The total team composition and their expertise have been given in the table below:

ESIA Report

ESIA & Emission Modeling Expert	Dr. Nasir Uddin Khan	Highly experienced on conducting ESIA of various nature in home and abroad. Have vast experience on identifying different environmental impacts and suggesting mitigation measures for any project. Experienced on emission and noise modeling of various projects. Experienced on Project stakeholder engagement – Public consultation and Disclosure Plans.
Legal, Policy, Health & Safety Professional	Md. Zahedur Rahman	Highly experienced in identifying different environmental impacts and suggesting mitigation measures.
Power Plant Engineer	Md. Abdul Matin	Understanding the power plant configurations for environmental issues.
Socioeconomist	Md. Humayun Kabir	Experienced on Social baseline studies, community needs assessment, Social and Community Health Impact Studies/Assessments etc.
Ecological Survey Specialist	Dr. Abdur Jabber	Experienced in aquatic flora and fauna analysis for different power projects
Project Liaison Officer	Md Hasanul Islam	Experienced on conducting ESIA of various nature. Involved in baseline environmental study, identifying different environmental impacts, suggesting mitigation measures and environmental management plan for any project.
Field Investigator/ coordinator	Nuvia Noorain Rashid	Make Liaison with all field staff and Consultants; allocate staff & resources to different places when necessary. Background of organizing site visits, surveys, liaison with community, public and govt. organizations, etc.
	Md. Hadiuzzaman	Make Liaison with all field staff and Consultants; allocate staff & resources to different places when necessary. Background of organizing site visits, surveys, liaison with community, public

	and govt. organizations, etc.	
Syed Hosnee Jahab	Base line data collection, sample collection from site, sample preservation and laboratory analysis.	
Md. MuradHossain	Base line data collection, secondary data collection, sample collection and site survey	
Nigar Shultana	Base line data collection, sample collection from site, sample preservation and laboratory analysis.	

100. Services performed by the consultant are conducted in a manner consistent with thatlevel of care and skill generally exercised by members of the engineering and consulting profession. The report may not exhaustively cover an investigation of all possible circumstances that may exist. However, an effort is made to discover all meaningful areas under the stipulated time available. In evaluating subject site, consultant relies in good faith on information provided by client's management or employees. The Consultant assumes that the information provided is factual, accurate and accepts no responsibility for any deficiency, misstatement or inaccuracies contained in this report as a result of omission or misrepresentation of any person interviewed or contacted. However, the consultant notifies the contradictions and errors in the data, where it seems appropriate. It should be recognized that the information given in the report is time specific and with the passage of time the relevancy of data and analysis may suffer. Specific circumstances and condition of site can change due to which conclusion and opinions may also change.

ESIA team of Voyants Solutions Pvt. Ltd., Gurgaon, India

101. Voyants Solutions Pvt. Ltd. an ISO 9001:2015 certified company provides the vital function of effectively providing full range of engineering and supervision services from project conception and preliminary planning through project completion, also providing backward linkage to the project implementation function in the form of concepts, strategies, structuring, planning and designing infrastructure projects. A multi and cross disciplinary team of professionals offers solutions at each stage of the life cycle of a project.

102. Over the years VSPL evolved as an "End-to-End-Integrated" Solution Provider foraying into functional areas of Environmental /Social Services and Project Management, Solid, Hazardous and Biomedical waste management, Environment planning & management, Infrastructure Advisory, Marketing / Transactions (Real Estate), Investments, Planning and Architecture, Infrastructure Engineering, Integrated Infrastructure Development; Public Health Engineering (Water Supply, Sewerage & Drainage);

Transportation, Roads & Bridges; Townships / Industrial Estates / SEZs / Buildings ; Theme based Developments; Real Estate & Buildings; Urban Reforms & Developmental Planning.

103. VSPL is a leading ISO 9001; 2015, Consulting Engineers, Architect & Scientists and Project Manager Research based Organization at Gurgaon (Haryana) India having business operation in India, Sri Lanka, Ethiopia, East Africa, Middle East and Singapore.

104. VSPL is constantly striving towards excellence in terms of value addition to the projects being handled and in this endeavor we are broadening our horizons in terms of major sectors The Company has Seven Operational Verticals:

- Infrastructure Planning & Design (IPD)
- Architecture & Project Management (APM)
- Environment Management Service (EMS)
- Rail Infrastructure Division (RID)
- Transportation, Road & Bridges (TRB)
- Energy Division (ED)

ReLIANCE

• Water & Sanitation Division (WSD)

105. <u>VSPL has been accredited under QCI-NABET Scheme which is complaint with version 3</u> and in-line with the latest MoEF&CC Notification dated 3 March 2016. Further, VSPL qualifies for <u>Category "A" EIA projects</u> under the NABET Scheme and has been accredited for 9 sectors.

The following sectors are accredited.

- Sector: 1 Mining of minerals (open cast only)
- Sector: 3 River Valley Projects
- Sector: 4 Thermal Power Plants
- Sector: 31 Industrial estates/ parks/ complexes/Areas, export processing Zones(EPZs), Special economic zones(SEZs), Biotech Parks, Leather Complexes
- Sector: 33 Ports, harbours, break waters and dredging
- Sector: 34 Highways
- Sector: 37 Common Municipal Solid Waste Management Facility (CMSWMF)
- Sector: 38 Building and Construction Projects
- Sector: 39 Township and Area Development projects

106. We have a robust pool of professional experts steered by 8 EIA Coordinators and 17 Functional Area Experts covering all the 12 functional area expertise (LU, AP, AQ, WP, EB, NV, SE, HG, GEO, SC, RH, SHW).

107. The total team composition and their expertise of M/s Voyants Solutions Pvt. Ltd., Gurgaon, India have been given in the table below:

SI. No	Resource Person		Expertise		Roles and Responsibilities		es		
1.	Mr.	Santoshkumar	Sector	Exper	t, EIA	Overall	respor	sibility	for
	Kulkarni		Coordinator	and	Functional	coordinating	the	project	and
			Area Expert	(FAE)	AQ, WP	ensuring del	ivery a	s per the	ADB
						guidelines	with	quality	and

SI.	Resource Person	Expertise	Roles and Responsibilities
No			
			Voyants Solutions Standards. Sector Expert for this project and Technical reviewer.
2.	Dr. Rekha Singh	EIA Coordinator, FAE WP, MSW, RH, SHW(HW), SHW(ISW)	Risk and Hazards, Municipal Solid waste, Hazardous waste and Industrial Waste management
3.	Chandrani Mitra	EIA Coordinator	Compilation of the report Quality analysis Quality Assurance
4.	Dr. Ashish Rawat	FAE EB, SC, SHW	Ecology and Bio-diversity Impact Assessment and Bio-diversity Conservation Management. Secondary data input form IBAT w.r.t. the study area.
5.	Dr. Sanjoy Maji	Sector Expert, EIA Coordinator, FAE AQ, AP, WP, SHW	Sector Expert and Project Manager who has written the as per the ADB SPS Input Responsible for assimilation and compilation of the report with respect to technical inputs such as AQ, AP, WP, SHW, Climate Change, Impact and Mitigations.
6.	Laxmi Singh	EIA Coordinator FAE: WP	Water and waste water expert for building and construction projects
7.	Dr. Manish Tripathi	FAE: SE	Socio Economic analyst, Rehabilitation and Resettlement expert who has an experience on Resettlement Action Plan
8.	Kamal Singh	FAE SE	Social Survey specialist and Administrative support for this project.
9.	Bhuvan Bhaskar	Function Area Associate (FAA) WP, AP	Function Area Associate for Water Pollution and Air Pollution
10	Mr. Abhishek Tomar	FAA: WP, AP	Worked on complete baseline to analysis and interpretation, Policy Legal and administrative framework report writing of this project
11.	Ashish Singh	Social	Socioeconomic profile of the study area, Grievance redressal as for this project as per ADB SPS and CRS initiatives including report writing for this project.
12.	ASIT AII	FAA: SE	Function Area Associate for social

SI.	Resource Person	Expertise	Roles and Responsibilities
No			
13.	Sony Gangwar	Environment	Baseline data collation and interpretation for Ecology and Biodiversity including flora and fauna compilation as per the
			data received form Adorit Consultants
14.	Neha Gupta	Environment	Report writing for Analysis of Alternatives, compilation of Laboratory data for the project.
15.	Prasad Patil	Social	Social Executive
16.	Digvijay Pawar	Social	Social Executive
17.	Gurusharan Sharma	Environment	Environment Executive
18.	Satish Kumar	Environment	Environment Executive
Empar	nelled		
19.	Yamesh Sharma	EIA Coordinator FAE HG, SC, NV	Hydrogeolog Expert Soil Conservation Expert and Noise and Vibration Expert
20.	SR Maley	EIA Coordinator FAE SC, SHW(MSW)	Soil Conservation Expert
21.	S. Anita Patnaha	EIA Coordinator FAE SE	Socio Economic Expert
22.	Anusha Nag	EIA Coordinator FAE EB, SHW	Ecology and Biodiversity Expert
23.	P. Radhakrishnamoorthy	EIA Coordinator FAE LU, HG, Geo	Land Use and Geography Expert
24.	Pinaki Das Gupta	EIA Coordinator FAE RH	Risk and Hazards Waste Expert
25.	Mayank Kumar	EIA Coordinator FAE EB	Ecology and Biodiversity Expert

108. Under the guidance of Mr. Santosh Kulkarni, Project Director, Dr. Sanjoy Maji, Project Manager, the team of Functional Area Expert(s) who have worked on this report are Chandrani Mitra, Dr. Rekha Singh, Dr. Ashish Rawat, Abhishek Tomar, Ashish Singh, Kamal Singh, Sony Ganwar, Neha Gupta.

2 DESCRIPTION OF THE PROJECT

109. Reliance Meghnaghat 750 MW CCPP project is a natural gas base combined cycle power plant with rated capacity of 750 MW. In order to develop the Bangladesh power sector & to bridge the electricity demand-supply gap, the Government of Bangladesh had put in place a Power Sector Master Plan (PSMP) 2010. The PSMP 2010 include an optimum power development plan and identification of the potential power plant sites based on the fuel diversification study. The development of the proposed 750 MW Combined Cycle power project at Meghnaghat will aid in securing current as well as future electricity demand for the country.

110. The proposed power plant will consist of heavy duty, advanced class (F-Class) gas turbines, matching heat recovery steam generator (HRSG), steam turbine generator with all integral auxiliary equipment. The preferred unit configuration for the project shall consist of a power block of 750 MW with two numbers of advanced turbines with AGP, two numbers of HRSGs and one Steam turbine.

2.1 SITE DESCRIPTION

2.1.1 Location

111. The proposed power plant will be set up at Meghnaghat, Sonargaon, Narayanganj, Bangladesh. It is situated approximately 36 kilometers south-east of Dhaka, near the Meghna Road Bridge on the Dhaka-Chittagong Highway and is around 2 km west from Dhaka-Chittagong highway, at the bank of river Meghna. The environmental setting of the site is given in **Table 2-1**.

Sr. No.	Particulars	Details		
1	Plant Location	Meghnaghat, Sonargaon, Narayanganj.		
2	Plant Site Coordinates	Latitude Longitude		
		23°36'25.56"N	90°35'32.16"E	
3	General Elevation	7 m above MSL		
4	Plant Site Topography	Generally plain		
5	Present land use at the site	Empty BPDB land allotted for power plant		
6	Nearest Highway	Dhaka-Chittagong Highway- 2km E		
7	Nearest Railway Station	Narayanganj Railway Junction (8.94-km W)		
8	Nearest Airport	Hazrat Shahjalal International Airport- 45 km N		
9	Nearest Seaport	Chittagong Port- 190 km S		
10	Nearest Major Water Bodies	The River Meghna- Adjacent to project site		
11	Nearest Town/City	Narayanganj- 9 km West		
		[Population as per 2011 Census: 1,323,600]		

Table 2-1: Environmental Se	tting of the site
-----------------------------	-------------------

Sr. No.	Particulars	Details	
12	Nearest Village	Char Balaki (1 km, W)	
13	Hills/Valleys	No hills and valleys within 5 km radius	
14	Archaeologically important places	No important site within 5 km Radius	
15	Protected areas	None within 10 km radius	
16	Reserved/ Protected Forests	None within 10 km radius	
17	Seismicity	Seismic Zone-II as per Geological Survey of Bangladesh (GSB)	
18	Defence Installations	None within 10 km radius area	

112. The site is situated to the west of a box- shaped island formed due to meandering of River Meghna from its main course. The site is surrounded by Meghna River in the north, west and south direction. The major factors considered during the evaluation of sites include accessibility, land type and use, proximity to FSRU based LNG terminal planned and interconnection with national gas grid network, feasibility of power evacuation, sensitivity of the location(s) with respect to environmental & ecological aspects. The existing land that has been identified for the proposed power plant project is a government Khas Land. The land is currently empty and has been leased out by the Bangladesh Power Development Board (BPDB), Government of Bangladesh. There is no locality within the two kilometers radius of this project site. This part of Meghnaghat is mainly used for industrial land use. There are few industries in this area including 3 other power plants adjacent to the proposed Reliance Meghnaghat 750 MW CCPP. The location of the project location and its immediate surrounding is shown in **Figure 2-1**. Satellite imagery of the project location is shown in **Figure 2-2**.

113. Though the nearest settlement is around 1 KM away at Charbalaki village. There are some residential building of GTCL located around 500m north-east to the project site but there are no residents in those buildings and become abundant now. The following are some pics of GTCL empty building who shows the buildings are empty locked and broken glass.

Figure 2.1: Location of the proposed power Plant

Figure 2.2: Satellite imagery of the project location

2.1.2 Plant Layout

2.1.2.1 Existing Power Plants

114. Meghnaghat is an area consisting of several power plants situated in the Sonargaon Upazila of the District of Narayanganj. Meghnaghat Power Limited, with capacity of 450 MW CCPP, Summit Meghnaghat Power Company Limited (SMPCL), a dual fuel (Natural Gas/ liquid Fuel Oil) fired combined cycle power plant with capacity of 350 MW and Orion Power Meghnaghat Power Plant (OPML), a 100 MW HFO fired power project under the government policy QRPP are situated at Power village, Meghnaghat, Sonargaon, Narayanganj, near the bank of the Meghna River which is adjacent to the proposed project. Around 65 acres of fallow land is still available in that area under the supervision of Bangladesh Power Development Board (BPDB).

2.1.2.2 Existing Industries

115. Apart from power plants, being in an industrial zone, there are numerous numbers of factories near and across the project site. In the inventory of the industries, there includes ship yards, cement plants, packaging industries, chemical industries and so many more. An inventory of the surrounding industries have been shown in **Figure 2-3** and detailed in **Table 2-2**.

ReliAnce

ESIA Report

Figure 2.3: Existing industries near the project site

Name of the Existing Industry	Distance from the Project Site (km)
Orion Power Meghnaghat Limited	0.4
Summit Meghnaghat Power Company Limited	0.75
Meghnaghat Power Company Limited	0.95
Anandya Shipyard Limited	1.3
MTC Tiger Cement Plant	1.46
United Cement Plant	1.54
Unique Power Plant	1.81
Fresh Cement Factory	1.97
Holcim Cement Factory	2.15
Magura Paper Mills Ltd.	2.25
Bashundhara Paper Mills Ltd.	2.6
KSB Engineering Dockyard	3.1
Tasnim Chemical Complex	3.4
Khan Brothers Ship Building Limited	1.76
Bengal Shipyard Limited	1.6
Super Board Mills Limited	1.9
Rupsha Tank Terminals and Refinary Limited	2.05
Samuda Chemical Complex Limited	2.02
S.Co. Steel Limited	2.35

Table 2-2: Existing Industries near the Project Site

2.1.2.3 Environmental and Social Management in Industrial Area

116. Department of Environment, GoB is the nodal agency for Environment related matters. There are few other industries in the Meghnaghat Area. Though there are many industries in the Meghnaghat area as such there is no declaration or management as separate industrial estate. Individual industries follow Environmental and social guideline as per the applicable rules and regulations applicable for the project.

2.1.3 **Power Generation Technology**

117. The thermal system is based on combined cycle process. Combined Cycle Power Plant Module will consist of 750 MW Power block. A Module consists of Two (2) Gas Turbine each having capacity of 242 MW along with Electrical Generators, two (2) Heat Recovery Steam Generators and One (1) Steam Turbine Generator having capacity of 269 MW. The Combined Cycle Power Plant is based on the latest state of the art heavy duty industrial type Gas Turbines GE 9FA, which is suitable for base load and cyclic load operation inboth simple (open) cycle and combined cycle mode

The main advantages of the above selected configuration include:

- High part load efficiency.
- Higher reliability.
- More operational flexibility.
- Lesser time for installation.
- Can be used for peaking Duty.
- It is proven equipment globally with reference conditions

118. Each Module of Power block has two (2) Gas Turbines, two (2) HRSGs & one (1) Steam Turbine and associated Auxiliaries with GT water wash skid, Electrical & Instrument with dedicated control Package, Lube oil systems, vacuum pumps, control fluid equipment, heat exchangers & pumps for closed cycle DM cooling water system, Seal oil equipment for the generator, flash tanks etc. GTG and STG Building are separately located in the Power Block. The STG Building has two floors -Operating & Mezzanine. Boiler Feed Pumps (BFP) and Steam / Water sampling system are located near the HRSG. Condensate extraction pumps are located in the pit adjacent to Steam turbine condenser.**Figure 2-4** shows the plot plan of the proposed plant.

2.1.3.1 Combined Cycle Process Description

119. A combined-cycle facility consists of four main components: control, auxiliary components, gas turbine, and generator. Combined steam-gas cycle has some advantages:

- i. Energy generation is clean— i.e. it is the most acceptable technology from an ecological standpoint
- ii. High efficiency factor, more than 50%.
- iii. Minimal land requirement
- iv. Minimal water requirements
- v. Fast operations: The station starts and shuts down quickly, so it is possible to operate the facility both for base and peak load.

120. The thermal system is based on GE 9FA combined cycle, including: two sets of Gas Turbines, two sets of HRSGs and one Steam Turbine (2+2+1). The description of the cycle is given below: Air is compressed by the axial compressor which is on the same shaft with the Gas Turbine, then it enters the combustion chamber and mixes with the natural gas, the high

temperatureflue gas produced from combustion of the mixture of gases drives the Gas Turbine. The flue gas from the Gas Turbine goes to the HRSG for the heat exchange and then passes through the stack to atmosphere. The high temperature flue gas also can pass through a bypass stack to atmosphere to meet the rapid start-up requirement. The Gas Turbine is coupled at the Compressor air inlet end via a Load coupling to the Generator Rotor. Mechanical Energy is converted to electrical energy in the Hydrogen cooled generator. The Generator Step up transformer raises the voltage from 15.75 KV to 400 KV. The Generator Circuit breaker connects the Generator to the 400 KV GIS. 400 KV GIS has a line breaker and connecting isolators and earth switches as a standard. The GIS 400 KV is connected to the AIS 400 KV Quad Moose line for transmission of power to the electrical grid. Exhaust gas from the Gas Turbine is routed to the HRSG through insulated ductwork, where it passes through the super heater, re heater, evaporator and economizer sections of the HRSG Steam is generated in the HRSG by heat transfer from flue gas (casing side) to the water /steam flowing inside the tubes. Flue gas then enters the stack and it is exhausted to the atmosphere. Steam turbine with its HP / IP and dual Flow LP stage converts the Heat Energy to Mechanical Energy and the turbine shaft is coupled to the Hydrogen Cooled Generator rotor. The Mechanical Energy is converted to electrical energy at the generator. The Transformers at Step-up the voltage from 15.75 KV to 400 KV and the Steam turbine Generator is connected via the400 KV GIS line breaker to the Electrical grid. The 400 KV GIS is connected to 400 KV AIS and connects the Station to the Electrical grid

2.1.3.2 Gas Turbine Description

- 121. The Gas Turbine for the Plant is General Electric (GE) PG 9351(FA) (9FA), equipped with a hydrogen cooled generator. GE Frame 9FA Gas Turbine delivers reliable, highly efficient, power output, while maintaining best-in-class NOx and CO emission levels. It has Dry Low NOx DLN 2+systems that maintain low NOx level by premixing the Fuel and Air prior to combustion.
- The axial flow compressor has 18 stages with modulating inlet guide vanes. 122. Interstage air extraction is used for cooling and sealing air for turbine nozzles, wheel spaces, and bearings, and for surge control during start up. The compressor discharge casing contains 13th through17th stage compressor stators and one row of exit guide vanes. It also provides an inner support for the first-stage turbine nozzle assembly and supports the combustion components. In the three-stage turbine section, energy from hot pressurized gas produced by the compressor and combustion section is converted to mechanical energy. The turbine section is comprised of the turbine rotor, turbine shell, exhaust frame, exhaust diffuser, nozzles and diaphragms, stationary shrouds, and aft (number 2) bearing assembly. The combustion systemuses a reverse flow, multi-chamber (can annular) design in which combustion chambers are arranged around the periphery of the compressor discharge casing. The evaporative cooler issued in applications where significant operation occurs in the hot months and where low relative humidity is common. With evaporative cooling, water is added to the inlet air and, as the water evaporates, the air is cooled.

Table 2-3: Gas Turbine Main Parameters

Gas Turbine Make	GE USA	
Frame	9FA.03	
Combustion	Dry Low NOx DLN 2.0+	
Fuel	Natural Gas	
Ambient	29 Deg C / 70% RH / 1.0103 bar a	
Turbine Exhaust Temperature	610 Deg C at Base Load	
Compressor/ Turbine Stage	18 / 3	
RPM	3000	
Generator Model	GE make Model : 324	
Generator	15.75 KV / 50 Hz/ 0.95 PF	
Exciter	Static Excitation	
Starting	Means Load Commutated Inverter (LCI2100)	

123. The exhaust system arrangement includes the exhaust diffuser and expansion joint. After exiting the last turbine stage, the exhaust gases enter the exhaust diffuser section in which a portion of the dynamic pressure is recovered as the gas expands. The gas then flows axially into the exhaust system. A bypass stack of 44 mts. at the exhaust of the Gas Turbine is provided. The construction is steel structure based. The detail of the Gas Turbine Exhaust Gas Composition is given in **Table 2-3**.

Table 2-4: Ga	s Turbine	Exhaust Gas	Composition
---------------	-----------	--------------------	-------------

Gas	Composition (% Molar)	
Nitrogen	66-78	
Oxygen	10-18	
Water Vapor	3-12	
Carbon Dioxide	2-5	
Argon	0.7-0.9	
Pollutants	PPMV	
NO _x	25 (DRY @15% O ₂)	

Figure 2.4: Plot Plan of the Proposed Plant

2.1.3.3 Heat Recovery Steam Generator

ReliAnce

124. Gas turbine will be provided with triple pressure, reheat, natural circulation type, unfired, outdoor type heat recovery steam generator (HRSG) located adjacent to the gas turbine. The steam conditions will be suitable for desired net output of combined cycle plant as discussed earlier. Gas flow and pressure will be matching with the exhaust temperature and pressure of the connected gas turbine.

HRSGs will consist of a casing that houses super heaters (HP, IP and LP), 125. evaporators (HP, IP and LP), economizers (HP, IP and LP), reheater sections, mounted steam drums (HP, IP and LP) and internal insulation and lagging. Gas flow leaving the gas turbine passes through diffuser and transition duct to the HRSG where the available energy converts water to superheated steam. The relatively cool gases leaving the HRSG pass through the outlet duct, stack breeching and exhaust stack to the atmosphere. Deaerated feed water enters the HRSG unit via the inlet header in the economizer sections. The economizers, consisting of fin tubes, add heat to the feed water prior to entering the steam drum. Sufficient heat is absorbed in the steam drum to raise the incoming feed water temperature to essentially saturated temperature at the steam drum pressure. Saturated water is drawn from the steam drum by natural circulation to the evaporator sections. The water and steam formed in the evaporators is then returned to the steam drum for separation. It is the function of the super heater to take the saturated steam formed in the drum and raise its temperature level as required to meet the operating conditions. The reheater utilizes the available energy to raise the steam temperature to the level required to meet the operating conditions.

2.1.3.4 Steam Turbine

126. The steam turbine will receive the steam supply through HP, IP and LP emergency stop valves and governing valves.

127. The steam turbine shall be two casing design with a single shell, opposed flow combined high (HP) and intermediate pressure (IP) section and a two-flow low pressure(LP) section. The HP and IP sections are on one rotor, supported by two journal bearings, and utilizes impulse staging. The Generator is on the LP end of the turbine. The steam turbine has a down flow exhaust. Single shell construction is used for the combined HP/IP section. The shell is horizontally split with bolted joint flanges, and the diaphragms are directly supported in the outer shell. The HP end is supported by the front standard and the LP section rests on and is keyed to the foundation. The nozzle plate bolted in the shell and diaphragms are centerline supported. The LP section includes a fabricated, carbon steel (similar to ASTM A36) hood with centreline supported in the inner casings. Atmospheric relief diaphragms are located on the upper half to prevent over pressurization of the LP section and condenser.

128. Gas flow leaving the gas turbine passes through diffuser and transition duct to the HRSG where the available energy converts water to superheated steam. The relatively cool gases leaving the HRSG pass through the outlet duct, stack breeching and exhaust stack to the atmosphere.

1	Make	:	GE
2	Model	:	D11
3	Туре	:	TC-Down flow
4	Rated Load	:	266520
5	Rated Speed	:	3000 rpm
Stear	n Parameters		
А	HP steam pressure admission	:	119.83 bar
В	HP steam temperature admission	:	565.6 °C
С	HP steam flow admission	:	541.77 t/hr
D	IP steam pressure admission	:	25.242 bar
Е	IP steam temperature admission	:	565.6 °C
F	IP steam flow admission	:	613.69 t/hr
G	LP admission pressure	:	4.6912 bar
н	LP admission temperature	:	318.8 °C
I	LP admission flow	:	706.85 t/hr
J	Exhaust pressure	:	0.092354 bar

The salient features of steam turbine are described below:

2.1.3.5 Condenser and Vacuum Equipment

129. The condenser shall receive exhaust from the steam turbine. The condensate formed shall be extracted from the hot well by condensate extraction pumps. The exhaust steam in the condenser shall be cooled by clarified water with closed recirculation cooling system. Heat rejection for a combined cycle in this project is accomplished by circulating cooling water through the condenser. The condenser air removal system creates and maintains vacuum in the shell side of the main condenser by removing air and non-condensable gases. Non condensable will be removed and condenser vacuum will be maintained using liquid ring vacuum pump.

2.1.4 **POWER EVACUATION**

130. At present the spread of 400 kV transmission lines in Bangladesh is limited to only Dhaka region. Part of Dhaka ring is at 400 kV and another 400 kV two double circuit line connects Indian grid substation of Baharampur to Bheramara grid substation of Western

Bangladesh which is used for power import from India. The other 400 kV network extends from Meghnaghat – Aminbazar to evacuate power from existing Meghnaghat Power station & reliable power to western part of the Dhaka.

131. Govt. of Bangladesh shall facilitate firm power evacuation for the Project. For the plant capacity of 750 MW, 400 kV two double circuit lines will be used for the evacuation of power. It is proposed to connect plant substation to the 400 kV lines connecting Aminbazar using a LILO as a temporary measure. Further, it will be connected to PGCB 400 kV AIS at Meghnaghat in future once it is ready. The temporary facility for power evacuation will again be built in the existing land of the BPDB where absolutely no land acquisition is needed and therefore, no resettlement is necessary.

132. The evacuation of electric power generated by the Facility, will be through the existing 400 kVcircuits connecting nearby 230/132 kV existing substations at Meghnaghat and Aminbazar ownedby PGCB. The connection to the Facility will be though LILO (230 KV to be Upgraded to 400KV). The Company shall construct and own 400 kV switchyard for evacuation of power. The switchyard, line breaker, current transformer, potential transformer and other necessary equipment and associated relays, controls, protection, communication and instrument system willbe operated and maintained by the Company. Once the Meghnaghat 400 kV substation is in place and operation, the connection to the Facilitywill be at Meghnaghat 400kV switchyard. The power evacuation line and the facilities at theremote end (PGCB Substation) shall be constructed, owned and operated by PGCB. The Company shall build a 400 kV connecting lines (U/G or O/H) from the Facility's switchyard to the upcoming Meghnaghat 400 kV switchyard and extend required no's of 400 kV bays for connection. Length of the Transmission Line from the power generating facility to the LILO point is 567+Mts. This is an Industrial Zone and no communities nearby. The power evacuation plan has been shown in Figure 2-5.

Figure 2.5 : Transmission Line Network from GIS to LILO Point 2.2 INFRASTRUCTURE REQUIREMENTS

2.2.1 Land

About 35 acres of land is available for the proposed plant. The plot is slightly irregular in shape but power block and switchyard facilities can be accommodated for siting of the proposed CCPP. The proposed project is going to use existing land at Meghnaghat; BPDB has agreed to lease the land to the developer at Meghnaghat site for setting up of the Project. The proposed site has no homesteads land. The adjacent land has been formerly used for various power plants.

2.2.1.1 Land for the LILO Facility

133. National Survey Organization has conducted survey on the location for suitable LILO attachment facility and proposed Three Transmission Towers. The temporary facility for LILO attachment will be built in the existing Govt. land where absolutely no land acquisition is needed and therefore, no resettlement is necessary. But local people use the land for one crop cultivation. If those lands are used, they need to be paid for the crop 2-3 times from market price.

The coordinate of the proposed towers and their distances from the transmission gantry is given below:

Tower Name & Location	Co-ordinate	Distance from Transmission Gantry
Tower I	X= 254173.03	203 m
	Y= 2613146.07	
Tower II	X= 253658.45	733 m
	Y= 2613275.80	
Tower III	X= 253353.46	1058 m
	Y= 2613161.05	

The alignment and details of the tower has been given in Figure 2-6.

2.2.2 **Fuel**

134. The fuel proposed for this project is primarily Natural gas and RLNG, since advanced class machines are adopted for reliable and efficient operation. The gas requirement for 750 MWCCPP is about 130 mmscfd at 100% load & 110 mmscfd at 85% load respectively. In Bangladesh, natural gas is the most important indigenous source of energy that accounts for 73% of the commercial energy of the country. The gas quality analysis is enclosed wherein there is no sulphur and 85% is methane. The existing natural gas is mainly used in electricity, fertilizer, industry, transport and housing sectors.

135. The proposed power plant will be run by natural gas which will be supplied by a GTCL national gas pipeline coming from Kutumbpur, Comilla. On the other hand Reliance Power is working to set up a LNG terminal where they will supply gas to national grid through 30 inch Gas Pipeline from Kutubdia to Napura at GTCL national gas grid. A new pipeline will be built by GTCL to deliver gas from Kutumbpur, Comilla to the site. RBLPL shall construct a pipleline of ~400mts length as a part of it's project activity from it's boundary over the land of existing BPDB land to get the supply connected. The route of pipeline, once confirmed from GTCL / BPDB, shall be depicted over layout for clear understanding of the alignment of and updated in to updated ESIA along with two season data. The pipeline project of GTCL is considered as an associated facility of the project.

Gas Specification:

^

1. Chemical Composition of Gas to be delivered to the Facility

Constituent	Minimum <u>Percent by Volume</u>	Maximum Percent by Volume
Methane (CH_4)	85.0	100.00
Ethane (${ m C}_{2}{ m H}_{6}$)	0	6.00
Propane (C_3H_8)	0	5.00
Butane (C_3H_8)	0	3.00
Pentane (C_5H_{12}) and higher	0	2.00
Hydrogen Sulphide ($\mathrm{H_2S}$)	0	0
Carbon dioxide (CO_2)	0	2.00
Nitrogen	0	3.00
Oxygen (O_2)	0	1.0
Inert (the total combined Nitrogen, Oxygen, Carbon dioxide and any other inert compound)	0	5.00

Figure 2.6: Alignment Details of the Transmission Line

2.2.3 Water

136. It was calculated that about 1098 cubic meters of water per hour flow is required as the makeup water for the close circuit cooling system and other uses. Major source of water required in the CCPP are:

- i) Cooling water for steam condenser is the part of heat sink for the thermodynamic cycle. This system in a power station is the largest consumer of water.
- ii) Cooling water for STG and HRSG auxiliaries, compressors, A.C. System etc.
- iii) Cooling of Gas Turbine auxiliary equipment.
- iv) Make-up water for power cycle (HRSG make-up).
- v) Other auxiliaries like service and make up water.

The water requirement calculation is detailed in Table 2.5.

Table 2-5: Water Requirement Calculation

SI. No.	Parameter	Value (m ³ /hr)
1	Water Consumptive Requirement for cooling	990
2	Demineralized water	25
3	Service Water	40
4	Plant Potable	10
5	Others	33
	Total	1098

137. The fresh water requirement envisaged for the project is around 1098 cum/hr with closed cooling water system. The source of water for the project site is Meghna River which is considered to be perennial. The project area is located right along the bank of the river upper Meghna. The upper Meghna river basin is one of the rainiest regions in the world and has an annual rainfall of up to 5,800 mm. Total catchment area of the Meghna is about 82,000 sqkm of which 47,000sqkm lies in India and 35,000 sqkm lies in Bangladesh. As the location of the plant is at the bank of the river Meghna, so, to fulfil the requirement of the cooling water a new pump station could be constructed at bank of the Meghna River.

138. As closed loop cooling system with cooling towers will be adopted in this project, major portion of the water will be recirculating for further use by adopting COC 5. About 206 cum/hour of water is expected to discharged from the plant to the river after treatment. The detailed water balance diagram is shown in **Figure 2-7**.

2.2.3.1 Circulating Water System

139. The estimated cooling water requirement for the condenser and auxiliary cooling system is 990 m³/hr. closed cycle recirculating type CW system is envisaged for the CCPP with an adequately sized multicell induced draft cooling tower. Make-up to the cooling tower is 990 m³/hr to compensate for the evaporation loss and blow down requirements.
2.2.3.2 Power Cycle Make-up

ReLIANCE

140. The concentration of dissolved solids in the HRSG drum water gradually gets increased due to the evaporation process. To control the 'carry over' by steam, this concentration level has to be maintained by 'blow down' of drum water. Power cycle make-up is mainly for making up the HRSG (20 m³/hr) back wash and others.

2.2.3.3 Service and Potable Water System

141. For miscellaneous plant services including washing and cleaning needs as well as drinking water requirement of the plant personnel, the water requirement is estimated to be around 10 m^3 /hr.

2.2.3.4 Fire Protection System

142. Hydrant fire water protection system covering different plant areas and spray water for the transformers oil tanks and cable galleries are proposed to be met by the dedicated fire protection system comprising a set of fire water pumps installed in the pump house and water requirement will be drawn from the soft water reservoir. The fire protection system will be complete with pipe work, valves, specialties such as hydrants, spray nozzles, detectors, cabling etc.

143. The sustainability of water source for the project is related to the availability of water in the Meghna River. The available discharge in Meghna River near the project site has beenanalyzed based on the SWAT model developed in a recent study (PKSF, 2014). Based onthe SWAT model results for 1981-2012, dependable flow analysis has been carried out. **Table 2-4** shows the dependable flow amount near the power plant site for 75%, 90% and 95% dependability.

Dependability	Monthly Average Flow (m ³ /s)
75%	90
90%	23
95%	10

Table 2-6: Available dependable flow in the Meghna River

144. The water requirement for the proposed project is 0.305 m^3 /s which is well covered in 75%, 90% and 95% dependability levels after meeting the existing water use in the area.

ESIA Report

Figure 2.7: Proposed Water Balance Diagram

2.2.4 Outside Plant Boundary Facility: Jetty

145. A temporary jetty will be constructed during the construction phase of the project to ensure convenient and efficient transportation of the construction material and the component of the actual power plan. The proposed jetty will be constructed on the western bank of the River Meghna or on the southeast corner of the project site and it'll be demolished after the completion of the project.

146. The location of the RO-RO jetty is on the western boundary as per the guideline of Bangladesh Inland Water Transport Authority and BPDB recommendation. Total land requirement is \sim 1.5 acres. This is a temporary jetty required only for the purpose of transportation during the construction period. The dredged depth of 3 to 4 m is required.

147. At the time of site selection, the level of marine risk is determined by the position chosen for the terminal. Jetty designing will be decided giving due consideration to materials to be used, constructions methods, etc. Wave directions, lengths and heights will determine the layout, geometry, structure of the jetty. Size of the Jetty and the load bearing capacity will be decided considering the fact that, there will not be any problem to the civil structure during the transport of the heaviest equipment, Generator rotors. The Jetty has been shown in the plot plan of the project (refer **Figure 2-6**).The RO-RO jetty will be demolished upon completion of the construction of the Power Plant.

2.3 POLLUTION CONTROL

2.3.1 Air Emission

148. The natural gas R-LNG do not contain any significant sulphur, therefore the plant does not warrant a tall chimney. The proposed height of the stacks will be 70 m above ground level as per DoE minimum height requirement.

149. The gas turbines will produce oxides of nitrogen (NOx) during combustion with natural gas / R-LNG firing. However, it is possible to reduce NOx emission by using dry low NOx burners. The plant will be designed to have NOx emissions not more than 25 ppm $\{(v/v), at 15\% excess oxygen\}$ which well below the prescribed norms of ministry of Environment and Forests for combined cycle plants of capacity more than 400 MW using natural gas/R-LNG as fuel.

150. Heat recovery steam generator (HRSG) will be utilizing about 80% of the heat content in the exhaust gases in producing steam for use in the steam turbine. Heat emission from the stack into atmosphere will not cause any significant increase in ambient temperature. According to EHS guidelines, the stack height for all point sources of emissions, whether 'significant' or not, should be designed according to Good International Industry Practice (GIIP) to avoid excessive ground level concentrations due to downwash, wakes, and eddy effects, and to ensure reasonable diffusion to minimize impacts".

151. As per the above since the clean fuel is used where in the SO2 emissions are Zero, We need to maintain minimum 30mt of Stack Height. However based on Annex 1.1.3 - Good International Industry Practice (GIIP) Stack Height (Based on United States 40 CFR, part 51.100 (ii)). HG = H + 1.5L; where HG = GEP stack height measured from the ground level elevation at the base of the stack, H = Height of nearby structure(s) above the base of the stack. L = Lesser dimension, height (h) or width (w), of nearby structures ("Nearby structures" = Structures within/touching a radius of 5L but less than 800 m.) the below calculation is accried out to determine Stack Height to be at 70 mtrs. The stack and emission details are provided in **Table 2-7**.

(The nearest stack height of the neighborhood power station (Summit Meghnaghat Power Limited) understood to be 50 mts. And L = 6.25 mts, thus HG = H+1.5 (6.25 Dia of Stack) comes to H = 68.73 mts. Say, 70 mts.)

Table 2-7: Stack and Emissions

Parameter	Unit	Value
Stack Height	meter (m)	70
Diameter	m	6.3
Exit Gas Velocity	m/s	25
Exhaust Flow rate	m³/s	615
Emission per Stack		
NO _x	ppm	25
	g/s	31.37

2.3.2 Noise Control

152. Noise generating equipment will be designed to limit the noise level of 70 dB(A) which will be maintained at 120 m from the main plant building. Noise generating sources and their abatement measures are provided in **Table 2-6**.

Table 2-8: Noise Generating Sources and Abatement Measures

Source	Abatement Measures
Turbine Hall & Boiler House	Sound absorbing materials will be provided and sound transmissions loss of wall and roof will be improved.
Fans	Mufflers will be provided
Leaks	Will be controlled by improved maintenance
Electric Motor	Installation of ventilation inlet and/or discharge muffler.

2.3.3 Effluent Characteristics, Treatment and Discharge

153. The plant will generate effluents from various systems. These include HRSG blow down, demineralization waste, cooling tower blow down and sanitary waste.

154. The wastewaters including cooling tower blow down will be discharged after complying with DoE stipulated discharge norms.

155. Cooling water Blow down and waste water does not contain any heavy metals such as Zn, Cr. Cooling system waste water treatment technology and methodology is pH adjustment by dosing Sulphuric Acid; Disinfection by the dozing of Chlorine and Environment

Reli

Friendly commodity chemicals which does not have any heavy metals for avoiding the corrosion and scaling.

156. Salient characteristics of HRSG blow down water are: pH in the range of 9.5 to 10.3, negligible suspended solids and temperature of blow down water at about 100°C. The HRSG blow down water will be collected with other wastewaters in a common basin.

157. The DM plant effluent will be neutralized to safe and desirable pH value prior to discharge to a central monitoring basin.

158. Effluents from plant wash will betreated in ETP and will be taken to central monitoring basin. The capacity of the ETP would be around 20 m³/hour.

159. All floor drains and storm water drains will be routed to adequately sized storm water sump i.e. 24 hours holding capacity.

160. It has been estimated that about 212 m³/hour of waste water will be generated from different sections. All liquid effluents emerging out of the power plant from different sections shall be collected in central monitoring basin. About 6 m³/hour waste water will be treated in horticulture and rest i.e. 206 m³/hour will be discharged to plant drain.

161. The treated effluents shall also meet quality requirements mentioned in Ministry of Environment and Forests Gazette Notifications as well as IFC standards. All the waste water generated at the various sources will be collected at one point, as far as practicable and technically viable, before treatment and then treated to meet the statutory requirements. Treated effluents are equalized in Guard pond before reuse and recycling within the plant. Excess treated and equalized effluent will be disposed through plant's effluent outfall. This discharge will thus meet the permissible standards.

Parameters	Treated Water Quality
рН	6.0 - 9.0
Suspended solids	: <50 mg/l
Oil and grease	: <10 mg/
Ambient Temperature of Discharge water	Delta 3 ⁰ C of the ambient receiving water temperature in any season

162. The Effluent Treatment Plant conceived will handle effluent from the following facilities-

- Neutralized waste from DM plant
- Cooling tower blow down
- Boiler blow down
- Waste water from the plant wash

163. Neutralized waste from DM Plant, cooling tower blow down and Boiler blow down do not need any treatment except only dilution and retention of effluent in CMB is envisaged before discharging outside the plant boundary

164. For waste water from the plant wash, Treatment plant is envisaged with suitable capacity before discharging through CMB. The capacity envisaged is 20 cum/hr. The following treatment will be done in the ETP:

• Collection tank

ReliAnce

- Coagulation & Flocculation
- Solid separation by clarifier
- clean water to CMB
- Sludge thickening
- Sludge dewatering by centrifuge

165. Sludge generated from Pre Treatment plant shall be treated suitably and solid waste generated shall be disposed outside plant in consultation with Local government authorities. The layout plan of the ETP is shown in **Figure 2-9**.

2.3.4 Water treatment Plant

166. The requirement of raw water for 750 MW CCPP would be 1098 m³/hr which will be pumped from the Meghna River to the plant. Hence raw water pump house/channel will be planned at off take point for the plant. The Meghna river water quality is highlighted in Table 2.7.

SI No	Parameters	Unit	Values
1	Aluminium (Al)	ppm	0.27
2	Biochemical Oxygen Demand (BOD)	ppm	5
3	Chemical Oxygen Demand (COD)	ppm	16
4	Chloride (Cl)	ppm	12
5	Colour	Hazen	3.3
6	Fluoride	ppm	<mdl< th=""></mdl<>
7	Manganese (Mn)	ppm	0.06
8	Nitrogen (Nitrate)	ppm	5
9	Nitrogen (Nitrite)	ppm	<mdl< th=""></mdl<>
10	рН	ppm	7.8
11	Phosphate	ppm	0.37
12	Potassium (K)	ppm	5
13	Sodium (Na)	ppm	20

Table	2-9:	Meghna	river water	quality	for	desian	raw	water	analy	sis
ubic	_ .	meginia	mutor mutor	quanty	101	acoign	10111	mater	anany	515

SI No	Parameters	Unit	Values				
14	Sulphate	ppm	2				
15	Total Suspended Solid (TSS)	ppm	8				
16	Turbidity	NTU	25*				
17	Ammonia	ppm	0.6				
18	Total Organic Carbon (TOC)	ppm	3.2				
19	M – Alkalinity	ppm	35				
20	P – Alkalinity	ppm	0				
21	Ca - Hardness (as CaCO3)	ppm	20				
22	Mg - Hardness (as CaCO3)	ppm 15					
23	Iron (Fe)	ppm	0.6				
24	Ferrous Iron (Fe2+)	ppm	0.01				
27	Free Chlorine (Cl2)	ppm	0.03				
28	Silica (SiO2), reactive	ppm 11					
29	Silica (SiO2), colloidal	ppm 3.5					

167. The scheme to be selected for water treatment depends upon the quality of raw water available, required quality of treated water and also economic considerations.

168. The Raw Water Treatment Plant needs to produce water of a quality that satisfies the requirements of suitable feed water to Secondary Treatment Systems. The required design quality of treated water from the Raw Water Treatment Plant is mentioned as below.

Iron	:	Less than 0.3 ppm.
Turbidity	:	Less than 10 NTU at rated capacity of Clariflocculator and less than 15 NTU at 20% overloading condition
Organic matter	:	Less than 0.05 ppm

169. Pre-treatment plant shall be designed considering 500 NTU as inlet raw water turbidity. There are several treatment options in the plant to treat the raw water as per the requirement and consumption. The water first passes through clarification plant in which solid particles will be separated by coagulation and clarification. The proposed treatment plant envisages the aeration of raw water & for removal of organic matter, chlorination of raw water is envisaged. Clarification by tubesettler type Clarifier is established technique for removal of suspended solids from raw water and the same is envisaged in Raw Water Treatment Plant. To optimize the consumption of coagulant and to increase the efficiency of TSS removal, suitable provision for addition of coagulant aid shall also be provided in the Raw Water Treatment Plant. Around 990 cu.m/hour water will flow to close loop condensate cooling system as make up water.

ReliAnce

170. Around 25 m^3 /hour water will be carried to DM plant to receive polish water to feed those to different precision cooling system in generator and NO_x injection.

2.3.5 Cooling Water System Detail

171. Heat rejection for a combined cycle in this project is accomplished by circulating cooling water through the condenser. The circulating cooling water system envisaged for the plant is re-circulating type system with cooling towers. For the re-circulating type CW system, the clarified water will be pumped by CW Makeup pumps to the cold water channel. Water from cold water channel will enter the CW pump house through bar screens/trash racks at low velocity to filter out debris. Stop log Gates will be provided after the screens to facilitate the maintenance. For carrying circulating water from CW pump house to TG area and from TG area to cooling tower, steel lined concrete duct would be provided. For interconnecting CW duct with CW pump, condenser and cooling towers, steel pipes shall be used. Induced Draft Cooling Tower for the module is envisaged. Cooling tower shall be with FRP Frame, PVC tower fill, fill supports, air inlet louvers, drift eliminators etc.

2.4 **PROJECT SCHEDULE**

2.4.1 **Pre-Construction Period**

172. The pre-construction period started with the principle approval from the GOB on March 27, 2016. The pre-construction period will be completed with the completion of site clearance which will indicate the end of all bureaucratic procedure.

2.4.2 Construction Period

173. The construction period will start in 1st November, 2017. The mechanical erection is expected to be started on 5th March, 2018. The construction period is expected to be finished by 30th April, 2019.

2.4.3 **Operation Period**

174. The operation period is expected to start after the erection of the plant has been completed and the test generation has been observed to be fully functional. The detail of the project schedule is shown in **Figure 2-10**.

Figure 2.8: Schematic Diagram of ETP

-					-								1		(1		-		- 3		-				
No.	Activity Description/Months	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
750	WW CCPP AT MEGHNAGHAT																														
1	NTP	Y						Τ,									1	т. 													from the
2	PRIORITY SITE ENABLING WORKS								2																						
3	SITE MOBILIZATION	-	-						E																						
4	DETAIL AND APPLICATION ENGG.					-						1																			
5	CIVIL WORKS FOR GAS TURBINE FOUNDATIONS					-						TI								(OPEN	CYCL	E								1
6	GAS TURBINE ERECTION	1																				•			_						_
7	HRSG CIVIL WORKS	· · · · ·				-				-	-		-					3	8 8		3.5				- 1						1
8	HRSG & CRITICAL PIPING ERECTION WORKS															-				-											
9	HYDRO TEST OF HRSG																														
10	BOP CIVIL WORKS		11									-					. 1								1	-	L.				
11	BOP ERECTION	-							151												- 3	1.11				Ξú					
12	STG DECK CIVIL WORKS													-	_																
13	CONDENSER ERECTION																					101									
14	STG ERECTION WORKS		-	-	1.			1.00		i.	-							-	-	_					-						1
15	COMMISSIONING ACTIVITIES								1.0								116									4					
16	SYNCHRONISATION & COD OF PLANT																Ш.												1		
																					1	Docu	men	t No:	REL	-BDC	CCP-	MMF	-E10	I-T-7	0001

Figure 2.9: Project Schedule

3 POLICY, LEGAL AND ADMINISTRATIVE FRAMEWORK

3.1 BACKGROUND

ReliAnce

175. The emerging environmental scenario calls for attention on conservation and judicious use of natural resources. There is a need to integrate the environmental consequences of the development activities and for planning suitable measures in order to ensure sustainable development. The environmental considerations in any developmental process have become necessary for achieving sustainable development. To achieve such goals the basic principles to be adopted are:

- To enhance the quality of environment in and around the project area by adopting proper measures for conservation of natural resources;
- Prevention of adverse environmental and social impact to the maximum possible extent;
- To mitigate the possible adverse environmental and socio-economic impact on the project-affected areas.

The proposed Project is covered under several environmental Policies & legislations pertained with GOB, ADB Safeguard Policy Statement (SPS) 2009. All of the policies or legislation aimed at the conservation and protection of the environment. The existing policies and legislation, which are relevant to the environment, are described in the following sections.

3.2 POLICIES

3.2.1 Industrial Policy 1991

176. The Industrial policy of 1991 contains the following clauses in respect of environmental protection

- To conserve ecological balance and prevent pollution during industrialization
- To take effective steps for pollution control and conservation of environment during industrialization

177. To ensure embodying of necessary pollution control and preventive measures by industrial investment project endangering environment.

3.2.2 National Environmental Policy 1992

178. Bangladesh National Environmental Policy (GoB, 1992) was approved in May 1992, and sets out the basic framework for environmental action, together with a set of broad sectoral action guidelines. Key elements of the policy are:

- Maintenance of the ecological balance and overall progress and development of the country through protection and improvement of the environment.
- Protection of the country against natural disasters.
- Identification the regulation of all types of activities which pollute and degrade the environment.

ReliAnce

- Ensuring sustainable utilization of all natural resources.
- Active association with all environmentally-related international initiatives.
- Environmental policy contains the following specific objectives with respect to the industrial sector:
- To adopt corrective measures in phases in industries that causes pollution.
- To conduct Environmental Impact Assessments for all new public & private industries.
- To ban the establishment of any industry that produces goods cause environmental pollution, closure of such existing industries in phases and discouragement of the use of such goods through the development and/or introduction of environmentally sound substitutes.
- To ensure sustainable use of raw materials in the industries to prevent their wastage.

3.2.2.1 National Conservation Strategy

179. National Conservation Strategy (GoB/IUCN, 1992) was drafted in late 1991 and submitted to the Government in early 1992. This was approved in principle; however the final approval of the document is yet to be made by the cabinet. It underwent a number of modifications over the last five years, and is waiting to be placed before the cabinet finally sometime in late September 1997. For sustainable development in industrial sector, the report offered various recommendations; some of those are as follows:

- Industries based on non-renewable resources should be made to adopt technology which conserves raw materials, and existing industries should be given incentives to install technical fixes to reduce wastage rate.
- All industries, especially those based on imported raw materials, should be subjected to ESIA and adoption of pollution prevention/control technologies should be enforced.
- No hazardous or toxic materials/wastes should be imported for use as raw material.
- Import of appropriate and environmentally sound technology should be ensured.
- Complete dependence on imported technology & machinery for industrial development should gradually be reduced so that industrial development is sustainable with local skills and resources.

3.2.3 National Environmental Management Action Plan (NEMAP), 1995

180. National Environmental Management Action Plan, also referred to as NEMAP (GoB, 1995) is a wide-ranging and multi-faceted plan, which builds on and extends the statements set out in the National Environmental Policy. NEMAP was developed to address issues and management requirements during the period 1995 to 2005, and sets out the framework within which the recommendations of the National Conservation Strategy are to be implemented.

NEMAP has the broad objectives of:

• Identification of key environmental issues affecting Bangladesh;

ReLIANCE

- Identification of actions necessary to halt or reduce the rate of environmental degradation;
- Improvement of the natural and built environment;
- Conservation of habitats and biodiversity;
- Promotion of sustainable development;
- Improvement in the quality of life of the people.
- One of the key elements of NEMAP is that sectoral environmental concerns are identified. In outline, the environmental issues of the industrial sector include the following:
- Pollution arising from various industrial processes and plants throughout the country causing varying degrees of degradation of the receiving environment (Air, Water, and Land).
- There is a general absence of pollution abatement in terms of waste minimization and treatment.
- Low level of environmental awareness amongst industrialists and entrepreneurs.
- Lack of technology, appropriate to efficient use of resources and waste minimization leading to unnecessary pollution loading in the environment.
- Economic constraints on pollution abatement and waste minimization such as the cost of new technology, the competitiveness of labour, and intensive production methods as compared to more modern methods.
- Concentration of industry and hence pollution in specific areas which exacerbate localized environmental degradation and exceed the carrying capacity of the receiving bodies.
- Unplanned industrial development has resulted in several industries located within or close to residential areas, which adversely affects human health and quality of human environment.
- Establishment of industries at the cost of good agricultural lands and in the residential areas.
- Lack of incentives to industrialists to incorporate emission/discharge treatment plant in their industries.

3.3 NATIONAL LEGISLATION

3.3.1 Environment Conservation Act 1995

181. Formal concern at the national level, for the state of environment in Bangladesh can be traced back to at least Independence and passing of the Water Pollution Control Act in 1973. Under this a small unit was established in the Directorate of Public Health Engineering (DPHE) to monitor pollution of ground water and surface water.

182. In order to expand the scope of environmental management and to strengthen the powers for achieving it, the Government issued the Environmental Pollution Control Ordinance in 1977. The ordinance provided for the establishment of an Environmental

Pollution Control Board, which was charged with formulating policies and proposing measures for their implementation. In 1982, the board was renamed as Department of Environmental Pollution Control (DEPC). Four divisional offices were established in Dhaka, Chittagong, Khulna and Bogra. A special presidential order again renamed the DEPC to the Department of Environment (DOE) and placed under newly formed ministry of Environment and Forest (MoEF) in 1989.

183. The national environmental legislation known as Environmental Conservation Act, 1995 (ECA'95) is currently the main legislative document relating to environmental protection in Bangladesh, which repealed the earlier environment pollution control ordinance of 1997 and has been promulgated in 1995. The main objectives of ECA'95 are:

- Conservation and improvement of environment, and
- Control and mitigation of pollution of environment.

184. The main strategies of the act can be summarized as:

- Declaration of ecologically critical areas, and restriction on the operation and process, which can be carried, out or cannot be initiated in the ecologically critical areas.
- Regulation in respect of vehicles emitting smoke harmful for the environment.
- Environmental clearance.

ReLIANCE

- Regulation of the industries and other development activities discharge permit.
- Promulgation of standards for quality of air, water, noise and soil for different areas for different purposes.
- Promulgation of standard limit for discharging and emitting waste.
- Formulation and declaration of environmental guidelines.

3.3.2 Environment Conservation Rules, 1997 (Subsequent Amendments in 2002 and 2003)

- 185. A set of the relevant rules to implement the ECA' 95 has been promulgated (August 1997). The rules mainly consist of:
 - The national Environmental Quality Standards (EQS) for ambient air, surface water, groundwater, drinking water, industrial effluents, emissions, noise and vehicular exhaust;
 - Categorization of industries, development projects and other activities on the basis of pollution activities of the existing or proposed industries/development projects/activities.
 - Procedure for obtaining environmental clearance;
 - Requirement for undertaking IEE and ESIA as well as formulating EMP according to categories of industries/development projects/activities;
 - Procedure for damage-claim by persons affected or likely to be affected due to polluting activities or activities causing hindrance to normal civic life.

186. The Rules incorporate "inclusion lists" of projects requiring varying degrees of environmental investigation.

Green: Industries/development projects/activities are considered relatively pollution-free and therefore, they do not require an environmental clearance certificate from the DOE and no environmental study.

Orange: Industries/development projects/activities fall into two categories. Orange "A" is less polluted and Orange "B" is moderately polluted required to submit general information, a process flow diagram and schematic diagrams of waste treatment facilities along with their application to DOE for obtaining environmental site clearance and environmental clearance.

Red: Industries/development projects/activities are those which may cause 'significant adverse' environmental impacts and are required to submit an ESIA report. It should be noted that they might obtain an environmental site clearance on the basis of an IEE report, and subsequently submit an ESIA report for obtaining environmental clearance along with other necessary papers.

3.4 APPLICABLE NATIONAL REGULATIONS

187. The environmental regulations, legislations and policy guidelines in respect to the proposed project are governed by various regulatory agencies. The principal environmental regulatory agency in Bangladesh is Ministry of Environment, Forest (MoEF), Dhaka.

188. The Thermal Power Projects are covered under the ambit of Environment Conservation Rules, 1997. Hence, project requires preparation of Environmental Social Impact Assessment Report and pursuing Environmental Clearance from Department of Environment or Ministry of Environment and Forest. Further, Ministry of Environment and Forest has included Thermal power Projects under "Red category" industries. The copy of Environment Conservation Rules, 1997 is attached as *Annexure 3-1* of this document.

189. Environmental and safety related host country regulations along with applicability assessment for the proposed Thermal Power Project are discussed in Table below.

	/ .		
S.	Act / Law	Responsible	Key Features/Applicability
No.		Authority	
Α	ENVIRONMENT /	AND FOREST	
Cons	truction Phase		
A-1	The Environment Conservation Act, 1995 and subsequent amendments in 2000 and 2002	Department of Environment, Ministry of Environment and Forest	 Adopt corrective measures in phases in industries that cause pollution. Conduct Environmental Impact Assessments for all new public & private industries. Ban the establishment of any industry that produces goods cause environmental pollution, closure of such existing industries in phases and discouragement of the use of such goods through the development and/or introduction of environmentally sound

 Table 3-1: National Regulation Applicable in Thermal Project

S.	Act / Law	Responsible	Key Features/Applicability					
No.		Authority						
			 substitutes. Ensure sustainable use of raw materials in the industries to prevent their wastage. The Act is applicable for the project and the project will require EIA to be conducted for obtaining Environmental Clearance of the project. 					
A-2	National Environmental Management Action Plan, 1995	Ministry of Environment and Forest	Promulgation of standards for quality of air, water, noise, and soils for different areas and for different purposes; Promulgation of acceptable limits for discharging and emitting waste; Formulation of environmental guidelines relating to control and mitigation of environmental pollution, conservation and improvement of environment The Law is applicable for the project and the project is required follow standards for air, water and noise quality.					
A-3	Environment Conservation Rules, 1997 and subsequent amendments in 2002 and 2003	Department of Environment, Ministry of Environment and Forest	Provides standards for quality of air, water & sound and acceptable limits for emission/discharges from vehicles and other sources. The Rule is applicable for the project and the project is required follow standards for air, water and noise quality.					
A-4	Environment Court Act, 2000 and subsequent amendments 2002	Judiciary and Ministry of Environment & Forest	Applicable on all highest priority to environment pollution and passed Environment for completing environment related legal proceedings effectively					
A-5	Water Supply and Sanitation Act, 1996	Ministry of Local Government, Rural Development and Cooperatives	Management and Control of water supply and sanitation in urban areas. The Act is applicable for the project and guideline with respect to Water and Sanitation to be followed.					
A-6	The Ground Water Management Ordinance 1985	Upazila Parishad	Management of ground water resources; Tube well shall not be installed in any place without the license granted by Upazila Parishad					
A-7	The Forest Act, 1927 and subsequent amendments in 1982 and 1989	MoEF	Ministry of Environment and Forest Reserve Forests; Protective Forests; Village Forests. The Act is not applicable since no forest land is involved with the project.					

S.	Act / Law	Responsible	Key Features/Applicability							
No.		Authority								
A-8	The Private Forests Ordinance Act, 1959	Regional Forest Officer, Forest Department	Conservation of private forests and for the afforestation on wastelands. The Act is not applicable since no forest land is involved with the project.							
A-9	Bangladesh Wild Life (Preservation) Act, 1974	MoEF, Bangladesh Wild Life Advisory Board	Bangladesh Wild Life Advisory Board Preservation of Wildlife Sanctuaries, parks, reserves. The Act is not applicable.							
A- 10	The Protection and Conservation of Fish Act 1950 and subsequent amendments in 1982	Ministry of Fishery	Protection and Conservation of fish in Government owned water bodies. The Act is not applicable.							
A- 11	Natural Water Bodies Protection Act 2000	Rajdhani Unnayan Kartipakkha/Town Development Authority/Municipalities	According to this Act, the character of water bodies i.e. rivers, canals, tanks, or floodplains identified as water bodies in the master plans or in the master plans formulated under the laws establishing municipalities in division and district towns shall not be changed without approval of concerned ministry. The Act is not applicable since no water bodies will be altered due to the project							
Opera	ation Phase									
A-1	The Vehicle Act, 1927; The Motor Vehicles Ordinance, 1983;The Bengal Motor Vehicle Rules, 1940	Bangladesh Road Transport Authority (BRTA)	Controlling Exhaust emission; Vehicular air and noise; Road safety							
A-2	TheBrickBurning(Control)Act,1989; TheBrickBurning(Control)AmendmentAct,1992TheRemoval of	MoEF Bangladesh Water	Control of brick burning requires a license from the MoEF; Restricts brick burning with fuel wood. The Act is not applicable. Removal of Wrecks and Obstructions in inland							
		Bangiadoon Water								

	S.	Act / Law Responsible		Key Features/Applicability	
	No.		Authority		
		Wrecks and Obstructions in inland Navigable Water Ways Rules 1973	Transport Authority	Navigable Waterways. The Act is not applicable.	
	A-4	Antiquities Act 1968	Ministry of Cultural Affairs	Governs preservation of the national cultural heritage, protects and controls ancient monuments, regulates antiquities as well as the maintenance, conservation and restoration of protected sites and monuments, controls planning, exploration and excavation of archaeological sites. The Act is not applicable.	
	A-6	The Factories Act, 1965 Bangladesh Labour Law 2006	Ministry of Labours	This Act pertains to the occupational rights and safety of factory workers and the provision of a comfortable work environment and reasonable working conditions. The Law is applicable and necessary guideline to be fulfilled during project life evelo	
			to be fullified during project life cycle.		
	B-1	The Acquisition and Requisition of Immovable Property Ordinance Act. 1982	Ministry of land	The Ordinance governs acquisition and requisition by the government of immovable property for any public purpose or in the public interest. It may be noted that contrary to the previous Acts (i.e. Act XIII of 1948); this Ordinance deals only with immovable property. The Ordinance has well-defined procedures regarding payment of compensation for an acquired piece of land. The project area lies in empty BPDB land, which is allotted for power plant.Hence no Acquisition and Requisition of Immovable Property Ordinance Act. 1982 is applicable.	
	B-2	Fatal Accidents Act. 1855	Ministry of Law, Justice and Parliamentary Affairs; Bangladesh	An Act to provide compensation to families for loss occasioned by the death of a person caused by actionable wrong. The project assures engagement of 1800 workers during construction phase and 160 workers during operation phase. Hence this Act will be applicable.	
	B-3	Bangladesh Labor Act. 2006	Ministry of labour & Employment	An Act to amend and consolidate the laws relating to employment of workers, relations between workers and employers, determination of minimum rates of wages, payment of wages, compensation for injuries to workers during	

S.	Act / Law	Responsible	Key Features/Applicability
No.		Authority	
			working hours, formation of trade unions, raising and settlement of industrial disputes, health, safety, welfare and working conditions and environment of workers and apprenticeship and matters ancillary thereto. The project will engage 400 workers during construction phase and 160 workers during operation phase. Hence labor Act. 2006 will be applicable
B-4	Workmen's compensation Act, 1923, and rules there under	MLE/DIFE	This act has been last amended in 1987 and applies to factories, docks, construction work, railways, transport workers, excavation, gas and electricity workers, etc. It holds liable an employer to pay compensation for death and injury or disablement caused by accident arising out of and in the course of employment. And it considers contraction of occupational diseases peculiar to the nature of the work done as an injury like accident. Not applicable for this project.

3.5 INTERNATIONAL REGULATIONS

190. The Project is seeking financial support from international lenders / borrowers; hence their environmental and social safeguards are applicable to this Project. Applicability analysis and compliance requirement for ADB SPs and EPFIs and IFC Performance standard are described in sections below.

3.5.1 ADB Safeguard Policies

191. Environmental and social safeguards are cornerstones of ADBs support for environmentally sustainable economic growth. The Safeguard Policy Statement is built upon the three safeguard policies on the environment, involuntary resettlement & indigenous peoples and brings them into a consolidated policy framework to enhance effectiveness and relevance. The Safeguard Policy Statement (SPS) lays out policy principles and outlines a set of specific safeguard requirements that ADB supported projects are expected to meet. The ADB Safeguard Policies cover the following aspects.

- Environmental assessment;
- Environmental planning and management;
- Information disclosure;
- Consultation and participation;
- Grievance Redress mechanisms;
- Monitoring and Reporting;
- Unanticipated Environment Impacts;

ReliAnce

- Biodiversity and sustainable natural resources management;
- Pollution prevention and abatement;
- Health and safety;
- Physical cultural resources; and
- Involuntary resettlement;
- Indigenous peoples

192. Applicability analysis of the ADBs in reference to proposed Thermal Power Plant is tabulated below.

ADB Safeguard Policy Statement		Requirements	Project Information/ Application
1.	Environmental assessment	Environmental assessment term is used to identify potential direct, indirect, cumulative, and induced impacts and risks at an early stage of the project	Present ESIA report discuss about impacts associated with project activities.
2.	Environmental planning and management	As per this requirement, borrower should prepare an environmental management plan (EMP) that addresses the potential impacts and risks identified by the environmental assessment. The EMP should include the proposed mitigation measures, environmental monitoring and reporting requirements, emergency response procedures, related institutional or organizational arrangements, capacity development and training measures, implementation schedule, cost estimates and performance indicators.	Performance Indicators are also established for post project monitoring. Project specific management and monitoring plan is also developed and discussed in present ESIA Report.
3.	Information Disclosure	Under this requirement borrower shall establish regular interaction with the affected populations and stakeholders	Regular interaction with stakeholders is being made by project proponent. Same should be continued till project cycle.
4.	Consultation and Participation	The borrower / client should carry out meaningful consultation with affected people and other concerned stakeholders, including civil society, and facilitate their informed participation.	Regular consultation with stakeholders is being made and same should be continued till project cycle
5.	Grievance Redress Mechanism	The borrower/client should establish a mechanism to receive and facilitate resolution of affected peoples' concerns, complaints and grievances about the project's environmental performance.	ReliancePowerLimitedGrievanceRedressalMechanism(GRM)followed for this project.GRMProcess isdiscussedChapter 11.

Table 3-2: Application of ADB Safeguard Policies to the Project

ADB Safeguard		Domiromonto	Project Information/
F	Policy Statement	Requirements	Application
6.	Monitoring and	The borrower / client should monitor and	Project specific monitoring
	Reporting	measure the progress of implementation of the EMP. The extent of monitoring activities should be commensurate with the project's risks and impacts. The borrower / client should prepare periodic monitoring reports that describe progress with implementation of the EMP and compliance issues and corrective actions, if any.	mechanism is developed and discussed in present ESIA report.
7.	Unanticipated Environmental Impacts	Where unanticipated environmental impacts become apparent during project implementation, the borrower / client should update the environmental assessment and EMP or prepare a new environmental assessment and EMP to assess the potential impacts, evaluate the alternatives, and outline mitigation measures and resources to address those impacts.	No such unanticipated impact is identified. However, If any unforeseen circumstances take place, corrective action should be taken by RBLPL.
8.	Biodiversity and sustainable natural resources management;	RBLPL should follow and need to identify measures to avoid, minimize, or mitigate potentially adverse impacts and risks and, as a last resort, propose compensatory measures, such as biodiversity offsets, to achieve no net loss or a net gain of the affected biodiversity.	The project site is devoid of any important ecological habitat.
9.	Pollution prevention and abatement;	During the design, construction, and operation of the project `the borrower / client should apply pollution prevention and control technologies and practices consistent with international good practice, as reflected in internationally recognized standards such as the World Bank Group's Environment, Health and Safety Guidelines.	Project is a combined cycle power plant, which is in itself a clean technology of power generation. Further, efforts should be made by RBLPL to minimize the project associated impacts.
10.	Health and safety;	RBLPL should provide workers with a safe and healthy working environment, taking into account risks inherent to the particular sector and specific classes of hazards in the work areas, including physical, chemical, biological, and radiological hazards. Borrower / client should take steps to prevent accidents, injury, and disease arising from, associated with, or occurring during the course of work by (i) identifying	RBLPL shall abide with National and International Safety Standards. Labour laws should be followed.

ADB Safeguard	Poquiromonto	Project Information/
Policy Statement	Requirements	Application
	and minimizing, so far as reasonably practicable, the causes of potential hazards to workers; (ii) providing preventive and protective measures, including modification, substitution, or elimination of hazardous conditions or substances; (iii) providing appropriate equipment to minimize risks and requiring and enforcing its use; (iv) training workers and providing them with appropriate incentives to use and comply with health and safety procedures and protective equipment; (v) documenting and reporting occupational accidents, diseases, and incidents; and (vi) having emergency prevention, preparedness, and response arrangements in place.	
11. Physical cultural resources	The borrower / client is responsible for siting and designing the project to avoid significant damage to physical cultural resources (Defined as movable or immovable objects, sites, structures, groups of structures, and natural features and landscapes that have archaeological, paleontological, historical, architectural, religious, aesthetic, or other cultural significance.	Proposed development does not likely to have any impact on cultural property / resources.
12. Involuntary resettlement;	Borrower / client should provide adequate and appropriate replacement land and structures or cash compensation at full replacement cost for lost land and structures, adequate compensation for partially damaged structures, and relocation assistance. The rate of compensation for acquired housing, land and other assets should be calculated at full replacement costs. The calculation of full replacement cost should be based on the following elements: (i) fair market value; (ii) transaction costs; (iii) interest accrued, (iv) transitional and restoration costs; and (v) other applicable payments.	Land is being provided by Bangladesh Power Development board for 25 Years of period. No purchase or acquisition of land is proposed for the project. Hence, project does not involve any involuntary displacement or resettlement.
13. Indigenous peoples;	Borrower / client should explore to the maximum extent possible alternative project designs to avoid physical relocation of Indigenous Peoples that shall result in	Land is being provided by Bangladesh Power Development board for 25 Years of period. No purchase

ADB Safeguard Policy Statement	Requirements	Project Information/ Application
	adverse impacts on their identity, culture,	or acquisition of land is
	and customary livelihoods. If avoidance is impossible, in consultation with ADB, a combined Indigenous Peoples plan and resettlement plan could be formulated to address both involuntary resettlement and	proposed for the project. Hence, project does not involve any involuntary displacement or resettlement.

3.6 **PROJECT CATEGORISATION**

3.6.1 ADB Categorization Criteria

193. The ADB Safeguard Policy Statement 2009 sets out the requirements for ADB's operations to undertake an environmental assessment for projects funded by the bank. The environmental assessment requirements for projects depend on the significance of impacts on the environment by the project. Each proposed project is scrutinized as to its type; location; the sensitivity, scale, nature, and magnitude of its potential environmental impacts; and availability of cost-effective mitigation measures.

194. A project is classified as one of the environmental categories (A, B, C, or FI).

Category A: A proposed project is classified as category A if it is likely to have significant adverse environmental impacts that are irreversible, diverse, or unprecedented. These impacts may affect an area larger than the sites or facilities subject to physical works. An ESIA is required.

Category B: A proposed project is classified as category B if its potential adverse environmental impacts are less adverse than those of category A projects. These impacts are site-specific, few if any of them are irreversible, and in most cases mitigation measures can be designed more readily than for category A projects. An IEE is required.

Category C: A proposed project is classified as category C if it is likely to have minimal or no adverse environmental impacts. No environmental assessment is required although environmental implications need to be reviewed.

Category FI: A proposed project is classified as category FI if it involves investment of ADB funds to or through a FI.

Categorization based on the Most Environmentally Sensitive Component.

195. Categorization is to be based on the most environmentally sensitive component. This means that if one part of the project is with potential for significant adverse environmental impacts, then project is to be classified as Category A regardless of the potential environmental impact of other aspects of the project. Of course only those aspects of the project with potential for significant adverse environmental impacts need to be assessed in detail. The scoping for the ESIA and the TOR for the ESIA report should focus on the significant environmental issues.

Basic Environmental Assessment Requirements

196. **Category A**. ESIA is required to examine the project's potential impacts, and to recommend an environmentally sound project by comparing all possible alternatives. Public consultation must be undertaken at least twice during the ESIA process, once during the early stage of the ESIA field studies and after the draft ESIA report has been prepared. The ESIA should recommend mitigation measures for minimizing the adverse impacts and identify environmental monitoring requirements. The mitigation measures and proposed monitoring are to be incorporated into the EMP. An ESIA report must be prepared following the recommended format in Appendix 2. The SESIA shall be circulated to the Board at least 120 days prior the Board consideration. The ESIA and SESIA are to be made available for public (and published it on ADB's web-site). The Borrower should translate the SESIA into the local language.

197. **Category B**. An IEE is required for Category B projects to determine whether or not significant environmental impacts warranting an ESIA are likely. If an ESIA is not needed, the IEE is regarded as the final environmental assessment report. Public consultation must be undertaken during the IEE process. An IEE report is required to follow the recommended format. For Category B projects deemed environmentally sensitive, the SIEE should be submitted to the Board at least 120 days prior to the Board consideration. In addition to the SIEE, IEE will be made available to Board members upon request. The Bank may make the SIEE available to locally affected groups and NGOs, upon request, through the Board Member of the DMC concerned, or through the Bank's Depository Library program, except where confidentiality rules would be violated.

198. **Category C**. No ESIA or IEE is required but environmental implications of the project still need to be reviewed and mitigation measures if any should be directly integrated into the project design.

199. **Category FI**. Environmental Assessment of the financial intermediation and equity investments is required. A due diligence assessment of the financial intermediary and its environmental management system (EMS) is required, except in the where the subproject involves only small loans with insignificant impacts. In the cases where there will be on lending through credit lines, an environmental assessment and review procedures for subprojects are required. The environmental assessment and review procedures are similar to that for sector loans and the requirements for public involvement, information disclosure, and in some cases, clearances by ADB apply.

A comparison between ADB and DOE requirements are given in the Table below:

	ADB	DOE		
Category	Requirements	Category	Requirements	
Category A	 ESIA to examine potential impacts 	Green	- No Environmental	
	 Public consultation (atleast twice during ESIA process) Recommendation of mitigation measures and proposed monitoring in EMP 		clearance is needed as project is pollution free - No environmental study is required	
Category B	- IEE is required to assess possible	Orange	- General information	

Table 3-3: comparison between ADB and DOE requirements

.

	ADB	DOE	
Category	Requirements	Category	Requirements
	impact - Public consultation to be incorporated in IEE - IEE report to be written in recommended format	A	 Process flow diagram ETP facilities.
Category C	 No EIA and IEE is required Environmental implication of the project is required to be reviewed Mitigation measures (if any) to be incorporated 	Orange B	 General information Process flow diagram ETP facilities.
Category FI	 Environmental Assessment of the financial intermediation and equity investments is required. A due diligence assessment of the financial intermediary and its environmental management system (EMS) is required. 	Red	 IEE report to be submitted followed by the ESIA report General information Process flow diagram ETP facilities.

ADB Checklist approach was followed for project categorization. The REA checklist as filled for the project is as follows.

Rapid E	Thermal Power Plant			
Country:	Bangladesh			
Project Title:	Environmental & Social Impact Assessment (ESIA) of Reliance Meghnaghat 750			
	MW Combined Cycle Power Plant At Meghnaghat,	Sonargaon, Narayanganj,		
	Bangladesh.			
Date:	April, 2017			

Screening Question	Yes	No	Remark
A. Project Siting			
Is the Project area adjacent to or within		Х	No ecologically sensitive areas viz.
any of the following environmentally			National Park, wildlife sanctuary etc. is
sensitive areas?			located within 10 km from the project site.
Cultural heritage site		Х	No cultural heritage in or nearby the
			project site.
Protected Area		Х	No legally protected area in or nearby
			vicinity of project site
Wetland		Х	No notified wetland system is available in
			or nearby the project site
Mangrove		Х	Project is located in Inland Area, no
			mangrove ecosystem in near vicinity of
			the project
Estuarine		Х	Project is located in Inland Area, no
			estuarine in near vicinity of the project
Buffer zone of protected area		Х	No buffer zone of protected is located

Screening Question	Yes	No	Remark
			within 5 km from the project site.
Special area for protecting biodiversity		Х	No special area of protecting biodiversity
			in or nearby the project site.
B. Potential Environmental Impacts	•		
Will the project cause			
Impairment of historical/cultural		Х	No impairment will be happened to any of
monuments and other areas, and			the historical structures.
loss/damage to these sites?			
Encroachment into precious ecosystem		Х	Proposed project site is located in a plot
(e.g. sensitive habitats like protected			area earmarked for Industrial
forest areas or terrestrial wildlife			development. There is no encroachment
habitats?			of sensitive habitats like protected forest
			areas or terrestrial wildlife sanctuary
			habitats.
Dislocation or involuntary resettlement of		Х	There is no dislocation or involuntary
people?			resettlement of people due to the
			proposed project as no land acquisition is
			required. Land is already available for the
			establishment of the project by the
			government
Disproportionate impacts on the poor,		X	No such impact is anticipated
women and children, Indigenous Peoples			
or other vulnerable groups?		X	
Aesthetic degradation and property value		X	Project shall improve aesthetic view of the
			project area
Bisks and vulnerabilities related to	×		All Occupational health and Safety Pisk
occupational health and safety due to	^		shall be concerned with high priority
physical chemical biological and			including all the plant safety practices
radiological hazards during project			including an the plant safety practices
construction and operation?			
Noise and dust from construction	Х		Emission of fugitive dust is expected due
activities?			to construction activities. Regular water
			sprinkling shall be done to minimize it.
			Noise barriers shall be implemented to
			minimize the impact in nearby areas.
Short-term soil erosion and silt runoff due	Х		No such activity is expected
to construction?			
Fugitive dust during transportation,		Х	The project is a gas-fired combined cycle
unloading, storage, and processing of			plant consist of two gas turbines
coal, and polluted runoff from coal			
storage?			
Risk of oil spills, which could pollute	Х		The waste oil will be properly collected
surface and groundwater and soil?			and will be supplied /sold to the venders
			or the Lube Oil Re-cycling plants
			approved by DoE.
Hazards in gas pipeline operation and	Х		Hazard is expected within the project

Screening Question	Yes	No	Remark
gas storage at power plant sites?			premises and proper safety measures will
			be implemented.
Changes in flow regimes downstream of	Х		Water is required for cooling purposes of
the water intake due to abstraction for			different plant units so there may be some
cooling purposes?			changes in flow regimes downstream of
			water
Pollution of water bodies and aquatic		Х	Sewage will be treated in septic tank with
ecosystem from wastewater treatment			soak pit. Wastewater generated from
plant for boiler feed, bleed-off from			plant activities shall be treated in ETP and
cooling towers, boiler blowdown and			treated water is discharged in plant drain.
wash-water, and effluent from ash pond?			
Air pollution from fuel gas discharged	Х		The project is a gas based thermal power
into the atmosphere?			plant. Air pollution from the project will not
			be any significant.
Public health and safety hazards due to		X	Solid waste will be disposed of in sanitary
solid waste disposal in sanitary landfills?			landfill site only.
Large population influx during project	Х		During construction phase human
construction and operation that causes			resource requirement will be around 300-
increased burden on social infrastructure			400. Labour requirement for construction
and services (such as water supply and			phase shall be met locally as much as
sanitation systems)?			possible. I neretore, significant impact on
			local infrastructure is not anticipated. The
			operation phase numan resource
			is not likely to have any impact of least
			is not likely to have any impact of local
Social conflicts if workers from other		×	No such conflicts is expected as labour
regions or countries are bired?		^	requirement shall be meet through local
			nersons
Risks community safety due to the		X	No such risks is expected during
transport, storage, and use and/or		~	construction or operation phase
disposal of materials such as explosives.			
fuel and other chemicals during			
construction and operation?			
Community safety risks due to both	Х		Community safety risks shall be avoided
accidental and natural hazards,			with the help of best industrial practices.
especially where the structural elements			Best safety methods shall be adopted
or components of the project (e.g. ash			within the plant premises for the safety of
pond) are accessible to members of the			employees, workers and labours.
affected community or where their failure			
could result in injury to the community			
throughout project construction,			
operation and decommissioning?			

A Checklist for Preliminary Climate Risk Screening		Thermal Power Plant
Country:	Bangladesh	
Project Title:	Environmental& Social Impact Assessment (ESIA)	of Reliance Meghnaghat
	750 MW Combined Cycle Power Plant At N	leghnaghat, Sonargaon,
	Narayanganj, Bangladesh.	
Sector	Energy	
Sub Sector	Thermal	
Department	Regional	

Screening Que	stion	Score	Remark
Location and Design of project	Is siting and/or routing of the project (or its components) likely to be affected by climate conditions including extreme weather related events such as floods, droughts, storms, landslides?	0	The project is located in a flood risk zone. The elevation of the project site was finished to approximately +7.0 m above MSL which is 0.3 meters above the 100 years flood line. Project area has a severe condition regarding flood. The project is located about 7.65 m distance from the HFL of the river. However, there is no record of cyclones and landslide in the project area. Cyclone risk area of Bangladesh is shown in Annexure 3.2 .
	Would the project design (e.g. the clearance for bridges) need to consider any hydro- meteorological parameters (e.g., sea-level, peak river flow, reliable water level, peak wind speed etc)?	1	The river Meghna is flowing beside the project area. The peak river flow needs to be considered.
Materials and Maintenance	Would weather, current and likely future climate conditions (e.g. prevailing humidity level, temperature contrast between hot summer days and cold winter days, exposure to wind and humidity hydro- meteorological parameters likely affect the selection of project inputs over the life of project outputs (e.g. construction material)?	0	The climate of project area is tropical which is mainly dry except in rainy season. There is no much difference in summer and winter temperature.
	Would weather, current and likely future climate conditions, and related extreme events likely affect the maintenance (scheduling and cost) of project output(s)?	0	The project life cycle is about 25 years only. Present or future climate conditions are not expected to impact project maintenance.

Screening Question		Score	Remark
Performance of project outputs	Would weather/climate conditions and related extreme events likely affect the performance (e.g. annual power production) of project output(s) (e.g. hydro-power generation facilities) throughout their design	0	The project life cycle is about 25 years only. Weather/climate conditions are not expected to affect the output of the project during design life time.
	life time?		

3.6.2 **Project Categorization**

200. Based on site specific environmental and social impacts assessment and checklist as stated in above section, the major observations of the proposed project are as follows.

- Land for the project is being provided by BPDB. Hence, no involuntary resettlement is proposed for the project.
- No Schedule Tribes or Indigenous Population is likely to be affected by the project.
- No ecologically sensitive areas like national parks, wildlife sanctuaries, scheduled areas or critically polluted area is located within 10 km from the project site.
- Identified site is devoid of any natural forest or ecology of great concern. Hence no significant impact on ecological balance of the area is expected.

201. On the basis of social screening project is a Category C project. However, there will be some environmental impact during construction as well as operation phase. During the construction as well as operation phase of the Project, the key Environmental issues are noise and dust generation. There is also a risk of contamination of soil, groundwater and Meghna river water from accidental spills and leaks of hazardous materials (e.g. oil) during handling, transportation, and storage at the site. On the basis of anticipated environmental and social impact assessment the project is categorized as 'Category A'.

3.7 APPLICABLE ENVIRONMENT STANDARDS

3.7.1 Ambient Air Quality Standards

202. The ambient air quality standards shall be applicable only during the construction phase of the project and the wastewater discharges from the project during both construction and operation phases shall be as per the general discharge standards as sector specific standards are not available for thermal power projects.

203. Standards for Ambient Air Quality shall be applicable for construction phase only as no air major polluting process is expected during operation phase of the project.

204. Ambient Air Quality Standards (AAQS), as notified under Environment Conservation Rules 1997 and revised through Environment Conservation Rules Amendment Rules, 2005 are given in **Table 3-4**below.

	Time	Concentration in Ambient Air	
Pollutant	Weighted Average	Industrial, Residential, Rural and other Areas (μg/m³)	
Sulphur Dioxide (SO ₂), µg/m ³	Annual*	80	
	24 Hours**	365	
Nitrogen Dioxide (NO ₂), µg/m ³	Annual*	100	
Particulate Matter (size less than 10 µm) or	Annual*	50	
ΡΜ10, μg/m ³	24 Hours**	150	
Particulate Matter (size less than 2.5 µm) or	Annual*	15	
PM2.5, μg/m ³	24 Hours**	65	
Ozone (O ₃), μg/m ³	8 Hours**	235	
	1 Hour**	157	
Lead (Pb), µg/m ³	Annual*	0.5	
Carbon Monoxide (CO), mg/m ³	8 Hours	10	
	1 Hour**	40	

Table 3-4: National Ambient Air Quality Standards

Source: ECR, 1997 (Amendment, 2005)

* Not to be exceeded more than once per year

*Annual average value will be less than or equal to 50 microgram/cubic meter (Ga) Average value of 24 hours will be less or equal to 150 microgram/cubic meter for one day each year.

* Maximum average value for every one hour each year will be equal or less than 0.12 ppm

205. The WHO Ambient Air Quality Guidelines are presented in **Table 3-5**.Standard for gaseous emission from industries is highlighted in **Table 3-6**.

Table 3-5: WHO Air Quality Guidelines

Pollutant	Averaging Period	Guideline Value in µg/m³	
Sulphur Dioxide (SO ₂)	24 hour	125 (Interim target-1)	
		50 (Interim target-2)	
		20 (guideline)	
	10 minute	500 (guideline)	
Nitrogen dioxide (NO ₂)	1 year	40 (guideline)	
	1 hour	200 (guideline)	
Particulate Matter PM ₁₀	1 year	70 (Interim target-1)	
		50 (Interim target-2)	
		30 (Interim target-3)	
		20 (guideline)	
	24 hour	150 (Interim target-1)	
		100 (Interim target-2)	
		75 (Interim target-3)	
		50 (guideline)	
Particulate Matter PM _{2.5}	1 year	35 (Interim target-1)	
		25 (Interim target-2)	
		15 (Interim target-3)	

Pollutant	Averaging Period	Guideline Value in μg/m ³	
		10 (guideline)	
	24 hour	75 (Interim target-1)	
		50 (Interim target-2)	
		37.5 (Interim target-3)	
		25 (guideline)	
Ozone	8 hour daily maximum	160 (Interim target-1)	
		100 (guideline)	

Table 3-6: Standards for Gaseous Emission from Industries

Parameters for power plant (<200 MW)	Standard present	
Oxides of Nitrogen	(82mg/NM3) 40 ppm*	
Oxides of Nitrogen	(51 mg/NM3) 25 ppm** at Dry Gas, Excess O2 Content 15%)	

Source: * - ECR- Schedule 11, ** - IFC EHS Guideline, 2008 Table No.6.(b)

3.7.2 Water Quality Standards

206. The designated best use classification as prescribed by DoE for surface water is as given in **Table 3-7. Table 3-8 and Table 3-9**highlight standards for drinking water and IFC treated sewage discharge guideline.

Table 3-7: Primary Wate	r Quality Criteria for	Designated-Best-Use-Classes
-------------------------	------------------------	-----------------------------

Parameters	Unit	Inland Surface Water Quality Standards
Temperature	Centigrade	40
Biological Oxygen Demand (BOD ₅) at 20 ⁰ C	mg/l	50
Chemical Oxygen Demand (COD)	mg/l	200
Dissolve Oxygen (DO)	mg/l	4.5-8
Total Dissolved Solids (TDS)	mg/l	2,100
рН	-	6-9
Suspended Solid (SS)	mg/l	150
Nitrate	mg/l	10.0
Arsenic	mg/l	0.2
Lead	mg/l	0.1
Chloride	mg/l	600
Iron	mg/l	2
Manganese	mg/l	5
Copper	mg/l	0.5
Oil & Grease	mg/l	10

Source: ECR, Schedule-10

Table 3-8: Standards for Drinking Water

Parameters	Unit	DoE (Bangladesh) Standard for drinking water
рН	-	6.5-8.5
Hardness(as CaCO ₃)	mg/L	200-500
Iron	mg/L	0.3-1.0
Chloride	mg/L	150-600
Arsenic	mg/L	0.05
Residual chlorine	mg/L	0.2
Total Coliform	n/mL	0
Fecal Coliform	n/mL	0
Ammonia	mg/L	0.5
Nitrate	mg/L	10
Phosphate	mg/L	6

Source: ECR, Schedule - 3

Table 3-9: Treated Sewage Discharge Guideline IFC

S. No.	Parameter	Guideline Value
1	рН	6-9
2	BOD	30 mg/l
3	COD	125 mg/l
4	Total Nitrogen	10 mg/l
5	Total Phosphorus	2 mg/l
6	Oil and Grease	10 mg/l
7	Total Suspended Solids	50 mg/l
8	Total Coliform bacteria	400 MPN/100 ml

Notes: MPN = Most Probable Number

3.7.3 Ambient Noise Standards

207. Noise standards notified by the MoEF under Environment Conservation Rules, 1997 based on the A- weighted equivalent noise level (Leq) are as presented in **Table 3-10**. Ambient noise standard by IFC is highlighted in **Table 3-11**.

Table 3-10: Ambient Noise Standards

Areas	Day Time (dB A)	Night Time (dB A)
Silence Zone: Zone A	50	40
Residential Area: Zone B	55	45
Mixed Activity Area: Zone C	60	50
Commercial Area: Zone D	70	60
Industrial Area	75	70

208. The second column of limits values refer to day time (06.00 to 21:00) and the third column to night time (21.00 to 06.00). A silence zone is defined as an area within 100m, around hospitals or educational institutions.

Table 3-11:	Ambient	Noise	Standards	by IFC
-------------	---------	-------	-----------	--------

Becentor	One Hour Leq (dBA)			
песеріоі	Day Time (07:00 – 22:00)	Night Time (22:00 – 07:00)		
Residential, Educational, Institutional	55	45		
Industrial and Commercial	70	70		

209. Noise standards in the work environment are specified by Occupational Safety and Health Administration (OSHA-USA) (**Table 3-12**) which in turn is being enforced by Government of Bangladesh(GoB) through model rules framed under the Factories Act.

Total Time of Exposure per Day in Hours (Continuous or Short term Exposure)	Sound Pressure Level in dB(A)
8	90
6	92
4	95
3	97
2	100
3/2	102
1	105
3⁄4	107
1/2	110
1/4	115
Never	>115

Table 3-12: Standards for Occupational Noise Exposure

No exposure in excess of 115 dB(A) is to be permitted.

3.7.4 Labor Management Acts

3.7.4.1 The Factories Act, 1965 and the Factories Rules 1979

210. This act is generally applicable to any `factory'. `Factory' means any premises including the precincts thereof whereon 10 or more workers are working or were working on any day of the preceding twelve months and in any part of which a manufacturing process is being carried on with or without the aid of power, but does not include a mine.

211. This act defines worker as "a person employed in any manufacturing process or in cleaning any part of the machinery or premises used for a manufacturing process, or in any other kind of work incidental to or connected with, the manufacturing process, but does not include any person solely employed in clerical capacity in any room or place where no manufacturing process is carried on".

212. Manufacturing process as defined by the act stands for any process for -

- A. Making, altering, repairing, ornamenting, painting and washing, finishing, or packing, or otherwise treating any articles or substances with a view to its use, sale, transport, delivery, display or disposal. Or
- B. Pumping oil, gas, water, sewerage or other fluids or slurries. Or
- C. Generating, transforming or transmitting power or gas. Or

ReLIANCE

- D. Constructing, reconstructing, repairing, refitting, finishing or breaking up of ships or vessels. Or
- E. Printing by letter press, lithography, photogravure or other similar work or bookbinding which is carried on by way of trade or for purposes for gain or incidental to another business so carried on.

213. This act prescribes the requirements of safety and health to be maintained, and covers:

- a) Maintenance of standards of cleanliness.
- b) Adequate lighting, ventilation & temperature.
- c) Control of elements hazardous to health like dusts, gases, fumes, etc. associated with particular operations.
- d) Requirement of certificate of fitness for young persons from certifying surgeons.
- e) Requirement of periodical medical examination for persons engaged in hazardous operations.
- f) Requirement for making available adequate first-aid facilities.
- g) Requirement of a dispensary manned by a medical practitioner for units employing 500 or more workers.
- h) Length of working hours & night work for young persons and women, and prohibition of employment for operating dangerous machines
- i) Prohibition of employment of women and children near cotton openers
- j) Requirement of precaution against fire and explosions.
- k) Requirement of fencing and guarding of machinery, casing of new machinery
- Requirement for work on or near machinery in motion, striking gear and devices for cutting off power, self-acting machine
- m) Requirement for cranes and other lifting machinery, hoist and lift, revolving machinery, pressure plant
- n) Requirement of safety measures for buildings.
- o) Requirement of precautions against dangerous fumes.
- p) Maximum weight to be lifted carried or moved by adult men, women and young persons.
- Requirement for floors, stairs and means of access; pits, sumps, opening in floors, etc.
- r) Requirement for protection of eyes
- s) Requirement for explosive or inflammable dust, gas, etc.
- t) Reporting of accidents and occupational diseases.
- u) Sanitary conveniences- requirement of latrine, urinals, spittoons, drinking water

- v) Requirement of canteen, eating place, washing facilities, rest room, child room
- w) Requirement for appointment of welfare officer for units employing 500 or more workers.

Responsible authorities-

214. Department of Inspection for Factories and Establishment under the administrative control of the Ministry of Labor and Manpower is responsible for enforcement of the legislation. It is the responsibility of the employer to provide facilities to employees as asked for by the law and it is the obligation of the workers to abide by the provisions of the Act.

3.7.4.2 Workmen's compensation Act, 1923, and rules thereunder

215. This act has been last amended in 1987 and applies to factories, docks, construction work, railways, transport workers, excavation, gas and electricity workers, etc.

216. It holds liable an employer to pay compensation for death and injury or disablement caused by accident arising out of and in the course of employment. And it considers contraction of occupational diseases peculiar to the nature of the work done as an injury like accident.

217. The act provides –

- A list of injuries that is considered to result in permanent partial disablement.
- A list of persons considered as workmen.
- A list of occupational diseases, and includes a list of employments for the purpose of such diseases.
- Means of calculating compensation payable for disablement or death.

Responsible authorities-

218. Department of Inspection for Factories and Establishment is responsible for enforcement of the legislation.

219. The Chairman of the Labor courts is also the Commissioner of Workers' Compensation.

220. **Comment-**The act covers a wide range of workers spells that the employer is not liable for compensation if workers remove or disregard any safety guard or devices provided for securing safety.

3.7.5 Bangladesh Explosive Act, 1884

221. Power to make rules as to licensing of the manufacture, possession, use, sale, transport and importation of explosives:

222. Rules under this section may provide for all or any of the following, among other matters, that is to say:-

- a) The authority by which licenses may be granted;
- b) The fees to be charged for licenses, and the other sums (if any) to be paid for expenses by applicants for licenses;

- c) The manner in which applications for licenses must be made, and the matters to be specified in such applications;
- d) The form in which, and the conditions on and subject to which, licenses must be granted;
- e) The period for which licenses are to remain in force; and
- f) The exemption absolutely or subject to conditions of any explosives from the operation of the rules.

223. Rules made under this section may impose penalties on all persons manufacturing, possessing, using, selling, transporting or importing explosives in breach of the rules, or otherwise contravening the rules:

- (a) In the case of a person so manufacturing, using or importing an explosive, an imprisonment for a term which may extend to ten years and shall not be less than two years, and also a fine which may extend to fifty thousand Taka in default of which a further imprisonment for a term which may extend to one year,
- (b) In the case of a person so selling or transporting an explosive, an imprisonment for a term which may extend to seven years and shall not be less than one year and also a fine which may extend to thirty thousand Taka in default of which a further imprisonment for a term which may extend to one year,
- (c) In the case of a person so possessing an explosive, an imprisonment for a term which may extend to five years and shall not be less than six months, and also a fine which may extend to twenty thousand Taka in default of which a further imprisonment for a term which may extend to six months,
- (d) In any other case, an imprisonment for a term which may extend to two years and shall not be less than three months, and also a fine which may extend to ten thousand Taka in default of which a further imprisonment for a term which may extend to three months.

3.8 OTHER LEGISLATIONS

3.8.1 Environmental and Social Guidelines of the International Finance CorporationIFC/WB group

224. As a member of the World Bank Group, the International Finance Corporation (IFC) has the environmental and social guidelines for projects funded by it following those of the World Bank. The World Bank procedures for EA study cover policies, guidelines and good practices. Such guidelines therefore follow the national best practices in undertaking any development project in Bangladesh. The environment safeguards policies applicable to the proposed project are the following:

225. **Environmental Assessment (EA) (OP 4.01/BP/GP 4.01):** An Environmental Assessment isconducted to ensure that IFC-financed projects are environmentally sound and sustainable, and that decision-making is improved through appropriate analysis of actions and of theirlikely environmental impacts. Any IFC-funded project that is likely to have potentialadverse environmental risks and impacts in its area of influence requires an EA
indicatingthe potential risks, mitigation measures and environmental management framework or plan.

226. **Natural Habitats (OP/BP 4.04):** Natural habitats are land and water areas where most of theoriginal native plant and animal species are still present. Natural habitats comprise manytypes of terrestrial, freshwater, coastal, and marine ecosystems. They include areas lightlymodified by human activities, but retaining their ecological functions and native species. The Natural habitats policy is triggered by any project (including any subproject under aspector investment or financial intermediary loan) with the potential to cause significant conversion (loss) or degradation of natural habitats, whether directly (through construction)or indirectly (through human activities induced by the project). The policy has separaterequirements for critical (either legally or proposed to be protected or high ecologicalvalue) and non-critical natural habitats. World Bank's interpretation of "significant conversion or degradation" is on a case-by-case basis for each project, based on theinformation obtained through the EA.

227. *Forestry (OP/GP 4.36)*: This policy is triggered by forest sector activities and World Banksponsoredother interventions, which have the potential to impact significantly uponforested areas. The World Bank does not finance commercial logging operations but aimsto reduce deforestation, enhance the environmental contribution of forested areas, promoteafforestation, reduce poverty and encourage economic development.

228. **Cultural Property (OPN 4.11):** Physical cultural resources are defined as movable orimmovable objects, sites, structures, groups of structures, natural features and landscapesthat have archaeological, paleontological, historical, architectural, religious, aesthetic, orother cultural significance. Physical cultural resources may be located in urban or ruralsettings, and may be above ground, underground, or underwater. The Bank seeks to assistcountries to manage their physical cultural resources and to avoid or mitigate adverseimpact of development projects on these resources. This policy is triggered for any projectthat requires an EA.

229. **Policy on Disclosure of Information, 2002:** There are disclosure requirements at every partof the project preparation and implementation process. Consultation with affected groupsand local community should take place during scoping and before Terms of references(ToRs) are prepared; when the draft EA is prepared; and throughout project implementationas necessary. The Borrower makes the draft EA and any separate EA report available incountry in a local language and at a public place accessible to project-affected groups andlocal community prior to appraisal.Besides, IFC has set out 8 (eight) performance standards in respect of various parameterspertaining to a proposed project. These eight performance standards of IFC with their corresponding parameters as under:

- Performance Standard 1: Social and Environmental Assessment and Management System
- Performance Standard 2: Labour and Working Conditions
- Performance Standard 3: Pollution Prevention and Abatement
- Performance Standard 4: Community Health, Safety and Security
- Performance Standard 5: Land Acquisition and Involuntary Resettlement

- Performance Standard6: Biodiversity Conservation and Sustainable Natural ResourceManagement
- Performance Standard 7: Indigenous Peoples
- Performance Standard 8: Cultural Heritage.

230. Of the above eight performance standards set by IFC, the Performance Standard 1 envisagesestablishing the importance of: (i) integrated assessment to identify the social andenvironmental impacts, risks and opportunities; (ii) effective community engagement through disclosure of project-related information and consultation with local communities on matters that directly affect them; and (iii) the client's management of social and environmentalimpacts throughout the life of the project. The rest seven of the performance standards, i.e., Performance Standards 2 through 8 seek to ascertain establishing requirements to avoid, reduce, mitigate or compensate the impacts on people and the environment, and to improve conditions where appropriate.

3.9 ENVIRONMENTAL CLEARANCE

231. Formal ESIA guidelines in Bangladesh are set out in "Rules and Regulations under the 1995 Environmental Protection Acts" as published in the official Gazette on August 27, 1997. Any proponent planning an industrial project is currently required under Paragraph 12 of the Environmental Protection Acts, 1995 to obtain "environmental clearance letter:" from the Department of Environment.

232. The first to obtain environmental clearance is for the project proponent to complete & submit an application form which may be obtained from the appropriate DoE regional offices as per the category. The application is accompanied by other supporting documents (i.e. project profile, lay-out plan, NOC from local authority, Govt fees etc.) reviewed by the divisional and district offices of DOE who has the authority to request supporting documents as applicable. The divisional office has the power to take decision on Green and Amber-A & B category projects and the Red category projects are forwarded to head office for approval. The proposed projects receive an environmental site clearance at the beginning and the environmental clearance subject to the implementation of the project activities and all mitigation measures suggested in the IEE report or in the application. In case of Red category, the client needs to submit an IEE report for site clearance and ESIA to obtain ESIA approval and environmental clearance.

3.10 POWER SCENARIO AND MASTER PLAN IN BANGLADESH

233. Power and energy are vital factors that determine the growth path of a developing country like Bangladesh whereas; electricity is the major source of power for country's most of the economic activities. Consistent supply of power and energy can ensure development of the economy. Nonetheless the huge demand supply gap prevailing in the power sector has turned out to be a hurdle for the economic expansion of the nation.

234. The per capital electricity consumption in Bangladesh remains one of the lowest in the Asian region, At present, only about 47% of the total population of Bangladesh has access to electricity. Even though power has reached many urban areas, approximately 53,000 of the 68,000 villages are connected to power. Further, one million retail electricity connections are pending. The contribution of power sector to GDP ratio has been stagnant

Reli

around 1.3% for last 5 years with the power generation being increased annually by 2.8% during this period. The majority of power produced in the country is used for commercial purposes. Hence, the electricity supply to households remains delicate which is also a politically sensitive issue. The demand for electricity in the rural areas has experienced significant growth over the years mainly driven by agriculture and small & medium enterprises.

235. According to Bangladesh Power Development Board (BPDB) presently the installed capacity as on December 2013 in the power sector is 10,213.00 MW, whereas the derated generation capacity is 9,599.00 MW. According to a demand projection analysis, the peak electricity demand is 9,268 MW in 2014, 10,283 MW in 2015 and 11,405 MW in 2016. So, the generation of electricity should be increased for the following years to fulfill the upcoming increasing demands.

236. Because of the critical nature, the Government of Bangladesh has given highest priority to the power sector to enhance the generation capacity. BPDB has come up with a comprehensive plan to meet the surging demand in power. Accordingly, the government plans to eliminate the demand supply gap and achieve the ultimate goal of providing "electricity to all" by 2021 by having generation capacity of 20,000 MW. To ensure overall and balanced development of the sector government has devised immediate, short term, medium term and long term generation plans. The plans have been developed based on a techno-economic analysis and least cost options.

237. However, the timely implementation of above plans is a concern as there are issues with regards to availability of finance, competency of project sponsors and inherent bureaucracies and other bottlenecks in the system. Further, the demand estimates for power may also be understated to some extent. Strategies have been made to meet the investment requirement by involving private sector with Government through Public Private Partnership (PPP) initiatives. A successful IPP model has been designed with a lot of comforts and protection to investors.

3.11 INSTITUTIONAL STRUCTURE OF POWER SECTOR IN BANGLADESH

238. Power Division is responsible for formulating policy relating to power and supervise, control and monitor the developmental activities in the power sector of the country. To implement its mandate, the Power Division is supported by a number of organizations, related with generation, transmission and distribution. The overall organizational structure and linkage is shown below:

Figure 3.1: Institutional structure of Power Sector in Bangladesh

3.12 CONCLUSION

239. Reliance Bangladesh LNG and Power Limited proposes for development of a 750 Megawatt (MW) gas based combined cycle power plant (CCPP) project at Village Meghnaghat, sub-district Sonargaon, District Narayanganj, Bangladesh. The project requires evaluating the environmental and social risks associated with the project and to implement mitigation measures to avoid adverse impacts during the project lifecycle. The proposed Project is covered under several environmental Policies & legislations pertained with national as well as international regulations. In addition to ADB guidelines, the project should also comply with the applicable International Finance Corporation (IFC) / World Bank (WB) guidelines, local laws and regulations relating to the environment, social issues and occupational health and safety matters.

4 DESCRIPTION OF ENVIRONMENT AND SOCIAL BASELINE

240. Baseline data generation forms an integral part of ESIA study and helps to evaluate the predicted impacts on the various environmental and social attributes in the study area by using scientifically developed and widely accepted environmental and social impact assessment methodologies. Baseline data is also required in preparing an Environmental Social Management Plan (ESMP) outlining the measures for improving the environment quality and scope of future expansions for sustainable development.

4.1 STUDY AREA, PERIOD AND METHODOLOGY

241. Area of 5 km radius from the project site has been considered as study area for the project, as shown in **Figure 4-1**. The baseline study has been conducted during September-December, 2016. The relevant functional area experts undertook a reconnaissance survey of the proposed site and surroundings in order to understand the environmental and social setting of study area. It is confirmed that there is no other proposed industrial development in air shed the and all the industries listed in the Table 2.2 were in operational condition within the airshed during the baseline study period. The reconnaissance survey has been undertaken followed by primary baseline data generation for environment and social aspects of the study area. The baseline Environmental monitoring was done through Adroit Environment Consultants following the standard procedure of sampling and analysis as per the guideline of Government of Bangladesh. Standard QA/QC are followed. Primary environment monitoring and secondary data collection were undertaken as detailed in **Table 4-1**.

S. No.	Attributes	Parameters	Source and Frequency
1.	Ambient Air Quality	$PM_{10}, \ PM_{2.5}, \ SO_2, \ NO_X \ ,$	Twosampleperweekat Six (6)locationsfrom
		CO , SPM	September to December
2.	Meteorology	Wind speed and direction,	a] Continuous hourly recording through
		temperature, relative	setting up of site meteorological station;
		humidity and rainfall	b] Data collected from secondary sources
			like Meteorological Station.
3.	Water quality	Physical, Chemical and	Once during the study period at 6 locations
		Bacteriological	(for 3 ground water and 3 surface water)
		parameters	
4.	Ecology	Existing terrestrial and	Primary inventory through site survey and
		aquatic flora and fauna	secondary data from forest office
		within 10-Km radius	
		circle.	
5.	Noise levels	Noise levels in dB(A)	Once during study period continuously for
			24 hours through field visits at 6 locations
6.	Soil Characteristics	Physical and Chemical	Once at 4 locations during study period
		parameters	
7.	Land use	Existing land use for	Based on BPDB information and satellite
		different categories	imagery

Table 4-1: Attributes of Environment Data

S. No.	Attributes	Parameters	Source and Frequency
8.	Socio-Economic	Socio-economic and	Based on data published in latest census
	aspects	demographic	
		characteristics, worker	
		characteristics	
9.	Hydrology	Drainage area and	Based on data collected from secondary
		pattern, nature of	sources
		streams, aquifer	
		characteristics, recharge	
		and discharge areas	
10	Geology	Geological history	Based on data collected from secondary
			sources
11	Risk assessment,	Identify areas where	Based on assessment
	Disaster	disaster can occur and	
	Management Plan	identify areas of	
	and Occupational	occupational hazards	
	Health and Safety		

4.1.1 **Climate**

242. The climate of the area is tropical, with monsoons, characterized by a change of four seasons: pre-monsoon (March to May), monsoon (June to September), post-monsoon (October to November) and dry season (December to February). The normal average annual rainfall of the district is 2347 mm (Dhaka IMD Station). High air temperature is observed all throughout the year; daily air temperature variations are insignificant; air humidity is high with abounding rains. Typical parameters of the weather elements, as recorded for the period of last few years of observations (2007-2015) at Dhaka Meteorological Station are presented from **Table 4-2 to 4-4**.

4.1.1.1 Rainfall

243. The south west monsoon during the month of June, July, August and September chiefly contributes the rainfall for the area. The annual rainfall is about 2347mm and approximately 60% of it occurs during the monsoon (June- September). Average monthly rainfall during monsoon period varies between 300 mm to 400mm. The maximum monthly rainfall is occurs in the month of July whereas minimum monthly rainfall occurs in January.

244. The rainfall follows the general climate pattern with the highest rainfall during monsoon period whereas minimum rainfall in the cooler and drier months of November, December and January. Average monthly rainfall values for Dhaka (As there is no Meteorological station in Narayanganj) area since 2001 are presented in **Table 4-2** and shown in **Figure 4-2**.

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

ESIA Report

Figure 4.1: Area of Influence

Year	Rainfall in mm											
	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
2015	3	17	4	166	185	375	623	395	346	51	0	1
2014	0	12	10	80	147	342	212	391	156	49	0	0
2013	0	8	26	32	378	325	302	212	172	131	0	4
2012	10	1	37	269	137	175	226	282	81	38	68	5
2011	0	0	20	123	235	314	356	409	207	112	0	0
2010	0	48	22	37	177	308	167	340	169	174	0	81
2009	1	1	43	14	168	170	676	482	298	74	4	0
2008	23	56	45	91	205	577	563	319	279	227	0	0
2007	0	30	11	163	185	628	753	505	179	320	0	0
2006	0	0	0	181	185	326	331	167	663	61	5	0
2005	1	3	155	91	291	259	542	361	514	417	3	0
2004	0	0	9	167	162	496	295	191	839	208	0	0
2003	0	25	96	123	140	473	191	202	264	134	0	45
2002	22	4	51	111	272	373	446	272	156	52	36	0
2001	0	1	33	46	402	386	202	205	209	177	18	0

Table 4-2: Monthly Average Rainfall in the project area (2001-2015)

Source: BMD

Source: BMD

4.1.1.2 Relative Humidity

245. As would be expected, relative humidity during the wet season is significantly higher than those occurring at other period of the year. The relative humidity varies from 50%-80%. This is well depicted by the data as detailed in the **Table 4-3** and shown in the **Figure 4-3** for relative humidity of Dhaka (As there is no Meteorological station in Narayanganj) during the period 2006-2015.

Humidity in %		Monthly Mean Humidity											
Year	Jan.	Feb.	Mar.	Apr.	Мау	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
2006	69	65	53	67	72	81	80	77	80	76	68	69	71
2007	68	68	54	69	70	81	84	80	80	78	77	69	73
2008	69	61	67	64	70	80	83	81	81	77	69	79	73
2009	72	55	53	66	72	74	80	82	81	73	66	69	70
2010	71	56	59	67	71	79	77	78	79	74	68	66	70
2011	69	54	57	64	76	80	79	82	77	73	67	73	70
2012	66	52	57	69	70	77	79	78	79	71	68	77	70
2013	65	55	55	63	78	76	77	80	81	78	66	72	70
2014	72	62	52	56	68	78	77	82	76	72	66	77	69
2015	70	63	52	68	71	77	81	79	78	73	69	68	70

Table 4-3: Average Monthly Relative Humidity of the Project Area (2006-2015)

Source: BMD

Source: BMD

4.1.1.3 Wind Speed

246. Generally, calm to very light winds prevails throughout the year. According to Bangladesh Meteorological Department the average wind speed at Dhaka (As there is no Meteorological station in Narayanganj) varies from 2.4 knots to 3.4 knots. The maximum average wind speed in observed in the month of March. The season wise wind rose for the period of 1981-2010 as sketched for the BMD Station is shown as **Figure 4-4**.

ESIA Report

Year	Jan.	Feb.	Mar.	Apr.	Мау	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
2006	3.0 N	3.6 S	5.0 NNW	3.8 S	3.8 S	2.1 S	2.2 SE	4.5 SE	5.4 SE	2.3 N	2.1 NW	2.4 NW
2007	2.9NW	3.1NW	4.2NW	3.8S	3.5S	3.1S	3.1S	3.1S	3.2S	4.1NE	5.5NE	2.9NW
2008	3.6N	3.2N	3.8S	3.4S	3.4S	3.3S	3.4S	2.8S	2.8S	9.6NE	2.5NE	3.3W
2009	3.3W	4.1W	4.0W	4.1S	3.8S	3.1 S	4.3SE	2.8S	4.2SE	2.3E	2.8N	2.4NW
2010	2.9NW	3.3W	3.8S	4.1S	3.7S	3.0S	2.4S	2.2S	2.6SE	2.0NE	2.9N	2.4N
2011	2.2W	2.4W	3.8S	2.4S	3.0S	2.7SE	2.4SE	2.4SE	2.6SE	2.0NW	2.3W	2.1NW
2012	2.4W	3.0W	2.5S	2.6S	2.5S	3.0S	2.7SE	2.5SE	2.2E	2.0S	2.2W	2.3W
2013	2.3W	2.2W	2.6W	2.8S	3.2E	2.3S	2.7SE	2.7SE	2.2S	2.9SE	2.1N	2.3W
2014	2.5 W	2.5 W	2.4 NW	2.2 S	2.8 S	2.1 S	2.4 SE	2.4 SE	2.1 SE	2.1 W	2.1 W	2.2 W
2015	2.2 W	2.4 W	2.2 W	2.5 S	2.3 S	2.6 S	2.4 E	2.7 S	3.0 SE	1.9 S	2.5 N	2.1 W

Table 4-4: Monthly Prevailing Wind Speed and Direction in Knots of Dhaka (2006-2015)

4.1.1.4 Ambient Air Temperature

247. The temperature of the country has the relationship with the period of rainfall. In general cool seasons coincide with the period of lowest rainfall. **Table 4-5 and Table 4-6** respectively shows the monthly average minimum and maximum temperature at Dhaka (As there is no Meteorological station in Narayanganj) for the period 2007-2015. Dhaka enjoys a

tropical climate with mean daily maximum temperature of 40° C in August while mean daily minimum temperature is 5° C in the month of January.

YEAR	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
2007	9.6	12.6	15	18.1	22.5	22	23.4	24.2	24.5	19.5	16.8	11.3
2008	10.5	10.8	16.5	19.6	20.3	22.5	24.6	23.6	24.4	18	16.3	13
2009	9.8	11.2	15.6	19	19.8	23.2	23.8	23.7	23	19.8	13.2	8.7
2010	9.6	12	18.4	20.8	21.3	23.2	25.3	25	24.8	21.5	16.6	11
2011	8.2	13	16	20.2	21.3	23.2	23.9	24.5	23.7	22	17.2	11
2012	9	9.8	16.2	17.6	20.5	22.2	24.8	24	24.5	19.2	12.9	8.8
2013	5.3	12.9	15.2	19.2	19.2	23.8	24.8	24.6	24	20.7	15.1	10.2
2014	10.3	11.6	16	18.9	21.1	23.2	24	24.3	24.2	19.5	15.4	12.3
2015	11.4	12.8	15	19.5	20.1	23.2	23.6	23.8	24	20.3	17.5	11.5
Avg.	5.3	9.8	15	17.6	19.2	22	23.4	23.6	23	18	12.9	8.7

Table 4-5: Monthly Average Minimum Temperature

Table 4-6: Monthly Average Maximum Temperature

YEAR	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
2007	28.8	30.8	36.7	35.9	37.5	35.9	34.8	35.9	34.9	35.6	31.8	28.2
2008	29	30.6	34.6	36.9	36.7	35.4	34	36	34.8	34.8	32.3	29
2009	28.1	33.9	36	39.6	37.8	36.5	35.7	34.3	35.3	35.8	33.9	29.7
2010	29	31.2	37.3	37.9	36.9	35.8	35.1	35.1	34	35.7	33.2	29.7
2011	27.8	31	34.5	35.8	35.3	36	35.4	35	36.2	34.5	32.4	30
2012	28.5	33	37.3	37.1	36.2	36.7	34.3	34.5	36.5	34.4	32.4	28.5
2013	28.1	32.4	36	37	37.1	36.4	34.6	35	35.7	35.2	32.1	30.5
2014	28.5	30.4	38	40.2	38	37	35.8	34.4	34.8	36	33.8	29.2
2015	29.9	32.2	36.4	35.5	36.4	36.5	35.5	34.7	36.5	35.5	32.9	30.3
Avg.	29.9	33.9	38	40.2	38	37	35.8	36	36.5	36	33.9	30.5

Source: BMD

Figure 4.5: Distribution of Average Monthly Maximum and Minimum Temperature during 2007- 2015

4.1.2 Micro-Meteorology

248. The meteorological data recorded during the monitoring period is very useful for proper interpretation of the baseline information as well as for input prediction models for air quality dispersion. Historical data on meteorological parameters will also play an important role in identifying the general meteorological regime of the region.

249. The year may broadly be divided into four seasons:

Winter season	:	December to February
Pre-monsoon season	:	March to May
Monsoon season	:	June to September
Post-monsoon season	:	October to November

4.1.2.1 Methodology

250. To get the synoptic view of micrometeorological condition occurring at site specific meteorological data was collected for the period September-December, 2016. A comprehensive weather monitoring has been conducted using Meteorological stations. The meteorological parameters were recorded on hourly basis during the study period and include parameters like wind speed, wind direction (from 0 to 360 degrees), temperature, relative humidity, atmospheric pressure, rainfall and cloud cover.

4.1.2.2 Weather Monitoring Data

251. The weather data from 09/08/2016 to 15/12/2016 has been recorded. During this time, the rainfall has been significantly low and therefore the weather is relatively dry. The summery of the weather report is given in **Table 4-7**.

Table 4-7: Summary of Micrometeorological Condition at site

ESIA Report

Month	Temperat	ure (^º C)	Rel Humio	ative dity (%)	Maximum Daily Rainfall	Maximum Wind Speed
	Max	Min	Max	Min	(mm)	(ms /sec)
September 2016	44.03	27.02	95.41	63.83	11.2	7.8
October 2016	35.66	24.96	95.95	65.43	5.8	10.4
November 2016	31.16	19.88	97.75	42.81	17.8	12.2

252. The monitoring data for wind from the time period September to December 2016 is shown in Figure 4-6. The predominant wind direction during the study period was observed to be from East direction followed by west-south-west. The average wind speed during study period was recorded as 0.9 m/s. About 47% of the time calm condition prevails (wind speed <0.5 m/s)

Figure 4.6: Wind Rose (September to December, 2016) near the Project Site of Reliance Meghnaghat 750 MW CCPP

4.2 PHYSICAL ENVIRONMENT

4.2.1 Physiography

- 253. There are three distinctive natural features in Bangladesh:
 - a broad alluvial plain subject to frequent flooding;
 - a slightly elevated relatively older plain;
 - a small hill region drained by fast flowing rivers.

254. Most of the area of Bangladesh is a vast, low-lying alluvial plain, sloping gently to the south and southeast. According to Bangladesh Agricultural research council's Agro-Ecological Zoning map of Bangladesh, the proposed project area falls in the Old Meghna Estuarine Floodplain. This region occupies abandoned channel of the Brahmaputra River on

the border between Bandar and Narayanganj Upazila. This region includes islands-former Brahmaputra chars within the Meghna River as well as adjoining parts of the mainland.

255. The area falls under the Old Meghna estuarine floodplain. In this floodplain, the landscape in this widespread region is quite different from that on river and tidal floodplains. The relief is almost plane, with minute difference in elevation between ridges and basins. Natural rivers and streams are far apart in the southern part, drainage is provided by a network of man-made canals. The sediments are primarily deep and silty, but a shallow layer of clay in some basin centres superimposes them. Seasonal flooding is mainly deep, but it is shallow in the southeast. Some basin centres stay wet throughout the dry season. Virtually everywhere, this flooding is by rainwater downpour the land when external rivers flow at high levels. The physiography of Bangladesh can be seen in the **Figure 4-7**.

4.2.2 Drainage

256. The Brahmaputra River, known locally as the Jamuna, unites with part of the Ganges to form the Padma, which, after its juncture with a third large river, the Meghna, flows into the Bay of Bengal. Offshoots of the Ganges-Padma, including the Burishwar, Garai, Kobadak, and Madhumati, also flow south to the Bay of Bengal. The rivers flow and its drainage is depicted in the **Figure 4-8**.

ESIA Report

Figure 4.7: Physiography of Bangladesh

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

ESIA Report

Figure 4.8: Drainage map of the Region

4.2.3 Soil Type

257. Proposed project site belongs to the Old Brahmaputra Floodplain area of the National Classification. Soils of the area are grey, loamy on the ridges and grey to dark grey clayey in the basins. Grey sands to loamy sands with compact silty topsoil, occupying areas of old Brahmaputra char. Dominant general type is Non calcareous Grey Floodplain soils. Top soils are strongly acidic and sub soils slightly acidic to slightly alkaline. General fertility level is medium.

4.2.4 Seismicity& Earthquake

258. Bangladesh, a densely populated country in South Asia, is located in the northeastern part of the Indian sub-continent at the head of the Bay of Bengal. Tectonically,

ESIA Report

Bangladesh lies in the north-eastern Indian plate near the edge of the Indian craton and at the junction of three tectonic plates – the Indian plate, the Eurasian plate and the Burmese micro plate. These form two boundaries where plates converge– the India-Eurasia plate boundary to the north forming the Himalaya Arc and the India-Burma plate boundary to the east forming the Burma Arc (**Figure 4-9**).

Figure 4.9: Regional tectonic setup of Bangladesh with respect to plate configuration

259. Active faults of regional scale capable of generating moderate to great earthquakes are present in and around Bangladesh. These include the Dauki fault, about 300 km long trending east-west and north-south situated between Madhupur Tract and Jamuna flood plain, Assam-Sylhet fault located along the southern edge of Shillong Plateau (Meghalaya-Bangladesh border), the 150 km long Madhupur fault trendinlt, about 300 km long trending north east southwest located in the southern Surma basin and the Chittagong-Myanmar plate boundary fault, about 800 km long runs parallel to Chittagong-Myanmar coast (**Figure 4-10**).

260. The Chittagong- Myanmar plate boundary continues south to Sumatra where it ruptured in the disastrous 26 December 2004 Mw 9.3 earthquake (Steckler et al. 2008). These faults are the surface expression of fault systems that underlie the northern and eastern parts of Bangladesh. Another tectonic element, the 'Himalayan Arc' is characterized by three well defined fault systems (HFT, MBT and MCT) that are 2500 km long stretching from northwest syntaxial bend in Pakistan in the west to northeast syntaxial bend in Assam in the east. It poses a great threat to Bangladesh as significant damaging historical earthquakes have occurred in this seismic belt (Bilham et al., 2001; Mukhopadhyay et al.,

2004 and Mullick et al., 2009). The tectonic set-up and the plate motions together place Bangladesh potentially vulnerable to earthquake.

Figure 4.10: Digital Elevation Model (DEM) of Bangladesh and surroundings showing geological faults – potential sources of major earthquakes in Bangladesh

261. On the basis of distribution of earthquake epicenters and morphotectonic behaviour of different tectonic blocks Bangladesh has been divided into three generalized seismic zones. Zone-II comprising the central part of Bangladesh represents the regions of recent uplifted Pleistocene blocks of the Barind and Madhupur Tracts, and the western extension of the folded belt. The zone II consists of the regions of recent uplifted Pleistocene blocks of the western extension of the Barind and Madhupur and the western extension of the folded belt and the Bask coefficient for this zone is 0.05. Sonargaonarea within the vicinity of Narayanganj falls in seismic zone II of the seismic zoning map of Bangladesh

262. As per seismic zoning map of Bangladesh, project district falls under Seismic Zone II, which is a moderate risk zone. Efforts should be made to design the structure according to intensity of the zone. The seismicity map of Bangladesh is shown in **Figure 4-11** and seismic activity of Bangladesh is shown in **Figure 4-12**.

ESIA Report

Source: Geological Survey of Bangladesh

ReliAnce

Figure 4.11: Seismicity Map of Bangladesh

Table 4.15: Seismic Zonation of Bangladesh

Zoning	Area Mercalli Scale	Modified
I	North and eastern regions of Bangladesh (Seismically most active)	IX
II	Lalmai, Barind, Madhupur Tracts, Dhaka, Comilla, Noakhali and western part	VIII
	of Chittagong Folded belt.	
III	Khulna division S-E Bangladesh (Seismically relatively quiet)	VII

Figure 4.12: Seismic Activity of Bangladesh

4.2.5 Land use

263. Land-use around the project site follows the pattern seen throughout the alluvial deltaic areas of Bangladesh. Predominantly a very fertile area, the project region has seasonal mixed crop vegetation, monoculture tree plantation, and homestead-based agroforestry. Prior to site development, the MPSA was utilized for the seasonal production of rice & other crops. About 100 hectares of land acquisition has been done for the entire project. Dhaka - Chittagong is running at a distance of about 2 km from the project boundary in Eastern Side. Site is devoid of any forest area, water-bodies, historical place, etc. Also no protected areas like National Park, Wildlife Sanctuary or Bio-sphere Reserve is within 10 km radius from the project site. Glimpses of project site are shown in **Figure 4-13**.

Figure 4.13: Land use of Project Site

4.3 AMBIENT AIR QUALITY

264. Air pollution can cause significant effects on the environment and subsequently on human, animals, vegetation and materials. In most cases, air pollution aggravates preexisting diseases or degrades health status, making people easily susceptible to other infections and development of chronic respiratory and cardiovascular diseases. Further, environmental impacts from air pollution can include acidic deposition and reduction in visibility. The proposed project is a gas based combined cycle power plant project where NG/RLNG will be used as primary fuel. Burning of NG/RLNG produces NO₂, SO₂, CO and CO2. During construction phase, minor air pollution may occur due to site preparation, transportation and construction activities.

265. The ambient air quality status with respect to the study zone of 5 km radius from the center of the proposed power unit will form the baseline information having concentration already getting emitted by the existing industries over which the predicted impacts due to the development of project area can be superimposed to find out the net impacts on the air quality in the project impact area. The baseline ambient air quality can be assessed through a scientifically designed ambient air quality network. The design of monitoring network in the air quality surveillance program is based on the following considerations:

- Meteorological conditions on synoptic scale
- Topography of the study area.
- Representation of regional background levels.
- Representation of plant site.

266. A site–specific background of air quality monitoring program was conducted for the proposed project site during post monsoon season. Background data was collected for suspended particulate matter (SPM), Particulate Matter less than 10 μ (PM₁₀), Particulate Matter less than 2.5 μ (PM_{2.5}), Sulphur dioxide (SO₂) Oxides of Nitrogen (NO₂). Six sampling stations located within 5.0 km of the site was considered to provide the surrounding baseline air quality. Sampling network design took into consideration down wind, up wind cross wind as well as locations where maximum concentration is expected

4.3.1 Selection of the Station and Duration

267. For this particular project, air monitoring has been conducted at six different locations (24 Hour Basis) and twice a week following DoE protocol. The air monitoring study was carried out from 4th September, 2016 to 3rd December, 2016. The locations of the stations were selected in such manner so that the study points will surround the project area.

268. The abmient air quality monitoring will be continued further from Dec 2017 to April 2018 to assess the ambinet air quality around the project site during dry season which will be added to the ESIA report later.

4.3.2 **Description of the Stations**

269. Ambient Air Quality Monitoring (AAQM) stations were set-up at six locations from September 2016 to December 2016 covering post monsoon season of 2016. **Table 4-8** gives the location details of the selected AAQM stations with reference to the project site and shown in **Figure 4-14**.

Name of the Station	GPS Coordinate	Distance from the project site (km)	Direction from the project site
Pachani, MongolerGaon, Sonargaon, Narayanganj	N 23 [°] 36' 29.81" E 90° 34' 35.21"	1.62	West
Mograpara, Sonargaon, Narayanganj	N 23º 38' 6.66" E 90º 35' 18.01"	3.12	North
Boiddarbazar, Sonargaon, Narayanganj	N 23º 39' 0.17" E 90º 37' 28.23"	5.68	North East
VatiBalaki, Hossaindi, Gazaria. Munshiganj	N 23º 35' 22.07" E 90º 34' 39.52"	2.70	South West
Jamaldi, Hossaindi, Gazaria, Munshiganj	N 23° 35' 44.03" E 90° 36' 54.72"	2.51	South East
Gowalgaon, Gazaria, Munshiganj	N 23º 34' 21.64" E 90º 35' 22.22"	3.82	South

Table 4-8: Description of the Air Monitoring Stations

4.3.3 **Observations of Ambient Air Quality Data**

270. The collection of data went on for of 12weeksnear and around the proposed plant site. The major air pollutants viz. Particulate Matter less than 10 μ (PM₁₀), Particulate Matter less than 2.5 μ (PM_{2.5}), Sulphur dioxide (SO₂), Oxides of Nitrogen (NO₂) representing the basic air pollutants in the region were monitored for ambient air quality. The summery of the ambient air quality have been provided in **Table 4-9**, where as the detailed monitoring is enclosed as Annexure 4.1. The concentration of PM_{2.5}, PM₁₀, SO₂ and NO₂ and CO of different monitoring locations are shown in Figure 4-15 to 4-19.

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

ESIA Report

Figure 4.14: Air Monitoring Locations near the Project

271. It shows that the ambient air quality of shows temporal as well as spatial deviation. Gaseous pollutants were within the national and international limits whereas particulate matter though observed to be complying with ECR, 2005 but it crosses the limits with respect to WHO IT-1. The pollutant levels (24 hourly averages) at these sampling stations reflect that the regional background, i.e. PM_{10} is 72.8- 125 µg/m³ and $PM_{2.5}$ ranged between 33.3µg/m³and 47.5 µg/m³. The concentrations of SO₂ are in the range of 7.1-8.8 µg/m³ and NO₂ is in the range of 6.8- 9.4 µg/m³ respectively during the study period.

272. The NO_x is the main concern to this power project and have been measured within a range of 6.8- 9.4 μ g/m³in different locations throughout the monitoring period. The above ambient NO₂ level is far below than the IFC/WB and Bangladesh standards for NO₂ even after there are other 3 power projects in operation in the vicinity. Based on that we can conclude the air shed is as non-degraded nature as per IFC/WB definition.

Paramet	er (Maximum	September	October	November	December
found in t	he study area)				
	Pachani	21	41	46.1	43.2
	Mograpara	22.3	34.9	41.2	40.6
	Boiddarbazar	19.7	30.3	45.1	49.6
PIVI _{2.5}	Gowalgaon	18.3	33.5	49.8	31.7
	Jamaldi	17.0	23.6	90.2	58.4
	VatiBalaki	23.6	27.4	57.2	51.7
	Pachani	70.1	101.9	197	132
	Mograpara	41.7	105.3	122.9	106.9
	Boiddarbazar	63.2	72.6	94.5	118.7
PIVI ₁₀	Gowalgaon	58.4	82.1	104.6	119.4
	Jamaldi	28.6	62.9	73.8	125.8
	VatiBalaki	31.8	34.5	88.2	155.4
	Pachani	7.2	13.1	9.5	4.8
	Mograpara	4.1	12.2	6.2	5.8
80	Boiddarbazar	5.8	12.3	9.2	7.8
502	Gowalgaon	5.6	10.1	8.7	4.8
	Jamaldi	6.8	9.0	8.6	5.4
	VatiBalaki	7.6	11.4	9.0	7.1
	Pachani	7	11.2	5.7	6.5
	Mograpara	6.2	9.4	6.3	8.2
NO	Boiddarbazar	6.6	15.7	7.5	7.8
	Gowalgaon	9.0	8.7	6.8	6.1
	Jamaldi	6.7	6.3	8.9	5.4
	VatiBalaki	4.8	5.1	11.9	6.3
	Pachani	185	177	154	172
	Mograpara	164	223	169	201
<u> </u>	Boiddarbazar	161	158	189	223
	Gowalgaon	181	179	164	197
	Jamaldi	175	162	196	159
	VatiBalaki	185	184	209	206

Table 4-9: Summary of the Ambient Air Quality in the study area

273. The above monitoring has been conducted for 24 hourly sampling basis which represents NO₂as 24 hr basis. But Bangladesh National Ambient air quality standard NO₂ level set for annual average. As the primary data is not available throughout the year to measure at an annual basis, DOE Continuous Air Monitoring Station (CAMS) secondary data available from Narayanganj CAMS station for annual average of NO₂ for the following months:

Month	Annual average of NO ₂
January, 2017	35.67
December, 2016	29.0
November, 2016	32.7
October, 2016	41.8
September, 2016	15.7
August, 2016	12.6
July, 2016	13.3

Source: The CASE project on behalf of Department of Environment, Bangladesh

Figure 4.15 : PM_{2.5} Concentration at Different monitoring locations

Figure 4.16: PM₁₀ Concentration at Different monitoring locations

Figure 4.17: SO₂ Concentration at Different monitoring locations

Figure 4.18: NO₂ Concentration at Different monitoring locations

Figure 4.19: CO Concentration at Different monitoring locations

4.3.4 **Regional Background Air Quality Data**

274. Air pollution, especially in the large cities of Dhaka and Chittagong, is a major environmental hazard in Bangladesh. Governments of all developed countries have been very active in controlling air pollution in order to ensure a good quality of life for their citizens. Developing countries like Bangladesh have also taken note of the air pollution issues, and often guided by the multinational agencies like the World Bank (WB), Asian Development Bank (ADB), United Nations Environment Programme (UNEP), have taken measures or have made plans to reduce and control air pollution.

ESIA Report

275. In the absence of site specific data we studied air long term air quality data of Dhaka city which is about 30 km from the project site. Though meteorological factors, land use as well as air pollution generating sources all contribute to spatial distribution of air quality but in the absence of site specific data, air quality of Dhaka city may be considered as gross approximation of the long term air quality of project area. Seasonal variation of air quality at Dhaka city is shown in **Figure 4-20 to Figure 4-24**.

Source: DoE

ReLIANCE

Figure 4.20: Seasonal distribution of PM₁₀ concentration during 2008-2011

Source: DoE

Figure 4.21: Seasonal distribution of PM_{2.5} concentration during 2008-2011

Source: DoE

Figure 4.22: Seasonal distribution of NO₂ concentration during 2008-2011

Source: DoE

Source: DoE

ReliAnce

Figure 4.24: Seasonal distribution of CO concentration during 2008-2011

276. As can be seen from the above figures that the ambient air quality shows temporal deviation. Gaseous pollutants were within the national and international limits whereas particulate matter though observed crosses the limits with respect to WHO air quality guideline as well as Bangladesh standard. There is a clear temporal trend which shows greater load of air pollution during summer and winter months whereas during monsoon due to wash out effect air pollution level decreases.

4.4 AMBIENT NOISE LEVEL

- 277. The impact of industrial noise on surrounding community depends on
 - Characteristics of noise sources (instantaneous or continuous in nature). It is well known that a steady noise is not as annoying as one that is continuously varying in loudness.
 - Time of the day at which noise occurs, for example loud noises at night in residential areas are not acceptable because of sleep disturbance.
 - The location of noise source with respect to noise sensitive areas determines the loudness and period of noise exposure.

278. Being a heavy industrial area, noise pollution can be quite prominent near the project site. To test this out, noise monitoring stations were set up to assess the present noise level of the project site. After the construction, sophisticated machineries will be installed in the project area when the industries will be set up after allocation, which will produce little significant noise. The impact of noise sources on surrounding community depends on:

Characteristics of noise sources (instantaneous, intermittent, or continuous in nature). It can be observed that steady noise is not as annoying as one which is continuously varying in loudness;

ESIA Report

- The time of day at which noise occurs, for example high noise levels at night in residential areas are not acceptable because of sleep disturbance; and
- The location of the noise source, with respect to noise sensitive land use, which determines the loudness and period of exposure.

4.4.1 Selection of the Noise Monitoring Stations

279. Noise monitoring stations were set up in accessible, convenient and secured position; both near the streets and the river. There were six locations surrounding the project site where noise was monitored to determine hourly equivalent noise levels. The noise sampling was done once during the study period continuously for 24 hours at the six locations, selected on the basis of the site sensitivities within the project area.

4.4.2 **Parameters of Noise Monitoring Study**

280. The results of the findings shall be analyzed to work out as follows:

- L_{eq} hourly,
- L_{eq} day and
- L_{eq} night.

4.4.3 **Description of the Noise Monitoring Stations**

281. The farthest monitoring at Bidder Bazar is aerially at 5.79 km distance from the project site. The red squared area is the proposed project location and the yellow icons are the monitoring locations. The details of the noise monitoring stations are provided in **Table 4-10** and shown in **Figure 4-25**.

Table 4-10: Noise Monitoring Stations

Name of the Station	GPS Coordinate	Distance from	Direction from	Remarks
		the project	the project site	
		site (km)		
Pachani, MongolerGaon,	23°36'29.66" N	1.62	West	Near the
Sonargaon, Narayanganj	90°34'35.30" E			Road
Mograpara, Sonargaon,	N 23° 38' 8.93"	3.21	North	Near the
Narayanganj	E 90°35'41.36"			Highway
Boiddarbazar,	N 23°38'57.69"	5.74	North East	Near the
Sonargaon, Narayanganj	E 90°37'28.22"			Road
VatiBalaki, Hossaindi,	N 23°34'50.23"	3.92	South West	Near the
Gazaria. Munshiganj	E 90°34'0.39"			River
Jamaldi, Hossaindi,	N 23°35'44.06"	2.63	South East	Near the
Gazaria, Munshiganj	E 90°36'54.17"			Road
Gowalgaon, Gazaria,	N 23º 34 21.64	3.83	South	Near the
Munshiganj	E 90° 35 22.22			River

Source: AECL Lab, NGO Forum, BUET& BCSIR

4.4.4 **Observations on Ambient Noise Level**

282. Day time Leq has been computed from the hourly Leq values between 6.00 a.m. - 9.00 p.m. and night time Leq from the hourly Leq values between 9.00 p.m. - 6.00 a.m. The results are presented in **Table 4-11**.

	Noise Level in dB(A)			
Location	Leq (day)	Leq (night)	Leq (dn)	
Pachani	50.9	49.3	56.7	
Mograpara	71.2	68.1	74.8	
Boiddarbazar	60.7	54.4	62.3	
Vati Bolaki	53.8	52.5	58.7	
Jamaldi	62.9	57.4	65.0	
Gawal Gao	48.1	50.4	56.1	
Ambient Noise Standards for Industrial Areas	75.0	70.0	-	

Table 4-11: Noise Level in Study Area

Source: AECL Lab,

283. At each location, noise monitoring has been carried out once during the study period over a period of twenty-four hours to obtain Leq values at uniform time intervals of 1 hour. In each hourly time interval Leg values have been computed from SPL readings taken at uniform time intervals of 15 minutes. For each location, day and night time Leg values have then been computed from the hourly Leq values so that comparison could be made with the national ambient noise standards. No heavy traffic was found at the road side. The noise levels during daytime were found in the range of 48.1 to 71.2 dB(A) and during night time Leg value was between 50.4 and 68.1 dB(A). In general noise level was found within the prescribed standards in absence of any major noise source. The nearest monitoring station to the plant location is Pachani which is about 1.62 km from the site. The lowest level of noise level was observed in the Pachani monitoring station. Maximum noise level is observed near highway in the monitoring station Mograpara. The spatial deviation in noise level was due to difference in land use pattern and different noise generating sources. Graphical representation of Leq Day and Leq Night is shown in Figure 4.27 and Figure 4.28, respectively.

284. Noise assessment was also carried at project site during day and night time on 11-12 September 2017 at 3 locations (beside Summit power, middle of the project site and beside Orion Power). The maximum and minimum noise level were recoreded at beside Summit power was 45.3 dB(A)to 56.1 dB(A), at the middle of the project site 46.1 dB(A) to 59.7 dB(A) and beside Orion 51.4 dB(A) to 66.9 dB(A) during the day and night time respectively. The higher level of noise at the night time were observed due to the operation of the power plant in the vicinity at maximum efficiency during the pick hours (night time).

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

ESIA Report

Figure 4.25: Noise Monitoring Stations

Figure 4.26: Graphical representation of Leq Day

Figure 4.27: Graphical representation of Leq Night

4.5 **TRAFFIC STUDY**

285. Information has been collected on traffic volume for this project for roads near the project site by conducting traffic volume monitoring at one location and river traffic in another location. The locations are Mograpara Bus Stop and Char Balaki respectively. The traffic volume counts have been recorded continuously for 24 hours at one time during the study period to assess the existing total daily traffic, peak hour traffic and traffic composition. The full data of the traffic survey is listed in the **Table 4-12**.
Table 4-12: Passengers Car Unit Factors in Bangladesh

Vehicle Type	PCU Factor
Car	1.0
Bus	3.0
Truck	3.0
Auto Rickshaw	0.5
Bicycle	0.3
Rickshaw	1.0
Motor Cycle	0.3
Tempo	1.0
Bullock Card	4.0

Source: Transport Research Laboratory (UK) Overseas Road Note 13

Table 4-13: Traffic Volume Data (Road Traffic, Location: Mograpara Bus Stop)

Hours	Truck	Truck	Bus /	Bus	Car /	Car	Motor-	Motorc	Truck
	/Lorrie	PCU	Minibus	PCU	Jeep	PCU	cycles	ycle/	PCU
	S	(3)		(3)	/Micro	(1)	/Auto	Auto	
					bus		rickshaw	PCU	
								(0.5)	
06:00PM	108	324	245	735	70	70	15	7.5	1136.5
07:00PM	105	315	40	120	40	40	15	7.5	482.5
08:00PM	151	453	46	138	48	48	63	31.5	670.5
09:00PM	99	297	28	84	38	38	14	7	426
10:00PM	113	339	40	120	49	49	15	7.5	515.5
11:00PM	190	570	26	78	43	43	11	5.5	696.5
12:00AM	157	471	37	111	40	40	8	4	626
01:00AM	104	312	75	225	50	50	4	2	589
02:00AM	85	255	35	105	50	50	2	1	411
03:00AM	99	297	60	180	40	40	3	1.5	518.5
04:00AM	65	195	66	198	65	65	4	2	460
05:00AM	105	315	70	210	50	50	9	4.5	579.5
06:00AM	80	240	78	234	50	50	12	6	530
07:00AM	76	228	68	204	95	95	19	9.5	536.5
08:00AM	96	288	45	135	110	110	19	9.5	542.5
09:00AM	87	261	53	159	77	77	22	11	508
10:00AM	96	288	32	96	48	48	22	11	443
11:00AM	115	345	72	216	53	53	42	21	635
12:00PM	131	393	128	384	95	95	38	19	891
01:00PM	134	402	97	291	68	68	38	19	780
02:00PM	131	393	80	240	93	93	26	13	739
03:00PM	108	324	97	291	66	66	16	8	689
04:00PM	101	303	62	186	71	71	15	7.5	567.5
05:00PM	123	369	100	300	70	70	15	7.5	746.5
Total	2659	7977	1480	5040	1479	1479	447	223.5	14719.5

Table 4-14: Traffic Volume Data (River Traffic, Location: Char Balaki)

Hour	Direction	Oil	Goods	Speed heat	Engine	Fishing	Othore
noui	Direction	Tanker	Ship	Speed boat	Boat	Boat	Others
	Up		1		1	5	
01.00FW	Down		1		1	3	
02:00PM	Up		4		2	5	
02.00FW	Down		3		1	8	
03:00PM	Up	1	4				
03.001 1	Down		2				
04:00PM	Up		2			5	
04.001 M	Down		5		1	2	
05.00PM	Up		3			4	
00.001 M	Down		2			3	
06:00PM	Up		2		3	2	
00.001 M	Down		4			4	
07.00PM	Up		2		1	3	
07.001 M	Down		1		1	2	
08.00PM	Up		1				
00.001 M	Down		3				
	Up						
00.001 M	Down						
10.00PM	Up						
10.001 M	Down						
11.00PM	Up						
11.001 M	Down						
12.00AM	Up						
12.00/ 10	Down						
01·00AM	Up						
01.00/ 10	Down						
02.00AM	Up						
02.00/ 11	Down						
03·00AM	Up						
00.00AM	Down						
04·00AM	Up						
04.00/ 10	Down					1	
05·00AM	Up	1	1		5	4	
00.00/ 11/	Down				2	3	
06·00AM	Up				4	3	
00.00/ 11/	Down				2	3	
07.004M	Up				3	2	
	Down				1	1	
08.00AM	Up				3	2	
00.00AM	Down				1	1	
09.004M	Up		3		3	5	
	Down		5		1	4	
10.004M	Up		1		4	3	
	Down		1		6	4	

Hour	Direction	Oil Tanker	Goods Ship	Speed boat	Engine Boat	Fishing Boat	Others
11.00AM	Up		3		1	1	
TT.UUAM	Down		1			1	
12.00 PM	Up		2			3	
12.00FW	Down		1			1	
Total		2	61		45	89	

4.6 HYDROLOGY

286. The flow of Meghna River at Sonargaon is less affected by tides. The maximum discharge of 16558m³/sec was measured on 9th September 2002; while the minimum discharge of 2050m³/sec was recorded on 10th June, 1998. The water data collected from BWDB for the period from 1998 to 2006 is attached in **Table 4-15**.

Year	Maximum	Minimum
1998	14669	2050
2000	12109	3197
2001	11630	3135
2002	16558	4448
2003	13229	2938
2004	10571	3742
2005	10786	3658
2006	9463	4230

Table 4-15: Flow at the Meghna River (m³/s)

Source: BWDB

4.7 GROUNDWATER HYDROLOGY

287. Groundwater hydrological conditions are established by the availability of developed ground water horizon everywhere, adapted to dust foams and sand lenses. The water is closely connected with the Meghna River and during flooding practically is occurred on surface.

288. Ground water table in major portion of Bangladesh exists at a shallow to moderate (Generally below 3.0 m) depth with confined, semi-confined and unconfined aquifers which is being recharged by major river systems and by infiltration of rain water. The ground water table fluctuates with seasons approaching near ground surface (within 1.0m) over most of the country during wet seasons (July-September).

289. Like other parts of the country, ground water is a stable source of water for various activities including irrigation (both shallow and deep tube wells), domestic purposes (hand pumps) and industrial applications (deep wells) in the project area. The fluctuation of ground water in the area in the dry season is lowered to about 6.0m below the ground level. However, groundwater levels return their original position before the end of monsoon. This condition is referred to as an 'aquifer full' response, where ground levels are controlled by rivers or other forms of surface drainage.

290. Under natural condition the ground water level reflects the wet and dry season as noticed in all the water level stations. The levels are lowest in late April or early May and rise

to field capacity during the rainy season. The field capacity is then maintained to the end of the rainy season till the dry season recession conveniences. In general, dry season use of ground water is extensive in most of the project area.

4.8 WATER ENVIRONMENT

ReLIANCE

291. Selected water quality parameters of ground and surface water resources within 10km radius of the study area has been studied for assessing the water environment and evaluate anticipated impact of the proposed expansion. Understanding the water quality is essential in EIA studies to identify critical issues with a view to suggest appropriate mitigation measures for implementation.

292. The purpose of this study is to:

- Assess the water quality characteristics for critical parameters;
- Evaluate the impacts on agricultural productivity, habitat conditions, recreational resources and aesthetics in the vicinity; and
- Predict impact on water quality by this project and related activities.

4.8.1 Surface Water Quality

293. To assess the existing surface water condition, numerous parameters need to be tested. During the period of conducting the study, water has been collected from 3 points; one in the upstream, one in the downstream and another near the project site where water will likely be withdrawn for power plant operation. Then the parameters were tested to assess the quality of the river water. The details of water sampling points are given in **Table 4-16** and shown in **Figure 4-28**.

Name of Sampling Point	Coordinate	Temperature	Remarks
Towards the Meghna	23°36'13.30"N	27.5° C	Upstream (Location 1)
Bridge	90°36'25.60"E		
Near Project Site	23°36'11.24"N	27.3° C	Probable intake point of
	90°35'31.78"E		Power Plant (Location 2)
VatiBalaki	23°35'12.10"N	27.3° C	Downstream, (Location 3)
	90°34'44.80"E		

Table 4-16: Water Sampling Points

4.8.1.1 Observations on Surface Water Quality

294. The water quality parameters investigated were within the Bangladesh standards. The surface water quality test of the river Meghna is shown in **Table 4-17**.

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

ESIA Report

Figure 4.28: Water Sampling Locations

ESIA Report

Table 4-17: Meghna River water quality

SI. No.	Name of Parameter	Concentration Present			DoE	IFC/World	Unit	Method of
					(Bangladesh)	Bank Standard		analysis
					Standard *			
		Location 1	Location 2	Location 3			-	
1.	рН	7.18	7.18	7.26	6-9	6-9	-	pH Meter
2.	Color	50	72	52	15	15	Pt-Co	USEPA 110.2; SM
								2120 C
3.	Temperature	27.3	27.3	27.5	40	NF	°C	Mercury filled
								thermometer
4.	DO	8	8	5	4.5-8	NF	mg/L	DO meter
5.	TDS	38	38	37	2100	NF	mg/L	TDS meter
6.	Conductivity	19	19	18.3	NF	NF	µS/cm	Conductivity Meter
7.	Alkalinity	66	66	63	NF	NF	mg/L	Standard Titrimetric
								method
8.	Iron	0.038	0.038	0.03	2	3.5	mg/L	Colorimetric
9.	Chloride	165	165	140	600	NF	mg/L	Mercuric nitrate
								titration
10.	Hardness	117	117	125	200-500	NF	mg/L	EDTA titrimetric
								method
11.								
12.	Arsenic	<0.003	<0.003	<0.003	0.02	NF	mg/L	AAS
13.	TSS	19.5	19.5	11.2	150	50	mg/L	Dried at 103-105
14.	Turbidity	18.7	18.7	9.6	NF	NF	NTU	Nephelometric
15.	Salinity	<100	<100	<100	NF	NF	mg/L	Potentiometry
16.	Manganese	<0.1	<0.1	<0.1	5	NF	mg/L	AAS
17.	Cadmium	<0.002	<0.002	<0.002	0.50	0.1	mg/L	AAS
18.	Calcium	30.2	30.2	35.5	NF	NF	mg/L	AAS
19.	Chromium	<0.02	<0.02	<0.02	0.5	0.5	mg/L	AAS
20.	Zinc	<0.005	<0.005	<0.005	5	1	mg/L	AAS

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

ESIA Report

SI. No.	Name of Parameter	Concentration Present		sent	DoE (Bangladesh) Standard *	IFC/World Bank Standard	Unit	Method of analysis
21.	Copper	0.08	0.08	0.5	0.5	0.5	mg/L	AAS
22.	Lead	<0.05	<0.05	<0.05	0.1	0.5	mg/L	AAS
23.	Magnesium	46.5	46.5	23.7	NF	NF	mg/L	AAS
24.	Fluoride	0.5	0.5	0.5	2	NF	mg/L	Potentiometry
25.	Nitrate	5.3	5.3	9.7	10	NF	mg/L	Potentiometry
26.	Sulphate	13.5	13.5	8.2	NF	NF	mg/L	Nephelometric
27.	Phosphate	<0.07	<0.07	0.11	NF	NF	mg/L	Photometric
28.	COD	21.8	21.8	33.2	200	250	mg/L	Open Reflux
29.	BOD₅ at 20°C	7.4	7.4	12.6	50	50	mg/L	5-Day BOD test
30.	TC	>160	>160	>160	0	NF	#/100 mL	Membrane Filter
								Technique
31.	FC	52	52	62	0	NF	#/100 mL	Membrane Filter
								Technique
32.	Mercury (Hg)	<0.0001	<0.0001	<0.0001				

Source: AECL Lab, NGO Forum, BUET& BCSIR (sample collected on 21.11.2016 and reporting on 22.11.2016)

*Standard for inland surface water.

*NF-Not Found.

295. The existing water quality of the Meghna River near the project area found to comply with standards. Though three other power plants are located in the same area (Meghnaghat Power Limited, Summit Meghnaghat Power Company Limited and Orion Power Meghnaghat Limited) as well as two cement plants at 3 km upstream of the plant viz. Holcim Cement plant and United Cement plant water quality at all three locations, were found within the limit of national and international standards. The river water is not used for bathing, irrigation and drinking within the project vicinity.

296. In addition to the point sources, the discharge from non-point sources include those from engine boats, shipping (oil and grease) and run off from agricultural activities containing pesticides and chemical fertilizer residues are also drained into the river.

4.8.2 Ground Water Quality

297. Ground water level exists at a moderate (Generally below 5 - 8.0 m) depth, which is being recharged mainly by infiltration of rainwater. According to Bangladesh Water Development Board, the ground water level of SonargaonUpazila is about 7.0 m. Ground water is the source of water for domestic use in this area. Water from underground source is assumed to be available as most of the period of the year the area remains under water. That means the recharge capacity of the ground water level seems to be adequate.

298. To assess the quality of that region surrounding the project site, water samples were collected from 3 locations so that the points surround the project site. The details of the sampling locations are given in **Table 4-18** and shown in **Figure 4-28**.

Name of Sampling Point	Coordinate	Direction from Project Site
Pachani (Location 1)	23°36'31.54"N	E
	90°34'40.62"E	
Mograpara(Location 2)	23°37'58.47"N	NW
	90°35'3.67"E	
Jamaldi(Location 3)	23°35'50.51"N	SW
	90°37'1.90"E	

Table 4-18: Ground Water Sampling Locations

4.8.2.1 Findings of the Groundwater Quality Test

299. Different parameters of the groundwater near and around the project site were tested. Water sampleswere collected from the tube wells of nearby places. The results of ground water quality test show that all the parameters remain within the allowable limit of drinking water value as per as Environmental Quality Standards for Bangladesh. The parameters which have been analyzed during this study are presented below in **Table 4-20**.

S. No.	Name of Parameters	Concentration Present		DoE (Bangladesh) Standard	IFC/WB Standard	Unit	Method of analysis	
		GW1	GW 2	GW 3				
1.	рН	7.05	7.04	7.16	6-9	6-9	-	pH Meter
2.	Temperatur e	25.8	25.8	25.8	40	NF	⁰C	Mercury filled thermometer

Table 4-19: Ground Water Quality

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

S.	Name of	Conce	entration	Present	DoE	IFC/WB	Unit	Method of
No.	Parameters				(Bangladesh)	Standard		analysis
					Standard			
3.	DO	5.01	5.08	5.50	4.5-8	NF	mg/L	DO meter
4.	TDS	353	386	304	2100	NF	mg/L	TDS meter
5	Conductivity	176.2	193	151.8	NF	NF	µS/cm	Conductivity
0.								Meter
	Alkalinity	240	186	165	NF	NF	mg/L	Standard
6.								Titrimetric
			-		-			method
7.	Iron	0.06	0	0.02	2	3.5	mg/L	Colorimetric
	Chloride	120	130	125	600	NF	mg/L	Mercuric
8.								nitrate
	Llordo e e e	240	100	000	200 500			
0	Hardness	240	198	220	200-500		mg/∟	EDIA
9.								method
10	Arsenic	0.047	0.006	0.017	0.02	NF	ma/l	
	TSS	8	6.5	5.5	150	50	mg/L	Dried at 103-
11	100	Ũ	0.0	0.0	100	00	ing/L	105
	Turbidity	5.9	4.9	1.8	NF	NF	NTU	Nephelometri
12								C
	Salinity	400	400	300	NF	NF	mg/L	Potentiometr
13	5						Ũ	у
14	Manganese	0.2	0.1	<0.1	5	NF	mg/L	AAS
16	Cadmium	<0.0	<0.00	<0.002	0.50	0.1	mg/L	AAS
		02	2					
16	Calcium	85.3	87.5	78	NF	NF	mg/L	AAS
17	Chromium	<0.0	<0.02	<0.02	0.5	0.5	mg/L	AAS
		2						
18	Zinc	<0.0	<0.00	<0.005	5	1	mg/L	AAS
		05	5	10.01		0.5		
19	Copper	0.01	<0.01	<0.01	0.5	0.5	mg/L	AAS
20	Lead	<0.0	<0.05	<0.05	0.1	0.5	mg/L	AAS
21	Magnesium	06.5	100.2	88.3			ma/l	AAS
2	Eluoride	90.5	109.2	00.J	2		mg/L	AAS Dotentiometr
22	ridonde				2		ing/L	v
	Nitrate	14 5	35	22	10	NF	ma/l	y Potentiometr
23	Nilace	14.0	0.0	2.2	10		ing/L	V
	Sulphate	25.1	9.6	9.4	NF	NF	ma/L	Nephelometri
24								C
25	Phosphate	0.28	<0.07	<0.07	NF	NF	mg/L	Photometric
26	COD	5.6	5.8	8.3	200	250	mg/L	Open Reflux
	BOD ₅ at	2.3	1.7	3.7	50	50	mg/L	5-Day BOD
21	20°C						_	test
	ТС	14	4	14	0	NF	#/100	Membrane
28							mL	Filter
								Technique

S. No.	Name of Parameters	Conce	entration	Present	DoE (Bangladesh) Standard	IFC/WB Standard	Unit	Method of analysis
	FC	0	0	1	0	NF	#/100	Membrane
29							mL	Filter
								Technique

Source: AECL Lab, NGO Forum & BCSIR

300. pH value of ground water is ranging from 7.04 to 7.16 in respect to acceptable level of 6 - 9. Most of heavy metals was found below the detectable limit, whereas, slight concentration of Iron and Zinc were observed. However, concentration of Iron and Zinc was found well below the acceptable limits. In general water can be used for drinking, after necessary disinfection.

4.9 SOIL CHARACTERISTICS

301. To assess the soil quality of the project area, soil samples were collected from different points in and around the project site. The description of the soil sampling points is given in Table and has been shown in **Figure 4-29**.

Table 4-20: Soil Sampling Points

Name of Sampling Point	Coordinate	Elevation in meter (From MSL)
Mugrapara	23°37'59.10"N	8.5
	90°35'5.98"E	
Jamaldi	23°35'49.82"N	4.25
	90°37'0.69"E	
Project Site	23°36'27.70"N	1.2
	90°35'40.50"E	
Char Balaki	23°35'17.30"N	4.5
	90°34'38.60"E	

4.9.1 Findings on Soil Quality

302. The soil samples were analyzed for all the important parameters like pH, electrical conductance, calcium, magnesium, nitrogen, phosphorus, potassium, etc. The NPK represents the nutrients available in the soil, which directly indicates the soil fertility. The soil quality parameters and their concentration of the samples near and around the project siteare given in **Table 4-21**.

SL.	Param	eters	Analytical Results				Analytical
			Project Area	Char Balaki	Mograpara	Jamaldi	Methods
Phys	sical Parame	ters					
1	Particle	Sand (%)	94	88	45	47	Hydrometer
	Size	Silt (%)	4	8	38	38	Method
	Distribution	Clay (%)	2	4	17	15	
2	Texture		Sand	Loamy	Loam	Loam	Marshal's Textural
				Sand			Triangle Method

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

ESIA Report

SL.	Parameters		Analyt	ical Results		Analytical
		Project	Char	Mograpara	Jamaldi	Methods
		Area	Balaki			
3	Permeability (cm/hr)	6.1	5.3	2.5	1.6	Constant Head
						Method
4	Porosity (%)	53	52	49	48	Core Method
5	рН	7.22	7.33	7.33	6.95	pH Meter 1:2.5
6	Electrical Conductivity	16.2	12.3	225.2	74.5	EC Meter 1:5
	(µS/cm)					
Che	mical Parameters					1
7	Nitrates (mg/kg)	2.11	3.20	11.20	12.45	KCI extraction
						and ion
						chromatography
8	Phosphates (as PO ₄ -3)	43.21	48.23	112.06	147.37	Olsen extraction
	(mg/kg)					and ion
			0.010	1.50	4 = 0	chromatography
9	Iron (⊦e) (%)	0.083	0.013	1.56	1.58	Acid digestion
10		0.00	*551		40.50	and AAS
10	Lead(Pb) (mg/kg)	2.00	^BDL	11.0	10.50	Acid digestion
4.4			0.55	275 5	220.4	and AAS
11	manganese (mn)	147.5	8.55	375.5	330.4	Acid algestion
10	(IIIg/Kg)	7 70	1.20	10.20	22.55	And AAS
12	Nickel (NI) (Hg/kg)	7.70	1.30	10.30	22.00	Aciu ulgestion
13	Barium (Ba) (ma/ka)	1226	11/5	1736	1875	
15	Danum (Da) (mg/kg)	1220	1145	1730	1075	and $\Delta\Delta S$
14	Zinc (Zn) (ma/ka)	25 74	5 97	108 72	95.05	
14		20.14	0.07	100.72	00.00	and AAS
15	Copper (Cu) (ma/ka)	2 20	0.050	13 55	14 80	Acid digestion
		2.20	0.000	10100	1.000	and AAS
16	Cadmium (Cd) (mg/kg)	BDL	BDL	BDL	BDL	Acid digestion
						and AAS
17	Chromium (Cr)	11.65	2.60	26.15	29.60	Acid digestion
	(mg/kg)					and AAS
18	Arsenic (As) (mg/kg)	1.62	0.29	2.56	1.70	Acid digestion
						and AAS
19	Cation Exchange	0.92	1.88	11.0	10.12	NH₄OAc method
	Capacity (cmol/kg)					

Source: Department of Soil, Water and Environment, University of Dhaka

*BDL: Below Detection Limit

303. The pH of the soil is an important parameter; plants cannot grow in low and high pH value. It can be seen that the soils in the area are slightly basic in nature with pH values ranging from 7.22-7.33. On Jamaldi, the soil is slightly acidic (pH: 6.95).Electrical

conductivity values in the samples varied from 12.5 to 225.2 μ S/cm. The Cation exchange capacity of soil samples ranges from 0.92 to 11.0meq/100gm; the lesser the value, the sandier the soil gets. Arsenic found in the soil sample ranges from 0.29 to 2.56 mg/kg which is very little. Nitrogen encourages the vegetative development of plants by imparting a healthy green colour to the leaves. It also controls, to some extent, the efficient utilization of phosphorus and potassium. Nitrates in all the four soil samples were found to be from 2.11 (Project Site) to 12.45 (Jamaldi) mg/kg whereas the Manganese ranged from 8.55 (Char Balaki) – 375.5 (Mograpara) mg/kg. Phosphate levels were observed to be 43.21 - 147.37 mg/kg. Thus the soils in the region can be concluded as neutral and suitable for construction.The iron levels in soil samples collected from the study area vary from 0.083 to 1.58%. Concentration of Leadranges from untraceable in Char Balakito 11.0 in Mograpara. The other heavy metals like Cadmium and Chromium were found to be untraceable. The site was developed by BPDB upto road level. The site is vacant and empty.

The soil analysis in Table 4.21 has also compared with Duetch Intervention Values 2013 (Soil Remediation Circular July, 2013) as below

SL	Parameters	A	nalytical F		Duetch Intervention	
		Project Area	Char Balaki	Mogra para	Jamaldi	Values 2013 (Soil Remediation Circular July, 2013)
1	Lead(Pb) (mg/kg)	2.00	*BDL	11.0	10.50	530
2	Zinc (Zn) (mg/kg)	25.74	5.97	108.72	95.05	720
3	Copper (Cu) (mg/kg)	2.20	0.050	13.55	14.80	190
4	Cadmium (Cd) (mg/kg)	BDL	BDL	BDL	BDL	13
5	Nickel (Ni) (mg/kg)	7.70	1.30	18.30	22.55	100

Hence, it is inferred that site is not contaminated.

Figure 4.29: Soil Sampling Locations

4.10 BIOLOGICAL RESOURCES

304. Biological environment is an indicator of changing environmental quality. Thus, an understanding of biological environment of an area is important for environmental impact assessment. Bangladesh has realm number of biological diversity for its geographical location and favorable climatic condition for life. Biodiversity is facing unprecedented levels of threat due to unwise industrialization. For the reasons, it has become imperative to assay diversity prior to any big set up.

305. Identifying and monitoring biological diversity is a huge and potentially infinite task given its variability in time and space and its spectrum of levels. Biodiversity estimation applying short span studies are becoming ever popular and in this regard preparation of checklists of birds on a wider scale has been given much importance (Roy *et al.*, 2011). The reliance Group of Bangladesh is planning to construct a 750 MW Combined Cycle Power Plant at Meghnaghat, Sonargaon, Narayanganj. The GPS position of the site is 23°36'25.56'N, 90°35'32.16"E. A rapid floral and faunal diversity assessment was carried out at different locations of the proposed site to get idea about the biodiversity of the area. Though, the short study does not reflect complete biodiversity of that area. Detail investigation is necessary to have a complete list.

Figure 4.30: Conceptual framework for ecosystem assessment

306. Indicator species assessment of different biotypes and habitats has been used as tools to assess the biological health of habitats. They are also considered model organisms to assess the effects of global climate change. We made a quick survey on some bioindicator species viz, Odonate, Butterfly, Mollusc, Plankton, Fish and Avifauna. Diversity of these indicator species will give an idea about the health of that specific area.

4.10.1 Industrialization in the Study Area

307. We cannot avoid demand of industrialization for the better development of the country. But careful decision should be taken prior to any new set up. If any such set up create threat to the biodiversity, country development would not be sustainable. Fisherman

of the river near study area informed that they can catch lesser quantity of fish from the river nowadays than they used to years before the industrialization of the area. There are some industries already existed near the study are. Such industries should be very careful for their effluent and byproduct.

Plate 1: Industry near study area

Plate 3: Dust coming out from an industry made shade over the industry building, may also be harmful for all biodiversity

Plate 5:Water coming out from an industry

Plate 2: Industry near study area

Plate 4: Making carrier ship near the bank of river

Plate 6:Carrier vessel in the river

Plate 7:Carrier vessel in the river

4.10.2 Methods of sample collection

A comprehensive survey was conducted at the vicinity of proposed Reliance 308. Meghnaghat 750 MW CCPP on December 2, 2016 to get an idea about the status of the diversity of animals in that area. Water samples of the river were collected from all the TWO locations around the proposed power plant. Different physical parameters of the water samples were checked and recorded. Phytoplankton and Zooplankton nets were used to collect different types of planktons available in each type of water sample. Different types of fishes, macro and micro-invertebrates were collected from each of the location. Several types of fishing nets were utilized for this purpose. To get an idea about the biodiversity of each location, water samples were collected around 40 meter radius of each sampling location. The collected specimens were identified instantly or brought to the laboratory for further confirmation. Proper keys, Journals, books and encyclopedia were consulted for identification of the collected specimens. Fishermen were interviewed to get an idea about the present status and past records of the availability and abundance of fish population of the river. Fish sellers of the local fish market were also interviewed to collect their opinion about the present and past status of the abundance of fishes in the area.

309. For phytoplankton and Zooplankton survey 10 lit of water (two liters each time) was collected from each sampling location and was sieved by plankton net. 45 ml of sieved water was collected in a 50 ml Falcon tube. Then 5 ml of alcohol was added in each Falcon tube as preservative so that the microorganisms are not damaged before identification, in this way 5 samples were collected from each sampling location 1 ml of water from each 50 ml sample was studied in a "rafter cell counter" under microscope.

4.10.3 Observations

310. Huge number of floating water hyacinth was trapped by the local people. They use bamboo poles for trapping. They use this place to attract different kinds of fishes as shelter place. Fishermen encircle this area after every 15-20 days with nets and capture fish. During interview with the local people, they informed that during each fishing huge quantity of different kinds of fishes are captured. Water quality includes various physical and biological parameters which has direct influence on the aquatic organisms and vegetation. Abundance of fishes and their growth are dependent on the quality of water and availability of food.

4.10.4 Terrestrial Ecology – Flora

311. Natural flora and fauna are important features of any environment. They form a distinctive community with mutual dependencies among their component members and show diverse degree of responses and sensitivities to physical influences. Thus, in any environmental analysis where integration of ecological thoughts into planning process is required an analysis of biological environmental status is very important. It is well known that the deterioration of natural environment is a consequence of socio-economic developmental processes unless it is properly planned.

4.10.4.1 Methodology

312. The present baseline ecological survey was conducted during December 2016. The basic methodological approaches which were followed for the present baseline work are-

- Field survey,
- Site selection for sampling,
- Plant samples collection,
- Identification of plant samples,
- Data analysis and interpretation.

4.10.4.2 Field survey

313. A comprehensive field survey was conducted almost throughout the designated sites of the proposed power plant areas at Reliance Meghnaghat 750 MW CCPP area during December 2016.

4.10.4.3 Site selection for sampling

314. All types of ecological habitats like aquatic/wetland, cultivated land, fallow land, homestead area, road side, forest area and salt/shrimp culture area etc. of the designated sites/locations within 2 km radius of the project area were selected for sampling of both qualitative and quantitative data collections.

FIGURE 4.31 : LOCATION FOR SAMPLING OF ECOLOGICAL SURVEY

Point A: Lat 23°36'24.58"N	Long 90°35'29.51"E
Point B: Lat 23°36'24.58"N	Long 90°35'41.04"E
Point C: Lat 23°35'24.23"N	Long 90°35'24.13"E
Point D: Lat 23°36'13.00"N	Long 90°34'20.61"E

4.10.4.4 Plant samples collection

315. Plant samples of different species, observed in the visited sites were collected following standard quadrat method (Braun-Blanquet, 1932; Raunkiaer, 1934). The quadrat size- $(2m \times 2m)$ for herbs and grasses, $(5m \times 5m)$ for shrubs and $(10m \times 10m)$ for trees were standardized on the basis of species-area-curve method (Cain, 1938).

4.10.4.5 Identification of plant samples

316. All the collected plant specimens found in the selected sites of Proposed Power Plant area was identified by taxonomic expertise and through cross-checking with herbarium specimens preserved at BNH/JUH and also matching the taxonomic description, keys or the photographs/illustrations in the relevant literatures, especially the recent Floras and Manuals of Hooker, 1872-1897; Prain, 1903; Khan, 1972-1987; Khan and Halim, 1987; Siddiqui, 2007a, b; Ahmed, 2008 a,b, c, d; 2009a,b etc.

317. In each selected sites/location, ten quadrats were randomly applied in diversified habitats. Collected plant samples were processing and preparation of herbarium sheets following standard herbarium techniques (Jain and Rao, 1977).

4.10.4.6 Data analysis and interpretation

318. Abundance and Frequency of the recorded species was determined by using formulae described as Shukla and Chandal (1993), and Verma and Agarwal (1986).

Abundance: No. of individuals per quadrat of occurrence.

Total no. of individuals of a species in all the quadrats

A = Total no. of quadrats in which the species occurred

Frequency: This is described as the % of quadrats occupied by a given species.

Total no. of quadrats in which the species occurred

F (%) = Total no. of quadrats studied ×100

319. According to the values of abundance as well as frequency, the recorded plant species were recognized and categorized as their existing status following DAFOR scale (described as Shukla and Chandal, 1993; and Kent and Coker, 1992).

320. The categorization of threatened plant species in this project has followed the IUCN Red List categories, where the species are classified in nine groups based on the criteria such as rate of decline, population size, area of geographic distribution, and degree of population and distribution fragmentation.

- 321. Each of these groups has been defined according to the followings:
- 1. **Extinct** (EX): No individuals remaining.
- 2. **Extinct in the Wild** (EW): Known only to survive in captivity, or as a naturalized population outside its historic range.
- 3. **Critically Endangered** (CR): Extremely high risk of extinction in the wild.
- 4. **Endangered** (EN): Very high risk of extinction in the wild.
- 5. **Vulnerable** (VU): High risk of extinction in the wild.
- 6. **Near Threatened** (NT): Likely to become endangered in the near future.
- Least Concern (LC): Lowest risk. Does not qualify for a more at risk category.
 Widespread and abundant taxa are included in this category.
- Data Deficient (DD): Not enough data to make an assessment of its risk of extinction.
- 9. **Not Evaluated** (NE): Has not yet been evaluated against the criteria.

Figure 0.1(A) : Correlation of IUCN Red List categories based on the extent of extinction risk.

4.10.4.7 Observations

322. A total of 192 vascular plant species belonging to 161genera under 78 families have been recorded from the proposed LNG-based power plant area (**Table 4-22**) where the maximum 153 (80%) plant species belonged to the dicotyledonous group, followed by 32 (17%) and 7 (3%) plant species belonged to the monocotyledonous and pteridophytes (ferns) groups, respectively.

323. Among the habit categories, the highest number of species 105 (54.69%) were herbs, followed by 42 (21.88%), 16 (8.33%) and 15 (7.81%) species were trees, shrubs and climbers, respectively whereas the lowest number of plant species 11 (5.73%) were recorded as creeper.

SI. No	Scientific name	Family name	Local name	Habit	Plant group
1.	Acacia auriculiformis A. Cunn. ex	Mimosaceae	Akashmoni	Tree	Dicot
	Benth. & Hook.				
2.	Aegle marmelos (L.) Corr.	Rutaceae	Bel	Tree	Dicot
3.	Ageratum conyzoides L.	Asteraceae	Phulkuri	Herb	Dicot
4.	Albizia chinensis (Osb.) Merr.	Mimosaceae	Kkoroi	Tree	Dicot
5.	Albizia lebbeck (L.) Benth. & Hook.	Mimosaceae	Kalokoroi	Tree	Dicot
6.	Albizia procera (Roxb.) Benth.	Mimosaceae	Silkoroi	Tree	Dicot

Tahla	0-1.	Dlant	Snaciae	of the	Pronosod	I NG-based	Power I	Diant Area
Iable	U- 1.	Γιαιιι	Species	or the	Floposeu	LING-Daseu	FOWER	

SI. No	Scientific name	Family name	Local name	Habit	Plant
		,			group
7.	Alternanthera sessilis (L.) R. Br. ex Roem. & Schult.	Amaranthaceae	Chhoto chanchi	Creeper	Dicot
8.	Amaranthus gangeticus L.	Amaranthaceae	Notey shak	Herb	Dicot
9.	Amaranthus spinosus L.	Amarantaceae	Katanotey	Tree	Dicot
10.	Amaranthus tricolor L.	Amaranthaceae	Lalshak	Herb	Dicot
11.	Amaranthus viridis L.	Amaranthaceae	Notey	Herb	Dicot
12.	Ammannia bacciferaL.	Lythraceae	Acidpata	Herb	Dicot
13.	Ampelopteris prolifera (Retz.) Copel	Thelypteridaceae	Dekia	Herb	Fern
14.	Anisomeles indica (L.) O. Kuntze	Lamiaceae	Bontulshi	Herb	Dicot
15.	Annona reticulate L.	Annonaceae	Ata, Nona Ata	Tree	Dicot
16.	Annona squamosa L.	Annonaceae	Shorifa	Shrub	Dicot
17.	<i>Aphanamixis polystachya</i> (Wall.) R. Parker	Meliaceae	Pitraj	Tree	Dicot
18.	Artocarpus chamaBuchHam. ex	Moraceae	Chapalish	Tree	Dicot
	Wall.				
19.	Artocarpus heterophyllus Lamk.	Moraceae	Kathal	Tree	Dicot
20.	Arundo donax L.	Poaceae	Gangabena	Tree	Mocot
21.	Atylosia scarabaeoides (L.) Baker	Fabaceae	Kukshim	Climber	Dicot
22.	Averrhoa carambola L.	Oxalidaceae	Kamranga	Tree	Dicot
23.	Axonopus compressus (Sw.) P.	Poaceae	Chapraghas	Herb	Mocot
24	Azadirachta indica A luss	Moliacoao	Noom	Troo	Diect
24.	Rrassica pigra (L.) Koch	Brassiaaaaa	Shorisha	Horb	Dicot
20.	Colopus colop(L.) Millsp	Eabbaaaaa	Arbor	Shrub	Dicot
20.	Calatronic aigantos (L.) P. Br.	Acclepiadaceae	Amor	Shrub	Dicot
21.	Cardiospormum balicacabum	Sanindaceae	Akullu Dhutkilata	Climbor	Dicot
20.		Caricaceae	Panava	Horb	Dicot
29.	Contolla asiatica (L.) Urban	Apiaceae	F apaya Thankuni	Creener	Dicot
30.		Chenonodiaceae	Rotua shak	Horb	Dicot
32	Chromolaena odorata (L.) King &	Asteração	Corman lata	Horb	Dicot
52.	Robinson	Asielaceae	German lata	TIELD	DICOL
33.	Chloris barbata Sw.	Poaceae	Ghash	Herb	Monocot
34.	Christella dentate	Thelypteridaceae	Dekia	Herb	Fern
35.	<i>Cissampelos pareira</i> L. var. hirsuta (BuchHam. <i>ex</i> DC.) Forman	Menispermaceae	Lotagach	Climber	Dicot
36.	Citrus grandis (L.) Osbeck.	Rutaceae	Jambura	Tree	Dicot
37.	Cleome rutidosperma DC.	Capparaceae	Hurhurey	Herb	Dicot
38.	Cleome viscosa L.	Capparaceae	Holudhurhurey	Herb	Dicot
39.	Clerodendrum viscosum Vent.	Verbenaceae	Vat	Shrub	Dicot
40.	Coccinia cordifolia Cogn.	Cucurbitaceae	Telakucha	Herb	Dicot
41.	Cocos nucifera L.	Arecaceae	Narical	Tree	Mocot
42.	Commelina benghalensis L.	Commelinaceae	Kanchira	Herb	Mocot
43.	Commelina longifolia Lamk.	Commelinaceae	Kanai, Kanchira	Herb	Mocot
44.	Corchorus olitorius L.	Tiliaceae	Bonpat/Titpat	Herb	Dicot
45.	<i>Cotula hemispherica</i> (Roxb.) Wall, ex C. B.	Asteraceae	Babuni	Herb	Dicot

SI No	Scientific name	Family name		Hahit	Plant
31. 140		ranny name		Παυπ	group
46.	Crotalaria pallida Ait.	Fabaceae	Jhonjhoni	Herb	Dicot
47.	Croton bonplandianus Baill.	Euphorbiaceae	Banmarich	Herb	Dicot
48.	Cucurbita maxima Duch. ex Lamk.	Cucurbitaceae	Mistikumra	Climber	Dicot
49.	Cyathula prostrata (L.) Blume	Amaranthaceae	Chhoto Apang	Herb	Dicot
50.	Cynodon dactylon (L.) Pers.	Poaceae	Durba	Herb	Mocot
51.	Cuscuta reflexa Roxb.	Cuscutaceae	Sharnalata	Climber	Dicot
52.	Cyanotis cristata (L.) D. Don	Commelinaceae	unknown	Herb	Dicot
53.	Dactyloctenium aegyptium (L.) P.	Poaceae	Ghash	Herb	Monocot
	Beauv.				
54.	Dentella repens (L.) J. R. & G. Forst.	Rubiaceae	Sharpil	Herb	Dicot
			bhuipata		
55.	Desmodium heterophyllum (Willd.)	Fabaceae	Bonmotosuti	Herb	Dicot
	DC.				
56.	Desmodium triflorum (L.) DC.	Fabaceae	Tripatri shak	Herb	Dicot
57.	Dillenia indica L.	Dilleniaceae	Chalta	Tree	Dicot
58.	Dioscorea esculenta (Lour.) Burkill	Dioscoreaceae	Chuprialu	Climber	Monocot
59.	Diospyros peregrina Guerke	Ebenaceae	Deshigab	Tree	Dicot
60.	Eclipta alba (L.) Hassk.	Asteraceae	Kalokeshi	Shrub	Dicot
61.	Eleusine indica (L.) Gaertn.	Poaceae	Kechla	Herb	Mocot
62.	Eragrostis tenella (L.) P. Beauv. ex	Poaceae	Unknown	Herb	Mocot
	Roem. & Schult.				
63.	Eragrostis unioloides (Retz.) Nees ex	Poaceae	Mulakoni	Herb	Mocot
	Steud.				
64.	Eucalyptus camaldulensis Dehnhardt	Myrtaceae	Eucalyptus	Tree	Dicot
65.	Euphorbia hirta L.	Euphorbiaceae	Dudhia	Herb	Dicot
66.	Evolvulus nummularius (L.) L.	Convolvulaceae	Khetpapra	Creeper	Dicot
67.	Ficus benghalensis L.	Moraceae	Bat	Tree	Dicot
68.	Ficus hispida L. f.	Moraceae	Kagdumur	Tree	Dicot
69.	Ficus religiosa L.	Moraceae	Ashwath	Tree	Dicot
70.	Fimbristylis acuminata Vahl	Cyperaceae	Acumifimbry	Herb	Mocot
71.	Glinus oppositifolius (L.) A. DC.	Molluginaceae	Gimashak	Herb	Dicot
72.	Gmelina arborea Roxb.	Verbenaceae	Gamar	Tree	Dicot
73.	Gnaphalium luteo-album L.	Asteraceae	Sadalomi	Herb	Dicot
74.	Grangea maderaspatana (L.) Poir.	Asteraceae	Nemuti	Herb	Dicot
75.	Heliotropium indicum L.	Asteraceae	Hatisur	Herb	Dicot
76.	Hedyotis corymbosa (L.) Lamk.	Rubiaceae	Khetpapra	Herb	Dicot
77.	Hibiscus rosa-sinensis L.	Malvaceae	Jaba	Shrub	Dicot
78.	Hibiscus sabdariffa L.	Malvaceae	Stholpadda	Shrub	Dicot
79.	Ipomoea batatas (L.) Poir.	Convolvulaceae	Misti alu	Creeper	Dicot
80.	Jasminum sambac (L.) Ait.	Oleaceae	Jui	Shrub	Dicot
81.	Kyllinga microcephala Steud.	Cyperaceae	Muthaghas	Herb	Monocot
82.	Lablab purpureus (L.) Sweet	Fabaceae	Shim	Climber	Dicot
83.	Lagenaria siceraria (Molina) Standl.	Cucrbitaceae	Lau	Climber	Dicot
84.	Lannea coromandelica (Houtt.) Merr.	Anacardiaceae	Jiga	Tree	Dicot
85.	Launaea aspleniifolia DC.	Asteraceae	Lonia	Herb	Dicot
86.	Lawsonia inermis L.	Lythraceae	Mehedi	Tree	Dicot

SI. No	Scientific name	Family name	Local name	Habit	Plant group
87.	Leucaena leucocephala (Lamk.) de	Mimosaceae	lpil-lpil	Tree	Dicot
	Wit.		· Þ. · · Þ. ·		
88.	Leucas aspera (Willd.) Link	Lamiaceae	Swetdrawn	Herb	Dicot
89.	Lindernia rotundifolia (L.) Alston	Scrophulariaceae	Chotohelencha	Herb	Dicot
90.	Lippia alba (Mill.) Briton et Wilson	Verbenaceae	Lipia	Herb	Dicot
91.	Litchi chinensis Sonn.	Sapindaceae	Litchu	Tree	Dicot
92.	Luffa cylindrica (L.) M. Roem.	Cucurbitaceae	Jhinga	Climber	Dicot
93.	Madhuca longifolia (Koenig)	Sapotaceae	Mohua	Tree	Dicot
	MacBride				
94.	Mangifera indica L.	Anacardiaceae	Am	Tree	Dicot
95.	Melia azedarach L.	Meliaceae	Gora Neem	Tree	Dicot
96.	Melochia corchorifolia L.	Sterculiaceae	Unknown	Shrub	Dicot
97.	Merremia hederacea (Burm. f.) Hallier	Convolvulaceea	Unknown	Climber	Dicot
	f.				
98.	Mikania cordata (Burm. f.) Robinson	Asteraceae	Assam lata	Climber	Dicot
99.	Mimosa pudica L.	Mimosaceae	Lazzabati	Herb	Dicot
100.	Mirabilis jalapa L.	Nyctaginaceae	Shayndhamaloti	Herb	Dicot
101.	Moringa oleifera Lamk.	Moringaceae	Shojna	Tree	Dicot
102.	Momordica charantia L.	Cucurbitaceae	Korolla	Climber	Dicot
103.	Musa paradisiaca L.	Mussaceae	Kathalikola	Herb	Mocot
104.	Neolamarckia cadamba (Roxb.)	Rubiaceae	Kadom	Tree	Dicot
	Bosser				
105.	Ocimum sanctum L.	Lamiaceae	Babuitulshi	Herb	Dicot
106.	Oldenlandia corymbosa L.	Rubiaceae	Khetpapra	Herb	Dicot
107.	Oxalis corniculata L.	Oxalidaceae	Amrul	Herb	Dicot
108.	Panicum sp.	Poaceae	Bashpatighas	Herb	Mocot
109.	Paspalum flavidum (Retz.) A. Camus	Poaceae	Moissaghas	Herb	Mocot
110.	Passiflora foetida L.	Passifloraceae	Jhumkalata	Climber	Dicot
111.	Pedilanthus tithymaloides Poit.	Euphorbiaceae	Bera Chita	Herb	Dicot
112.	Phyla nodiflora (L.) Greene	Verbenaceae	Bakan	Herb	Dicot
113.	Phyllanthus acidus (L.) Skeels	Euphorbiaceae	Arboroi	Tree	Dicot
114.	Phyllanthus niruri L.	Euphorbiaceae	Bhuiamla	Herb	Dicot
115.	Phyllanthus reticulatus Poir.	Euphorbiaceae	Sitka	Shrub	Dicot
116.	Phyllanthus urinaria L.	Euphorbiaceae	Sitka	Shrub	Dicot
117.	Physalis minima L.	Solanaceae	Phutka	Herb	Dicot
118.	Pogostemon crassicaulis (Benth.) J.	Lamiaceae	Aripachuli	Herb	Dicot
	R. Press				
119.	Pouzolzia zeylanica (L.) Benn.	Urticaceae	Bilati luchipata	Herb	Dicot
120.	Psidium guajava L.	Myrtaceae	Peyara	Tree	Dicot
121.	Punica granatum L.	Punicaceae	Dalim	Shrub	Dicot
122.	Richardia scabra L.	Rubiaceae	Khetpapra	Herb	Dicot
123.	Ricinus communis L.	Euphorbiaceae	Rerhi/Vrenda	Shrub	Dicot
124.	Rorippa indica (L.) Hiern	Brassicaceae	Bonshorisha	Herb	Dicot
125.	Sacciolepis interrupta (Willd.) Stapf	Poaceae	Ghash	Herb	Monocot
126.	Saccharum spontaneum L.	Poaceae	Kash	Herb	Mocot
127.	Samanea saman (Jacq.) Merr.	Mimosaceae	Raintree	Tree	Dicot

SI. No	Scientific name	Family name	Local name	Habit	Plant group
128.	Scoparia dulcis L.	Scrophulariaceae	Bandhoney	Herb	Dicot
129.	Senna alata (L.) Roxb.	Caesalpiniaceae	Datmardan	Shrub	Dicot
130.	Senna occidentalis Roxb.	Caesalpiniaceae	Kolkashunda	Shrub	Dicot
131.	Senna tora (L.) Roxb.	Caesalpiniaceae	Kolkashunda	Herb	Dicot
132.	Sida acuta Burm. f.	Malvaceae	Berela	Herb	Dicot
133.	Sida rhombifolia L.	Malvaceae	Pitberela	Herb	Dicot
134.	Solanum lycopersicum Dunal	Solanaceae	Tomato	Herb	Dicot
135.	Solanum melongena L.	Solanaceae	Begun	Herb	Dicot
136.	Solanum nigrum L.	Solanaceae	Kakmachi	Herb	Dicot
137.	Solanum sisymbrifolium Lamk.	Solanaceae	Kataegun	Herb	Dicot
138.	Sphaeranthus indicus L.	Asteraceae	Mundi	Herb	Dicot
139.	Spondias pinnata (L. f.) Kurz	Anacardiaceae	Amra	Tree	Dicot
140.	Stephania japonica (Thunb.) Miers	Menispermiaceae	Ghaupata	Climber	Dicot
141.	Swietenia mahagoni Jacq.	Meliaceae	Mehagoni	Tree	Dicot
142.	Synedrella nodiflora (L.) Gaertn.	Asteraceae	Nakphul	Herb	Dicot
143.	Syzygium cumini (L.) Skeels	Myrtaceae	Jam	Tree	Dicot
144.	Tamarindus indica L.	Caesalpiniaceae	Tetul	Tree	Dicot
145.	Terminalia catappa L.	Combretaceae	Kathbadam	Tree	Dicot
146.	Thevetia peruviana (Pers.) K. Schum.	Apocynaceae	Holud korobi	Tree	Dicot
147.	Tinospora cordifolia (Willd.) Hook. f.	Menispermaceae	Gulancha	Climber	Dicot
	& Thoms.				
148.	Trema orientalis (L.) Blume	Ulmaceae	Jibon	Tree	Dicot
149.	Tridax procumbens L.	Asteraceae	Tridhara	Herb	Dicot
150.	Urena lobata L.	Malvaceae	Banokra	Shrub	Dicot
151.	Vernonia cinerea (L.) Less.	Asteraceae	Kukurshunga	Herb	Dicot
152.	Xanthium indicum Koen. ex Roxb.	Asteraceae	Ghagra	Herb	Dicot
153.	Ziziphus mauritiana Lamk.	Rhamnaceae	Kul, Boroi	Tree	Dicot

4.10.4.8 Aquatic Flora/ wetland flora

Table 0-2: Aquatic Species in the Proposed Study Area

SI. No.	Scientific name	Family name	Local name	Habit	Plant group
1.	Adenosma indianum(Lour.) Merr.	Scrophulariaceae	Baghjama	Herb	Dicot
	Alternanthera philoxeroides (Mart.)	Amaranthaceae	Henchi	Creeper	Dicot
2.	Griseb.				
	Aponogeton	Aponogetonaceae	Jalkachu	Herb	Monocot
3.	<i>appendiculatus</i> Bruggen		oundond	11010	
4.	Azolla pinnata	Azollaceae	Azola	Herb	Fern
5.	Barringtonia acutangula(L.) Gaertn.	Lecythidaceae	Hijal	Tree	Dicot
6.	Colocasia esculenta (L.) Schott	Araceae	Kachu	Herb	Mocot
7.	Crateva magna(Lour.) DC.	Capparaceae	Borun	Tree	Dicot
	Cryptocoryne spiralis(Retz.)	Araceae	Canakochu	Horb	Monocot
8.	Fischer <i>ex</i> Wydler		Galigkochu	TIELD	
9.	Cyperus rotundus L.	Cyperaceae	Muthaghas	Herb	Monocot
10.	<i>Cyperus</i> sp	Cyperaceae	Bhadighas	Herb	Monocot
11.	Eichhornia crassipes (Mart.) Solms	Pontedariaceae	Kachuripana	Herb	Mocot

ESIA Report

SI.	Scientific name	Family name	l ocal name	Habit	Plant
No.		r anny name		Παστι	group
12.	Enhydra fluctuans Lour.	Asteraceae	Helencha	Creeper	Dicot
13.	Ficus heterophylla L. f.	Moraceae	Latadumur	Climber	Dicot
14.	Floscopia sp.	Commelinaceae	Kanshira	Herb	Monocot
15.	<i>Hygrophila polysperma</i> (Roxb.) T. Anders.	Acanthaceae	Makhna	Herb	Dicot
16.	Hygroryza aristata(Retz.) Nees	Poaceae	Jalghas	Creeper	Monocot
17.	Ipomoea aquatica Forssk.	Convolvulaceae	Kolmi shak	Creeper	Dicot
18.	lpomoea fistulosa Mart. ex Choisy	Convolvulaceae	Dholkalmi	Herb	Dicot
19.	Leersia hexandra Sw.	Poaceae	Aralighas	Herb	Mocot
20.	Lemna perpusilla Torrey	Lemnaceae	Khudipana	Herb	Mocot
21.	Limnophila sessiliflora(Vahl) Blume	Scrophulariaceae	Limnophila	Herb	Dicot
22.	Ludwigia adscendens(L.) Hara	Onagraceae	Keshordom	Creeper	Dicot
23.	<i>Ludwigia hyssopifolia</i> (G. Don) Exell apud A. &R. Fernandas	Onagraceae	Bonmorich	Herb	Dicot
24.	Marsilea minuta L.	Masileaceae	Susni sak	Creeper	Fern
25.	Najas minor L.	Najadaceae	Najas	Herb	Dicot
26.	Nymphoides indicum (L.) O. Kuntze	Menynthaceae	Chandmala	Herb	Dicot
27.	<i>Persicaria assamica</i> (Meissn.) Sojak	Polygonaceae	Bishkathali	Herb	Dicot
28.	Persicaria barbata(L.) Hara	Polygonaceae	Bishkathali	Herb	Dicot
29.	Persicaria hydropiper(L.) Spach	Polygonaceae	Bishkathali	Herb	Dicot
30.	Persicaria orientalis(L.) Spach	Polygonaceae	Bishkathali	Herb	Dicot
31.	Pistia stratiotes L.	Araceae	Topapana	Herb	Mocot
32.	Polygonum plebeiumR. Br.	Polygonaceae	Bishkathali	Herb	Dicot
33.	Rotala indica (Willd.) Koehne	Lythraceae	Deshi ghurni	Herb	Dicot
34.	Salvinia cucullata	Salviniaceae	Indurkanipana	Herb	Fern
35.	Salvinia molesta	Salviniaceae	Boropatapana	Herb	Fern
36.	Salvinia natans	Salviniaceae	Basanpatapana	Herb	Fern
37.	<i>Schoenoplectus articulatus</i> (L.) Palla	Cyperaceae	Chechri	Herb	Mocot
38.	Trewia nudiflora L.	Euphorbiaceae	Petali	Tree	Dicot
39.	Vallisneria spiralis L.	Hydrocharitaceae	Patajahangi	Herb	Mocot

Table 0-3: Redlist categories and existing DAFOR status of the recorded vegetation in the proposed LNG-based power plant area area

SI. No.	Scientific name	Family name	Red list status	DAFOR status
	Acacia auriculiformis A. Cunn. ex Benth. &	Mimosaceae		0
1.	Hook.	Mintobaceae	20	0
2.	Adenosma indianum(Lour.) Merr.	Scrophulariaceae	Lc	R
3.	Aegle marmelos (L.) Corr.	Rutaceae	Lc	0
4.	Ageratum conyzoides L.	Asteraceae	Lc	F
5.	Albizia chinensis (Osb.) Merr.	Mimosaceae	Lc	0
6.	Albizia lebbeck (L.) Benth. & Hook.	Mimosaceae	Lc	F
7.	Albizia procera (Roxb.) Benth.	Mimosaceae	Lc	A

SI. No.	Scientific name	Family name	Red list status	DAFOR status
8.	Alternanthera philoxeroides (Mart.) Griseb.	Amaranthaceae	Lc	A
9.	Alternanthera sessilis (L.) R. Br. ex Roem. & Schult.	Amaranthaceae	Lc	D
10.	Amaranthus gangeticus L.	Amaranthaceae	Lc	F
11.	Amaranthus spinosus L.	Amarantaceae	Lc	A
12.	Amaranthus tricolor L.	Amaranthaceae	Lc	F
13.	Amaranthus viridis L.	Amaranthaceae	Lc	F
14.	Ammannia bacciferaL.	Lythraceae	Lc	0
15.	Ampelopteris prolifera (Retz.) Copel	Thelypteridaceae	Lc	F
16.	Anisomeles indica (L.) O. Kuntze	Lamiaceae	Lc	R
17.	Annona reticulate L.	Annonaceae	Lc	0
18.	Annona squamosa L.	Annonaceae	Lc	0
19.	Aphanamixis polystachya (Wall.) R. Parker	Meliaceae	Lc	R
20.	Aponogeton appendiculatusBruggen	Aponogetonaceae	CD	F
21.	Artocarpus chamaBuchHam. ex Wall.	Moraceae	Lc	0
22.	Artocarpus heterophyllus Lamk.	Moraceae	Lc	0
23.	Arundo donax L.	Poaceae	Lc	F
24.	Atylosia scarabaeoides (L.) Baker	Fabaceae	Lc	0
25.	Averrhoa carambola L.	Oxalidaceae	Lc	0
26.	Axonopus compressus (Sw.) P. Beauv.	Poaceae	Lc	Α
27.	Azadirachta indica A. Juss.	Meliaceae	Lc	F
28.	Azolla pinnata	Azollaceae	Lc	R
29.	Barringtonia acutangula(L.) Gaertn.	Lecythidaceae	Lc	R
30.	Brassica nigra (L.) Koch	Brassicaceae	Lc	Α
31.	Cajanus cajan(L.) Millsp.	Fabbaceae	Lc	F
32.	Calotropis gigantea (L.) R. Br.	Asclepiadaceae	Lc	F
33.	Cardiospermum halicacabumL.	Sapindaceae	Lc	0
34.	Carica papaya L.	Caricaceae	Lc	F
35.	Centella asiatica (L.) Urban	Apiaceae	Lc	А
36.	Chenopodium album L.	Chenopodiaceae	Lc	А
37.	Chloris barbata Sw.	Poaceae	NE	R
38.	Christella dentata	Thelypteridaceae	NT	R
39.	Chromolaena odorata (L.) King & Robinson	Asteraceae	VU	А
40.	Cissampelos pareira L. var. hirsuta	Menispermaceae	Lc	R
41.	Citrus grandis (L.) Osbeck.	Rutaceae	Lc	F
42.	Cleome rutidosperma DC.	Capparaceae	Lc	A
43.	Cleome viscosa L.	Capparaceae	Lc	F
44.	Clerodendrum viscosum Vent.	Verbenaceae	Lc	F
45.	Coccinia cordifolia Cogn.	Cucurbitaceae	Lc	A
46.	Cocos nucifera L.	Arecaceae	Lc	F
47.	Colocasia esculenta (L.) Schott	Araceae	Lc	D
48.	Commelina benghalensis L.	Commelinaceae	Lc	А
49.	Commelina longifolia Lamk.	Commelinaceae	Lc	F
50.	Corchorus olitorius L.	Tiliaceae	Lc	0
51.	Cotula hemispherica (Roxb.) Wall, ex C. B.	Asteraceae	Lc	F
52.	Crateva magna(Lour.) DC.	Capparaceae	Lc	А

SI. No.	Scientific name	Family name	Red list status	DAFOR status
53.	Crotalaria pallida Ait.	Fabaceae	Lc	F
54.	Croton bonplandianus Baill.	Euphorbiaceae	Lc	D
55.	<i>Cryptocoryne spiralis</i> (Retz.) Fischer <i>ex</i> Wvdler	Araceae	Lc	F
56.	Cucurbita maxima Duch. ex Lamk.	Cucurbitaceae	Lc	F
57.	Cuscuta reflexa Roxb.	Cuscutaceae	Lc	A
58.	Cvanotis cristata (L.) D. Don	Commelinaceae	Lc	F
59.	<i>Cyathula prostrata</i> (L.) Blume	Amaranthaceae	NE	F
60.	Cynodon dactylon (L.) Pers.	Poaceae	Lc	A
61.	Cyperus rotundus L.	Cyperaceae	Lc	F
62.	<i>Cyperus</i> sp	Cyperaceae	Lc	0
63.	Dactyloctenium aegyptium(L.) P. Beauv.	Poaceae	Lc	F
64.	Dentella repens(L.) J. R. & G. Forst.	Rubiaceae	Lc	F
65.	Desmodium heterophyllum (Willd.) DC.	Fabaceae	Lc	0
66.	Desmodium triflorum (L.) DC.	Fabaceae	Lc	A
67.	Dillenia indica L.	Dilleniaceae	Lc	0
68.	Dioscorea esculenta(Lour.) Burkill	Dioscoreaceae	Lc	0
69.	Diospyros peregrina Guerke	Ebenaceae	Lc	R
70.	Eclipta alba (L.) Hassk.	Asteraceae	Lc	A
71.	Eichhornia crassipes (Mart.) Solms	Pontedariaceae	Lc	D
72.	Eleusine indica (L.) Gaertn.	Poaceae	Lc	A
73.	Enhydra fluctuans Lour.	Asteraceae	Lc	A
74.	<i>Eragrostis tenella</i> (L.) P. Beauv. <i>ex</i> Roem. & Schult.	Poaceae	Lc	А
75.	Eragrostis unioloides(Retz.) Nees ex Steud.	Poaceae	Lc	F
76.	Eucalyptus camaldulensis Dehnhardt	Myrtaceae	NE	F
77.	Euphorbia hirta L.	Euphorbiaceae	Lc	F
78.	Evolvulus nummularius (L.) L.	Convolvulaceae	Lc	F
79.	Ficus benghalensis L.	Moraceae	Lc	0
80.	Ficus heterophylla L. f.	Moraceae	Lc	F
81.	Ficus hispida L. f.	Moraceae	Lc	0
82.	Ficus religiosa L.	Moraceae	Lc	0
83.	Fimbristylis acuminataVahl	Cyperaceae	Lc	F
84.	Floscopia sp.	Commelinaceae	Lc	A
85.	Glinus oppositifolius (L.) A. DC.	Molluginaceae	Lc	F
86.	Gmelina arborea Roxb.	Verbenaceae	Lc	0
87.	Gnaphalium luteo-album L.	Asteraceae	Lc	A
88.	Grangea maderaspatana (L.) Poir.	Asteraceae	Lc	A
89.	Hedyotis corymbosa(L.) Lamk.	Rubiaceae	Lc	F
90.	Heliotropium indicum L.	Asteraceae	Lc	D
91.	Hibiscus rosa-sinensis L.	Malvaceae	Lc	0
92.	Hibiscus sabdariffaL.	Malvaceae	Lc	R
93.	Hygrophila polysperma (Roxb.) T. Anders.	Acanthaceae	Lc	0
94.	Hygroryza aristata(Retz.) Nees	Poaceae	Lc	A
95.	Ipomoea aquatica Forssk.	Convolvulaceae	Lc	D
96.	Ipomoea batatas (L.) Poir.	Convolvulaceae	Lc	F

SI. No.	Scientific name	Family name	Red list status	DAFOR status
97.	<i>Ipomoea fistulosa</i> Mart. <i>ex</i> Choisy	Convolvulaceae	Lc	А
98.	Jasminum sambac(L.) Ait.	Oleaceae	Lc	R
99.	Kyllinga microcephalaSteud.	Cyperaceae	Lc	D
100.	Lablab purpureus (L.) Sweet	Fabaceae	Lc	F
101.	Lagenaria siceraria (Molina) Standl.	Cucrbitaceae	Lc	F
102.	Lannea coromandelica (Houtt.) Merr.	Anacardiaceae	Lc	F
103.	Launaea aspleniifolia DC.	Asteraceae	Lc	A
104.	Lawsonia inermis L.	Lythraceae	Lc	0
105.	Leersia hexandra Sw.	Poaceae	Lc	A
106.	Lemna perpusilla Torrey	Lemnaceae	Lc	A
107.	Leucaena leucocephala (Lamk.) de Wit.	Mimosaceae	Lc	F
108.	Leucas aspera (Willd.) Link	Lamiaceae	LC	A
109.	Limnophila sessilinora(Vani) Biume	Scrophulariaceae	LC	A
110.	Lindernia rolundiiona(L.) Aiston	Verbanassa	LC	A
111.		Verbenaceae	LC	F
112.	Litchi chinensisSonn.	Sapindaceae	LC	0
113.	Ludwigia adscendens(L.) Hara	Onagraceae	LC	A
114.	Ludwigia hyssopifolia	Onagraceae	Lc	D
115.	<i>Luffa cylindrica</i> (L.) M. Roem.	Cucurbitaceae	Lc	F
116.	Madhuca longifolia(Koenig) MacBride	Sapotaceae	Lc	R
117.	Mangifera indica L.	Anacardiaceae	Lc	F
118.	Marsilea minuta L.	Masileaceae	Lc	А
119.	Melia azedarach L.	Meliaceae	Lc	F
120.	Melochia corchorifoliaL.	Sterculiaceae	Lc	0
121.	Merremia hederacea(Burm. f.) Hallier f.	Convolvulaceea	Lc	F
122.	Mikania cordata (Burm. f.) Robinson	Asteraceae	Lc	F
123.	Mimosa pudica L.	Mimosaceae	Lc	F
124.	Mirabilis jalapa L.	Nyctaginaceae	Lc	R
125.	Momordica charantia L.	Cucurbitaceae	Lc	А
126.	Moringa oleiferaLamk.	Moringaceae	Lc	0
127.	Musa paradisiaca L.	Mussaceae	Lc	F
128.	Naias minor L.	Naiadaceae	Lc	F
129	Neolamarckia cadamba (Roxb.) Bosser	Rubiaceae	Lc	0
130	Nymphoides indicum (L.) O. Kuntze	Menynthaceae		F
131	Ocimum sanctum	Lamiaceae		F
132	Oldenlandia diffusa (Willd) Roxh	Rubiaceae		F
102.		Ovalidação		Λ
100.	Panioum sp	Daanooo		
134.	Pagnalum flavidum(Patz) A. Camua	Poaceae		г
135.	Passiflara fastida L		LC	г
136.		Passifioraceae	LC	ĸ
137.	Pedilanthus titnymaloides Polt.	Euphorbiaceae	LC	0
138.	Persicaria assamica(Meissn.) Sojak	Polygonaceae	Lc	F
139.	<i>Persicaria barbata</i> (L.) Hara	Polygonaceae	Lc	F

SI.	Scientific name	Family name	Red list	DAFOR
140	Persicaria hydroniner(L) Spach	Polygonaceae		Sidius
140.	Persicaria orientalis(L.) Spach	Polygonaceae		
141.	Phyla podiflora (L.) Greene	Verbenaceae		F
142.	Phyllanthus acidus (L.) Skeels	Funhorbiaceae		P
143.	Phyllanthus piruri	Euphorbiaceae		Λ
144.	Phyllanthus ratioulatus Poir	Euphorbiaceae		A
145.		Euphorbiaceae		
140.	Physiallinus unitariaL.	Solonooooo		г
147.	Pintia stratiotos I	Araaaaa		Ι
146.	Pistia strationes L.	Araceae	LC	A
140	Progosternon crassicaulis(Dentin.) J. R.	Lamaceae	Lc	А
149.	Polygonum ploboiumP. Pr	Polygonacaa		E
150.	Polygonum piebeiumik. Bi.	Folygonaceae	LC	Г
151.		Unicaceae	LC	
152.	Psidium guajava L.	Nyrtaceae	LC	F
153.	Punica granatum L.	Punicaceae	LC	0
154.		Rublaceae	LC	A
155.	Ricinus communis L.	Euphorbiaceae	LC	0
156.	Rorippa Indica(L.) Hiern	Brassicaceae	LC	A
157.		Lythraceae	LC	R
158.	Saccharum spontaneum L.	Poaceae	LC	A
159.		Poaceae	LC	F
160.		Salviniaceae	LC	A
161.	Salvinia molesta	Salviniaceae	LC	-
162.	Salvinia natans	Salviniaceae	LC	D
163.	Samanea saman (Jacq.) Merr.	Mimosaceae	LC	A
164.	Schoenoplectus articulatus(L.) Palla	Cyperaceae	LC	A
165.	Scoparia dulcis L.	Scrophulariaceae	LC	F
166.	Senna alata (L.) Roxb.	Caesalpiniaceae	LC	A
167.	Senna occidentalisRoxb.	Caesalpiniaceae	LC	F
168.	Senna tora (L.) Roxb.	Caesalpiniaceae	LC	F
169.	Sida acuta Burm. f.	Malvaceae	Lc	F
170.	Sida rhombifoliaL.	Malvaceae	Lc	0
171.	Solanum lycopersicum Dunal	Solanaceae	Lc	A
172.	Solanum melongena L.	Solanaceae	Lc	A
173.	Solanum nigrum L.	Solanaceae	Lc	F
174.	Solanum sisymbrifolium Lamk.	Solanaceae	Lc	D
175.	Sphaeranthus indicus L.	Asteraceae	Lc	F
176.	Spondias pinnata (L. f.) Kurz	Anacardiaceae	Lc	0
177.	Stephania japonica(Thunb.) Miers	Menispermiaceae	Lc	0
178.	Swietenia mahagoni Jacq.	Meliaceae	Lc	F
179.	Synedrella nodiflora (L.) Gaertn.	Asteraceae	Lc	F
180.	Syzygium cumini (L.) Skeels	Myrtaceae	Lc	0

SI.	Scientific name	Family name	Red list	DAFOR
NO.			Sidius	Sidius
181.	Tamarindus indica L.	Caesalpiniaceae	Lc	F
182.	Terminalia catappa L.	Combretaceae	Lc	0
183.	Thevetia peruviana (Pers.) K. Schum.	Apocynaceae	Lc	0
	Tinospora cordifolia (Willd.) Hook. f. &	Menispermaceae		R
184.	Thoms.		LU	
185.	Trema orientalis (L.) Blume	Ulmaceae	Lc	0
186.	Trewia nudiflora L.	Euphorbiaceae	Lc	А
187.	Tridax procumbensL.	Asteraceae	Lc	F
188.	Urena lobata L.	Malvaceae	Lc	0
189.	Vallisneria spiralis L.	Hydrocharitaceae	Lc	А
190.	Vernonia cinerea (L.) Less.	Asteraceae	Lc	0
191.	Xanthium indicum Koen. ex Roxb.	Asteraceae	Lc	А
192.	Ziziphus mauritiana Lamk.	Rhamnaceae	Lc	F

Note: LC= Least Concern, NE= Not Evaluated, NT= Near Threatened, CD= Coservation Dependent, DD= Data Deficient, VU= Vulnerable. D= Dominant, A= Abundant, F= Frequent, O= Occasional, R= Rare.

Figure 0.2: Species composition of the the proposed LNG-based power plant area.

Figure 0.3: Cotyledonary status of the recorded plant species in the proposed LNGbased power plant area.

Figure 0.4: Habit categories of the recorded plant species of the present power plant sites.

324. From the present study, out of 192 recorded plant species, terrestrial habitats represent 153 (79.69%) species whereas the aquatic /or wetland habitats harbored 39 (20.31%) species in the present power plant project sites (**Figure 4-35**).

Figure 0.5: Habitat categories of the recorded plant species of the present power plant sites.

325. The observation infers that in this area Kalmi Leaves, Patajahangi, Lota Tree and Notey are rare, occasional, abundant & dominant flora species respectively.

326. The detailed findings of the flora have been given in the **Annexure 4.1**.

4.10.5 Terrestrial Ecology - Fauna

327. Animals and birds in the study area were documented using following means:

- Secondary sources and published literature
- By interviewing local people
- Actual sighting

ReliAnce

- Indirect evidence (pallets, dung, droppings, scat, mould, marking on the trunks etc.)
- Nesting (birds, burrows for small mammals)

328. The records for the birds, mammals and other faunal groups were made at the same site where vegetation sampling was carried out. Most of the records of the mammalian and reptilian fauna are opportunistic, nonetheless very useful to understand habitat specificity and interrelationship between certain floral and faunal elements and also between certain geological and faunal features.

ODONATA FAUNA

329. **Odonata** is an order of carnivorous insects, encompassing the dragonflies (Anisoptera) and the <u>damselflies</u> (Zygoptera). Odonates are aquatic or semiaquatic as juveniles. Thus, adults are most often seen near bodies of water and are frequently described as aquatic insects. Adult Odonates are terrestrial and are found near water, whereas the immature stages are aquatic and inhabit all typesof freshwater habitats ranging from permanent running waters and lakes to small temporary rain pools (Silsby 2001, Harp 1996, Corbet 1999). Many species are limited to some particular habitats, both during larval and adult lifestages especially the stenotopic species. However, their specificity to aquatic habitats makes them an ideal model for monitoring the health of freshwater ecosystems (Subramanian 2009, Orr 2003, Watanabe et al., 2004). The adults are harmless and their beautiful colorpattern raised strong aesthetic sense to human being. People in some countries also take the adult dragonflies as a minor food item (Chowdhury, 1989; Chovanec 1994; Legner 1995; Clarke 1996; Nikula *et al.*, 2007).

330. They are carnivorous throughout their life, mostly feeding on smaller insects. Dragonflies and damselflies play key roles in both terrestrial and aquatic habitats. They are predators as both nymphs and adults, feeding on a variety of prey including nuisance species such as mosquitoes and biting flies. Nymphs can be top predators in fishless wetlands and help structure the wetland community. Dragonfly and damselfly nymphs in turn are an essential food resource for fish and amphibians, and adults are eaten by upland predators such as birds, bats, lizards, and spiders.

331. Odonates can act as **bio indicators** of water quality in <u>rivers</u> because they rely on high quality water for proper development in early life. Odonate nymphs are important components of most fresh water habitats, intermediate links in aquatic food webs, functioning as both prey and predators. Nymphs are food for birds, fish, and bugs. Since their diet consists entirely of insects, donate density is directly proportional to the population of prey, and their abundance indicates the abundance of prey in the examined <u>ecosystem</u> (Golfieri *et al.*, 2016). Species richness of vascular plants has also been positively correlated with the species richness of dragonflies in a given habitat.

332. They can be indicators of different biotypes and habitats, and have been used as tools to assess the biological health of aquatic habitats and to detect levels of heavy metals such as mercury. They are also considered model organisms to assess the effects of global climate change. For the reasons, a survey of this group was prime important.

333. Adult Odonates were observed were recorded and some were collected by using standard hand nets and anesthetized in the field. Back in the laboratory they were identification with the help of taxonomic key provided by Fraser (1933, 1934, 1936, Lahiri (1987), Mitra (1983), Srivastava and Sinha (1993), Needham and Westfall (1954), Walker and Corbet (1975), Westfall (1996) and available photographs. As the survey time was only one day, it was not possible to survey all species. We also consulted previous information to enlist the survey species.Odonates found during the survey are recorded in **Table 4-25**.

SI. No.	Common Name	Scientific name
1.	Coral Tailed Cloud Wing	Tholymistillarga
2.	Skimmer	Rhodothemisrufa
3.	Wandering Glider	Pantalaflavescens
4.	Green Marsh Hawk	Orthetrumsabina
5.	Fulvous Forest Skimmer	Neurothemisfulvia
6.	Ruddy Marsh Skimmer	Crocothemisservilia
7.	Ditch Jewel	Brachythemiscontaminata
8.	Common Clubtail	Ictinogomphusrapax

Table 0-4: Odonates recorded during the survey

Fish

334. List of fish fauna recorded during the survey is listed in Table 4-26.

Table 0-5: List of fish fauna recorded during the survey as mentioned by the local people and fishermen

Common English name	Local Name	Scientific Name	Abundance
Rohu	Rui	Labeorohita	+
Catla	Katla	Catlacatla	+
Black Rohu	Kalibaush	Labeocalbasu	+
Freshwater Shark	Boal	Wallagoattu	+
Long-whiskered Catfish	Ayre	Sperataaor	+
Tire-track Spiny Eel	Bain	Mastacembelusarmatus	+
Humped Featherback	Chital	Chitalachitala	+
Dwarf Chamelonfish	Meni	Badisbadis	+
Dwarf Catfish	Batashi	Batasiotengana	+
Pama Croaker	Poa	Otolithoidespama	+
River Shad	llish	Tenulosailisha	+
GangeticHairfin	Fasha	Setipinnaphasa	+
SilondiaVacha	Shilong	Siloniasilondia	+
BatchwaVacha	Bacha	EutropiichthysVacha	+
GangeticLotia	Kala Bata	Crossocheiluslatius	+
Ghora-chela	Ghora Chela	Securiculagora	+

Dragonfly

335. List of dragonfly species recorded during the survey is listed in Table 4-27.

Table 0-6: List of dragonfly species recorded from the study area

SI.	Common Name	Scientific name	Family
No.			
1.	Coral Tailed Cloud Wing	Tholymis tillarga	Libellulidae
2.	Skimmer	Rhodothemis rufa	Libellulidae
3.	Wandering Glider	Pantala flavescens	Libellulidae
4.	Green Marsh Hawk	Orthetrum sabina	Libellulidae
5.	Fulvous Forest Skimmer	Neurothemis fulvia	Libellulidae
6.	Ruddy Marsh Skimmer	Crocothemis servilia	Libellulidae
7.	Ditch Jewel	Brachythemis contaminata	Libellulidae
8.	Common Clubtail	Ictinogomphus rapax	Gomphidae

Damselfl

336. List of Damselfl species recorded during the survey is listed in Table 4-28.

SI.	Common Name	Scientific name	
No.			
1.	Saffron-faced Blue Dart	Pseudagrion rubriceps	Coenagrionidae
2.	Coromandel Marsh Dart	Ceriagrion coromandelianum	Coenagrionidae
3.	Pigmy Darlet	Agriocnemis pygmaea	Coenagrionidae
4.	Orange-tailed Marsh Dart	Ceriagrion cerinorubellum	Coenagrionidae
5.	Narrow-winged damselfly	Agriocnemis femina	Coenagrionidae
6.	Little Blue	Enallagma parvam	Coenagrionidae
7.	Common Bush Dart	Copera ciliate	Platycnemididae

Table 0-7:	Damselfly	species	recorded	from	the	study area	
------------	-----------	---------	----------	------	-----	------------	--

337. In our study, out of 15 species recorded, 8 species were dragonflies belonging to two families: Libellulidae, and Gomphidae; 7 species were damselflies under two families i.e. Coenagrionidae, and Platycnemididae.

338. Evolutionary relationships among fourteen Odonata species were constructed using MEGA 6 software. In maximum likelihood tree (A), the evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model. The tree with the highest log likelihood (-2641.7158) is shown. In neighbor- joining tree (B), the evolutionary history was inferred using the Neighbor-Joining method. The optimal tree with the sum of branch length = 0.57177990 is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) is shown next to the branches. The bar at the bottom is a scale for genetic change.

Genetic Distance:

339. Kimura's two parameter (K2P) genetic distances was carried out using MEGA 6(Tamura et al., 2013). Interspecific genetic divergence range of Odonata species was 0.13-0.32. Ictinogomphusrapax showed highest (0.32) pairwise distance than rest. Ceriagrion cerinorubellum showed lowest (0.13) pairwise distance among studied Odonates.

ESIA Report

Table 0-8: Interspecific K2P sequence divergence at the COI barcode region among the Odonates

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.Tholymistillarga														
2. Rhodothemisrufa	0.20													
3. Pantalaflavescens	0.21	0.16												
4.Orthetrumsabina	0.21	0.20	0.17											
5. Neurothemisfulvia	0.21	0.22	0.22	0.23										
6. Crocothemisservilia	0.17	0.21	0.19	0.14	0.21									
7.Brachythemiscontaminata	0.23	0.25	0.24	0.27	0.26	0.28								
8. Ictinogomphus rapax	0.25	0.27	0.26	0.26	0.26	0.25	0.32							
9.Pseudagrion rubriceps	0.24	0.23	0.23	0.22	0.24	0.22	0.30	0.24						
10.Ceriagrion coromandelianum	0.21	0.21	0.21	0.19	0.20	0.16	0.27	0.25	0.23					
11.Agriocnemis pygmaea	0.22	0.26	0.21	0.21	0.23	0.21	0.28	0.21	0.29	0.21				
12.Ceriagrion cerinorubellum	0.20	0.18	0.21	0.19	0.24	0.17	0.27	0.28	0.23	0.13	0.18			
13.Agriocnemis femina	0.25	0.21	0.27	0.23	0.25	0.24	0.31	0.24	0.22	0.21	0.19	0.20		
14.Copera ciliate		0.26	0.25	0.22	0.26	0.20	0.32	0.22	0.21	0.22	0.23	0.26	0.22	
Lepidoptera (Butterfly) Fauna

340. Lepidoptera (butterfly) is widely accepted as a good indicator of ecosystem health. Butterfly is a primarily day-flying insect belonging to order Lepidoptera. Several characters of the butterflies like their wide distribution, species diversity, and specific to vegetation type, rapid response to perturbation, taxonomic tractability, statistically significant abundance and ease of sampling made them successful and useful organism to check changes in environmental parameters. Butterflies are diverse animals and sensitive to changes in microclimate and habitat (Bobo *et al.* 2006, Akite 2008 and Bonebrake *et al.* 2009) which influences their distribution and abundance. Butterflies have been found to be a specific useful indicator group in grasslands and in other open habitats. They also react to pressures such as climate change (Corezzola, 2011). For the reasons mentioned above and well visibility, butterfly fauna was studied in the 2 km radius of the spot area.

Butterfly collection and identification (Methodology):

341. Field survey and butterflies collections were carried using line transect method described by (Kunte, 1997). All transects were walked between 9.30 am and 4.30 pm, which was a peak time for butterfly activities under sunny weather condition. The study area was covered with cultivated land, wetland and homestead vegetation include trees, herbs, shrubs, grasses and climbers which support butterflies species for their larval food, nectar feeding and resting.

342. Butterfly species were primarily identified directly in the field or, in difficult cases, following capture using a sweep net and that were immobilized and brought back in the laboratory. Specimens were identified using taxonomic key mentioned in the reference. Previous works of the area was also consulted to prepare the list.

343. A total of 24 species of butterflies were recorded during the survey. The existing checklist of butterfly is not complete so further studies are needed to update the checklist. This inventory work will be helpful for decision makers to implant any industry keeping the diversity intact

SI. No.	Common Name	Scientific Name	Family	
1.	Plain Tiger	Danaus chrysippus (Linnaeus,	Danaidae	
		1758)		
2.	Common Crow	Euploea core (Cramer, 1780)	Danaidae	
3.	Striped Tiger	Danaus genutia (Cramer 1779)	Danaidae	
4.	Common Rose	Pachliopta aristolochiae	Papilionidae	
5.	Lime Butterfly	Papilio demoleus	Papilionidae	
6.	Common	Papilio polytes	Papilionidae	
	Mormon			
7.	Common	Catopsilia pomona	Pieridae	
	Emigrant			
8.	Common Grass	Eurema hecabe	Pieridae	
	Yellow			
9.	Common	Delias eucharis	Pieridae	
	Jezebel			

Table 0-9: List of butterflies of the survey area

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

SI. No.	Common Name	Scientific Name	Family
10.	Mottled	Catopsilia pyranthe	Pieridae
	Emigrant		
11.	Grey Pansy	Junonia atlites	Nymphalidae
12.	Lemon Pansy	Junonia lemonias	Nymphalidae
13.	Chocolate	Junonia iphita	Nymphalidae
	Pansy		
14.	Peacock Pansy	Junonia almana	Nymphalidae
15.	Common Duffer	Discophora sondaica	Nymphalidae
16.	Striped Pierrot	Tarucus nara	Lycaenidae
17.	Pale Grass Blue	Pseudozizeeria maha	Lycaenidae
18.	Slate Flash	Rapala manea	Lycaenidae
19.	Common	Prosotas nora (Lycaenidae
	Lineblue		
20.	Common Ciliate	Anthene emolus	Lycaenidae
	Blue		
21.	Straight Swift	Parnara guttatus (Moore, 1865)	Hesperidae
22.	Conjoined Swift	Pelopidas conjuncta (Herrich-	Hesperidae
		Schäffer, 1869)	
23.	Brown Awl	Badamia exclamationis	Hesperidae
		(Fabricius, 1775)	
24.	Common	Melanitis leda (Linné, 1758)	Satyridae
	Evening Brown		

MOLLUSCA FAUNA

344. Numerous molluscs live in freshwater and terrestrial habitats, both lotic (flowing water) such as rivers, streams, canals, springs, and underground cave streams (stygobite species) and lentic (still water) such as lakes, ponds. The two major classes of molluscs have representatives in freshwater: the gastropods (snails) and the bivalves (freshwater mussels and clams). Freshwater mollusca populations have been declining for decades and are among the most seriously impacted aquatic animal's worldwide (Bogan 1993, Williams et al. 1993). However, in 2004 the IUCN Red List of Threatened Species included nearly 2,000 endangered non marine molluscs.

Collection and Identification

345. Specimens were collected by hand picking from the dry areas of river bank and from fisherman. Species were identified based upon morphological characteristics of the shell, photographs and other taxonomic keys. The shell characters such as shape, spire length and shape, mouth opening, opercular shape, umbilicus shape and size, color and ornamentation of the shell are used mainly for the identification apart from the internal characters of which the important one is radula.

FINDINGS

346. Molluscs found during the survey are listed in **Table 4-31**.

SI No.	Family	Common name	Scientific name		
1.	Pilidae	Common Apple snail	Pila globosa		
2.	Pilidae	Apple-snail	Pila virens		
3.	Viviparidae	River Snail	Bellamya begalensis		
4.	Thiaridae	dae Screw Snail Melanoides tuberculata			
5.	Thiaridae	Brotia Snail	Brotia costula		
6.	Lymnaeidae	Lymneid Snail	Lymnaea luteola		
7.	7. Unionidae Fresh water Mussel		Lamellidens corrianus		
8.	Unionidae	Fresh water Mussel	Lamellidens marginalis		
9.	Unionidae	Fresh water Mussel	Lamellidens jenkinsianus		
10.	Unionidae	Fresh water Mussel	Parreysia corrugate		
11.	Sphaeriidae	Striated Fingernail	Sphaerium striatinum		

Table 0-10: List of Molluscs found in survey areas

Six Gastropod species and 5 Bivalves were found during survey.

FISH FAUNA

347. Meghna river estuary is the largest estuarine ecosystem of Bangladesh and support diverse fisheries communities compared to others. Present study was carried out to assess the fish diversity status with relation to major hydrological parameters in both spatio-temporal scales. Fish samples were collected together with water quality parameters from different sampling stations of the Meghna river estuary.

348. Several types of small fishes were captured and have been presented in Table 4-32. We were not able to capture any single big fish. Names of fishes available at other seasons of the year are presented in **Table 4-33**. According to fisherman, the rivers becomes devoid of fishes in the dry season. However, in the rainy season, few types of fishes become available. It was learnt from interviews with the fisherman and fish sellers that in the recent past the river had abundant fishes. Several types of big fishes like Rui, Catla, Ayre, Mrigel, and Boal along with different types of small fishes were very common. But at present number of all types of fishes has declined greatly. It is to be noted that non of the species listed in to IUCN red list of the fauna are observed.

Local Name	Scientific Name	Sampling Locations					
		Location 1	Location 2	Location 3	Location 4		
Golsha	Mystus cavasius	-	-	-	+		
Bele	Glossogobius giuris	-	-	-	-		
Tengra	Mystus vittatus	+	-	-	-		
Puti	Puntius conchonius	+	+	+	+		
Fali	Notopterus	-	+	-	-		
Kachki	Coricasu borna	++	++	++	++		
Mola	Amblypharyngodon mola	+	-	-	+		
Kakila	Xenentodon cancila	-	-	-	-		
Chapila	Gudusia chapra	-	+	-	+		
Kholisha	Colisha fasciatus	-	-	-	+		

Table 0-11: List of small fishes captured during survey period in the power plant area

Chingri	Macrobrachium	-	+	-	+
	eqidense				
Shol	Channa striatas	-	-	-	-
Taki	Channa punctatus	-	-	-	-
Shing	Heteropneustes	-	-	-	-
	fossilis				
Koi	Anabas testudineus	-	-	-	-
Pabda	Ompok pabda	-	-	-	+

Status: ++Common, +Few, - Absent

Table 0-12: List of fish fauna recorded during the survey as mentioned by the local people and fishermen

Common English name	Local Name	Scientific Name	Abundance
Rohu	Rui	Labeo rohita	+
Catla	Katla	Catla	+
Black Rohu	Kalibaush	Labeo calbasu	+
Freshwater Shark	Boal	Wallago attu	+
Long-whiskered Catfish	Ayre	Sperata aor	+
Tire-track Spiny Eel	Bain	Mastacembelus armatus	+
Humped Featherback	Chital	Chitala	+
Dwarf Chamelonfish	Meni	Badis	+
Dwarf Catfish	Batashi	Batasio tengana	+
Pama Croaker	Poa	Otolithoides pama	+
River Shad	llish	Tenulosa ilisha	+
Gangetic Hairfin	Fasha	Setipinna phasa	+
Silondia Vacha	Shilong	Silonia silondia	+
Batchwa Vacha	Bacha	Eutropiichthys Vacha	+
Gangetic Lotia	Kala Bata	Crossocheilus latius	+
Ghora-chela	Ghora Chela	Securicula gora	+
Giant Snakehead	Gagarr	Channa marulius	+
Walking Catfish	Magur	Clarius batrachus	+
Spotted Snakehead	Taki	Channa punctatus	+
Spotted Snakehead	Shol	Channa punctatus	+
Walking Snakehead	Ranga Cheng	Channa orientalis	+
Victory Loach	Dari	Scistura scaturigina	+
	Bull		
Choukkani	Kanpona	Aplocheilus panchanx)	+
Stinging Catfish	Shing	Heterpeneustes fossilis	+

Status: +Few

Plankton diversity

349. Phytoplanktons are the producer of the river ecosystem and thus their status are of prime importance. List of Phytoplanktons and Zooplankton found in the water samples of different sampling locations are presented respectively in **Table 4-34** and **4-35**.

Table 0-13: List of zooplanktons recorded from the water samples of the study area

Name of the species	Number of the species at different sampling locations						
	Location 1	Location 2	Location 3	Location 4			
Escarpia	9	5	11	8			
Keratella	2	1	5	8			
Brachiomus	4	8	9	13			
Lepadella	-	5	9	-			
Cyclops	6	9	12	9			
Diatomus	7	5	4	13			
Bosmina	5	9	3	8			
Daphnia	7	3	8	7			
Euglena sp	3	9	4	4			
Phacus	2	5	2	8			
Trichocera	-	1	1	-			
Monostyta	1	1	3	1			
Nebalia	5	2	8	11			
Hexarthra	-	5	11	12			
Heterocypris	2	8	12	14			

350. Data from each sampling locations represents total of 5 samples, 1 ml each time. Abundance of zooplankton at different sampling locartions is shown in Figure 4-36

Figure 0.6: Abundance of zooplankton at different sampling locartions

 Table 0-14: List of phytoplanktons recorded from the water samples of the river

 Meghna near the proposed

Name of the species	es Number of the species at different sampling locations					
	Location 1	Location 2	Location 3	Location 4		
Chlorella	8	3	6	11		
Nostoc sp.	3	5	4	8		
Chlamydomonas	8	11	-	9		
Oedogonium sp.	8	4	7	2		
Cosmarium	5	9	11	9		
Pithophora sp.	2	11	10	1		
Pinnularia	1	3	-	2		
Volvox sp.	1	11	2	11		
Oscillatoria sp.	4	-	2	-		
Chlamydomonas sp.	-	3	2	2		
Nitzschia	2	11	2	3		
Synedra	3	7	8	1		
Navicula sp.	8	-	1	2		
Melosira,	2	5	1	-		
Cymbella	1	3	2	1		
Anabaena	3	2	3	7		
Nitzschia sp.	-	1	2	3		
Microcystis,	-	2	1	10		
Euglena	4	11	8	9		

The detailed findings of the fauna species have been given in the **Annexure 4.2**.

4.10.6 I-Bat Findings

351. To take informed decision on the species diversity in the area the proposed project site was also screened through the Integrated Biodiversity Assessment Tool (IBAT). The IBAT tool provides critical information on biodiversity priority sites to inform decision-making processes and address any potential biodiversity impacts. The screening through IBAT tool identified 17 amphibians, 299 bird species, 284 fish species, 280 invertebrates, 77 mammals, 58 reptile species and 39 plant species to be possibly occurring in the area. Of the identified 299 bird species in study area 4 belongs to "Endangered", 7 belongs to "Vulnerable" and 17 species in "Near Threatened" categories. Of the identified 284 fish species in study area 7 belongs to "Endangered", 26 belongs to "Vulnerable" and 29 species in "Near Threatened" categories. Of the identified 280 invertebrates species in study area 4 belongs to "Endangered", 4 belongs to "Vulnerable" and 2 species in "Near Threatened" categories. Of the mammals in study area 4 belongs to "Endangered", 9 belongs to "Vulnerable" and 1 species in "Near Threatened" categories. Of the identified reptile species in study area 3 belongs to "Endangered", 11 belongs to "Vulnerable"categories. Of the identified plant species in study area 1 belongs to "Endangered", 1 belongs to "Vulnerable" and 4 species in "Near Threatened" categories. The species of IBAT screening of the area is enumerated in details in Annexure 4.3.

4.11 SOCIO-ECONOMIC PROFILE OF THE SITE

352. The project area is located at the banks of Meghna River and is surrounded by it from north, west and south direction. Dhaka-Chittagong main highway is adjacent to the project site. It's an economically sound and active area for locals. The River Meghna is the main route which connects Dhaka with other north-eastern regions of the country via Sonargaon river ports; it is considered as the main navigational route near the project site. Different types of commodities including quarry, cement and paddy etc. are carried through the river route, because of which several cargo vessels are frequently seen in the river stream.

353. Other than the industrial site, remaining areas are low lying agricultural land. Southern part of the project site across the Meghna River is under Gazaria Upazila of Munshiganj district and east part is under SonargaonUpazila of Narayanganj district. The project is located in MeghnaghatMouza of NarayanganjUpazila. Bangladesh UK Friendship Bridge across the river Meghna (Meghna Bridge) connects both the banks of Soanrgaon and Gazaria. The Bridge lies on the Dhaka Chittagong Highway. The project site locates in the North West direction of the highway. Beside the project site, there other power plants are located namely Meghnaghat Combined Cycle Power Plant (450 MW), Summit Meghnaghat Power Company Ltd. (335 MW) and Orion Power Meghnaghat Power Plant (100MW). On both banks there are residential areas. During monsoon low lying paddy field is submerged by the flood water. Boro crop is the main crop in the dry season.

4.11.1 Population and Demography

354. Population and demographic characteristics of the Zila, 4 Upazilas and nearby Zila Munshiganj in the study area have been presented in **Table 4-36& 4-37.** The table shows that the population density per/sq. km. varies significantly among the different Upazilas and Zila/districts. Population and demographic profiles of the concerned unions have been presented Union and Upazila wise in **Tables 4-38 and Table 4.39**.

SI No.	Population Characteristics	Narayanganj District	Narayanganj Sadar Upazila	*Sonargaon Upazila	Arai hazar Upazila	Rupganj Upazila	Munshiganj District
1.	Total Area Sq.km	683.14	100.75	171.66	183.5	247.97	954
2.	Total HH	6,75,652	3,13,312	89,565	77,462	1,22,140	3,13,258
3.	HH Size	4.3	4.2	4.4	4.8	4.4	4.6
4.	-Rural	4.4	4.2	4.4	4.8	4.6	4.6
5.	-Urban	4.2	4.3	4.4	4.7	4.0	4.5
6.	Population	29,48,217	13,23,600	4,00,358	3,76,550	5,34,868	14,45,660
7.	Male	1521438	690641	204438	188324	279544	721552
8.	Female	1426779	632959	195920	188226	255324	724108
9.	Sex Ratio	937.7832	916.4805	958.3346	999.4796	913.3589	1003.542
10.	Literacy Rate	57.1	62.7	54.6	41.0	54.8	56.1
11.	Male	59.5	65.3	56.7	42.1	57.5	56.4
12.	Female	54.6	60.0	52.5	39.8	51.9	55.7
13.	Total Mouza	785	56	351	182	144	642
14.	Total Village	1342	132	487	317	285	911
15.	Total Union	47	10	11	12	9	67
16.	Total Upazila	5	1	1	1	1	6
17.	Pourashava	2	1	-	-	-	2

Table 0-15: Population and demographic characteristics surrounding the project area (Zila, Upazilas and Paurashavas)

Source: Population Census 2011

355. The table given above gives a description of the demographic profile of the entire project area, considering all the Zilas, Upa-Zilas and Paura-Shavas. The table above defines the different components of the demography like, population. Literacy, sex ratio, totals HHs etc.

356. From the table above it could be inferred that Munshiganz has the largest area cover, 954 sq Kms., while Narayanganz sadar Upa-zila has the smallest area cover, 100.75 sq kms. Narayanganz district has the total area cover of 683.14 sq kms, which is second largest area cover after Munshiganz but has the highest number of households, 6,75,652, Narayanganz Sadar Upa-zila has the smallest area cover but has more population than Munshiganz; Narayanganz Sadar upa-zila has total HHs of 3,13,312 while Munshiganz District has of 3,13,258.

357. Narayanganz district has the highest population followed by Munshiganz, 29, 48,217 and 14, 45,660 respectively, while Narayanganz sadar Upa-Zila has third largest population of 13, 23,600. Aria Bazar Upazila has the lowest population of 3, 76,550, and total area having 183.5 Sq.Kms.

358. Narayanganz District has the highest number of Moujas and villages, 785 and 1342 respectively while Narayanganz Sadar Upa-zila has the lowest, 56 and 132 respectively.

Table 0-16: Population and demographic characteristics surrounding the project a	irea
unions of Sonargaon	

SI No.	Population	*Pirojpur	*Mugra Para	Shambhupura	Baidyer Bazar
	Characteristics				
1.	Total Area (Acres)	4239	2089	3859	2251
2.	Total Household	9917	7736	5967	4802
3.	Household Size	4.5	4.3	4.5	4.8
4.	Total Population	45440	33506	23035	17523
5.	Male	24707	17299	11658	8166
6.	Female	20733	16207	11377	9357
7.	Sex Ratio	119	107	96	102
8.	Literacy Rate	55.0	60.5	53.5	41.8

Source: Population Census 2011

ReLIANCE

359. Given above is as tabular representation of demographic profile of four project area unions of Sonargaon, namely as Pirojpur, Mungra Para, Shambhupura and Baidyer Bazar. The table states that Pirojpur has the highest area cover of 4239 Sq.Kms fillowed by Shambhupura, 3859; while Mungra Para has the lowest area cover of 2089 Sq Kms. Followed by Baidyer Bazar, 2251 Sq Kms.

360. Pirojpur has the highest number of households, 9917 followed by Mungra Para 7736, while Baidyer Bazar has the lowest number of households, 4802. The Household size of Pirojpur, Mungra para and Baidyer Bazar are 4.5, 4.3 and 4.8 respectively.

361. Pirojpur has the highest sex ratio of 119 while Shambhupura has the lowest sex ratio of 96. Mungra Para has the highest literacy rate of 60.5 percent followed by Pirojpur 55.0 percent; while Baidyer Bazar has the lowest literacy rate of 41.8 percent.

4.11.2 Population of the Project Sonargaon Upazila

362. The Table given below is of Sonargaon Upazila; Census 2011, which comprises of essential information on area cover, population, HH and literacy rate.

Upazila	Area	Total HH	Population	Male	Female	Sex Ratio	Literacy
	(km2)						Rate
Sonargaon	171.66	89565	400358	204438	195920	958	54.6

363. From the above Table, it could be inferred that the total area cover of Sonargaon is 171.66 Sq Kms, while total number of HHs is 89,565. It has a population of 4, 00,358, making a household size of 4.47. The total number of male population in Sonargaon is 2, 04,438 while of female is 1, 95,920 forming a sex ratio of 958 females per 1000 males. The

total literacy rate of Sonargaon is 54.6 percent while literacy rate of male and female is 56.7 percent and 52.5 percent respectively.

4.11.3 Religion

Table 0-17: Type of Religion of the sample households Sonargaon Upazila Adjacent to Project Area

Upazila	Total population	Muslim	Hindu	Buddhists	Christian	Others
Sonargaon	4,00,358	3,85,539	14,484	67	235	33
Percentage	100	96.29	3.75	0.016	0.05	0.008

Source: census 2011

364. From the above table it could be understood that Sonargaon is predominantly a Muslim populated area with 96.29 percent of Muslim population, while Hindus are the second most populated religion, with a presence of 3.75 percent. Buddhists are Christians are the two other religions having a slight presence of 0.016 and 0.05 percent while others are 33 in number representing a trivial population of 0.008 percent.

4.11.4 Housing Pattern and Ownership

365. The area is a semi urban area; moreover, it has also a rural character. Most people live in inherited land. Table-4.39 below shows the pattern of the ownership of residence.

Table 0-18: Types of House by structure

Upazla	Kutcha	Semi Pucca	Pucca	Jhopri (thatched)
Sonargaon	63.7%	22.6%	13.4%	0.4%

Source: census 2011

366. The table 4.25 above shows that most of the people, 63.7 percent of the population have Kutccha house, followed by semi pucca, 22.6 percent; while just 13.4 percent of the population have pucca house rest 0.4 percent population have thatched houses (Jhopri).

4.11.5 Health and medical facilities

367. There are government Health complex in the Upazila. Health centers can be found abundantly and the proximity is pretty convenient. There is 1 Upazila health complex, 11 health and family planning centers, 3 satellite clinics, and 10 clinics.

368. Main diseases are waterborne diseases like diarrhea, dysentery, typhoid and sexually transmitted disease (STD). Also Acute Respiratory Infection (ARI) is predominantly seen in the area. The STD is of abundance due to migratory people and workers in the area.

4.11.6 Source of Drinking Water and Sanitation

369. As reported by DPHE, Sonargaon Upazila has attained 100% sanitation coverage. Total sanitary latrine is 1722. No of total TW is 1539. On average 17.35 households fetch water from a single Tube well. There is no water supply system in the study site. The people are dependent on tube well water for drinking purpose. But the workers, employees and residents of the plant residential areas use treated water from the water treatment plant of RBLPL. No tube well is placed within the 100 meters of the project area.

370. Sanitation practice is very important for a community. It is a part of social behavior to use soap after toilet use. Earlier it is mentioned that the area has both urban and rural character. Sanitary latrine coverage was 38.19% of the households in SonargaonUpazila. But present situation has been drastically improved. Sonargaon is at present under 100% sanitation coverage.

Table 0-19: Access to Drinking Water

Upazila	Total Households %	Tap%	Tube Wells%	Pond%	Others%
Sonargaon	89565	2.03	93.36	0.60	4

Source: BBS,Census 2011

371. The tale 4.26 above states that there are 89,565 households in total, out of which maximum number of households have accessibility to drinking water through tube wells, nearly 93.36 percent of the households have tube wells, followed by other sources which constitute of 4 percent, nearly 2 percent of the households have tap water accessibility.

Table 0-20: Access of sanitary Latrine in percentage

Upazila	Sanitary Latrine	Non Sanitary Latrine	No latrine
Sonargaon	38.19	57.21	
Urban	42.03	55.30	4.60
Rural	38.13	57.24	

Source: BBS,Census 2011

372. The table above states that nearly 38.19 percent of the households have accessibility to sanitary latrine while 57.21 percent have non-sanitary latrine, rest 4.60 percent have no latrine facilities.

373. Out of a total percentage of 38.19 percent 42.03 percent of the urban households have sanitary latrine while 38.13 percent of the rural households have sanitary latrine accessibility. Similarly 55.30 percent of urban households have non-sanitary latrine while 57.24 percent households have non-sanitary latrines in rural areas.

4.11.7 Literacy

374. Education rate is rapidly increasing in the project area. According to the Upazila education office, about 90% enrollments are in the SonargaonUpazila. Current year, 25,000 students have been new enrollment in the primary schools excluding kindergarten School. The Number of household in the Upazila is 89,565 (Census2011), that means almost from each family one student is enrolled in the primary classes except ultra-poor family of the Upazila.

375. According to BBS 2001 census in SonargaonUpazila the literacy rate for both sexes is 54.6%, for male is 56.7% and for female is 52.5%. So it is assumed that near plant site education rate is high to some extent, roughly 65%. Education rate is also increasing among the female.

Table 0-21: Rate of literacy for male and Female

Upazila	Both	Male	Female
Soanrgaon	54.6%	56.7%	52.5%

Source: BBS,Census 2011

The above shows that, literacy rate is 54.6% in the project area for 7+ populations in Sonargaon Upazila.

4.11.8 Household having accessibility to electricity, Sonargaon

376. In the project area nearly 99% the households have electricity connection. The area may be considered as largely dependent on electricity due to growing business in the area. **Table 4.43** gives a representation of the entire Sonargaon Upa-zila.

Table 0-22: Electricity Facility

Area (Upazila Basis)	Electricity Facility Available in Household	Households not having electricity facility
Households	86083	3482
Percentage	96.11	3.89

Source: BBS, 2011 census

377. The table above gives a description of the households having electricity facilities, it could be inferred that 86083 households have electricity connection, which is nearly 96.11 percent of the entire households in Sonargaon Upazila, rest 3482 households, which is 3.89 percent of the totals households still do not have accessibility to electricity.

4.11.9 Occupational Pattern

Table 0-23: Occupational Patterns of the Households of Sonargaon Upazilla

SI No.	Occupation	(%) of Total
1.	Agriculture	25.95
2.	Industry	4.27
3.	Small Business	23.74
4.	Non -Agricultural	2.60
5.	Transport and communication	4.51
6.	Service	20.31
7.	Construction	1.61
8.	Overseas Work	4.68
9.	Religious service	0.31
10.	Others	3

Source: BBS, 2011 census

378. **Table 4-44** gives present situation of the occupational pattern of the people living in the study area. The table above states that in Sonargaon, farming is decreasing as occupation and has reached to 25.95 percent but still has the major contribution in occupation followed by small business/commerce having a contribution of 23.74 percent and services 20.31 percent. There are very few people who are engaged with religious services as their main occupation, just 0.31 percent followed by construction and Non-agricultural work having a share of 1.61 and 2.60 percent respectively.

4.11.10 Agriculture

379. The area is low- lying especially Sonargaon portion. Main crops grown in the study area are Aus, Aman and Boro. The paddy is grown in the main three seasons of the year. Besides these, potatoes, sweet potatoes, oil seeds, vegetables, arum, til (sesame), wheat, sugarcane, mustard, bottle gourd etc. are cultivated in the study area. Fruits like, jackfruit, lemon, watermelon are also produced. Further information will be collected on a later date and in details.

4.11.11 **Fishing**

380. Meghna River is enriched with different kinds of fishes and many people around the area depend on fishing across Meghna River for their living. The river Meghna flows by the project area. Production of cultured fish is 250kg/Acre (0.25 metric ton) and open water fish production is 500 kg/Acre (0.5 ton.). Major fish varieties are Ruhi, Katla, Taki, Kai, Magur, Singhi and Boal etc. Kai and Singhi are nearly extinct varieties. And rare fishes like River Pangas, Rani, Raia, Mahashail and Lacho fish are the totally extinct varieties.

381. Fishermen communities could be sub-divided in three parts in this area.

- Recreational/Amateur: These fishermen catch fish for recreation or just to have one or two meal. They don't depend on fishing for their living.
- Intermittent: These fishermen catch fish as a part time profession to add a little in their overall income.
- Professional: These fishermen catch fish almost every day and their livelihood depends on it. Fishing is considered to be their main source of income.

382. At present, there are some professional fishing communities or fisherman depending on the river across the river of the project. There are no specific data available of their exact numbers but it came our during focal group consultation process that, around 40-50 fishermen families live in Charbalaki and nearly 150 fishermen fish around the area. During monsoon season, some people catch fishes in the Upper Meghna River Fish is an important resource of the area. (Refer para 674 and 675 for details)

383. From the current observation it could be easily understood that the previous three

power plants did not have any adverse impact on fishing and livelihood of fishing communities, hence the probability of fishermen's communities livelihood getting affected is very minimal or even negligible. Also the fuel to be used for the plant is natural gas. Hence there will no bi-product which will be discharged in river or nearby areas, leading to no negative impact on the flora or fauna in the project areas.

4.11.12 Cow Grazing

384. There are no professional cow farm owners in the area but people keep a few numbers of cows in their home as a part time income source. Most of the cow owners work in various industries near the project site and keep cows as a source of additional income. These cows graze near the project site and will find another grazing ground after the completion of the project as the number of cows is very few (25-30).

385. The project site, to this day, is used by local cow owners although not allocated by any branch of the government. After the completion of the construction of this project, plenty of empty field will still be left near and adjacent to the project site. The local dwellers are supposed to graze their cows in those areas as the number of cows is very few.

4.12 ARCHEOLOGICAL, CULTURAL HERITAGE AND RELIGIOUS SITE

386. No known remarkable archeological or historically important structure or sites are reported in the survey area. But at about six to seven kilometer distance from the project site, the historical Panam City is situated. However, there will not be any impact on this historic archeological site due to the project. The probability of finding significant cultural resources in the designated areas is low. Any impacts that may occur as a result of the project would be in future and the overall severity of impact will be low.

387. There are few other historically significant places situated in the Sonargaon Upazila namely Single domed mosque built by JalaluddinFatheh Shah, Tomb of Sultan GhiyasuddinAzam Shah, single domed mosque built by AlauddinHussain Shah, Tomb of Shah Langar, PanchPirDargah, grand trunk road, Khasnagardighi, Company Kuthi, Yusufganj mosque, Goaldi mosque andLangalband (holy bathing spot). None of these places are close enough to be adversely affected by the project.

388. There are only few sites of significant archaeological value or sites of tourist interest in and around the survey area. However, people from all over the country usually visit the area but the commercial tourism is not yet developed. A map of the religiously, archaeologically and historically important places is shown in **Figure 4-37**.

Figure 0.7: Religiously, Archaeologically and Historically Important Places around the Project Site

5 IDENTIFICATION OF POTENTIAL IMPACTS

5.1 GENERAL CONSIDERATIONS

389. Prediction of Impacts is the most important component in the Environmental Impact Assessment studies. Several scientific techniques and methodologies are available to predict impacts of developmental activities on physical, ecological and socio-economic environments. Such predictions are superimposed over the baseline (pre-project) status of environmental quality to derive the ultimate (Post-project) scenario of environmental conditions.

390. The prediction of impacts helps in minimizing the adverse impacts on environmental quality during pre and post project execution. In case of water, land and socio-economic environments, the predictions have been made based on available scientific knowledge and judgments. In this chapter, an attempt has been made to predict the incremental rise of various ground level concentrations above the baseline status due to the emissions from this proposed project.

5.2 SCOPING OF IMPACTS

391. The potential impacts due to implementation of Project are identified by using simple checklists. This method is described below:

392. **Checklist** is comprehensive lists of environmental effects and impacts indicator designed to stimulate the analysts to think broadly about possible consequences of contemplated actions (Munn, 1979). **Table 5-1** represents the checklists developed for the present plant. In this checklist, actions, which may affect at the various stages of the project activities, are listed and the degrees of Significant Environmental Impacts (SEIs) are shown. The terms none, minor, moderate and major are used in the checklists to evaluate the magnitude of SEIs. In the checklist, both the construction and operational phases of the proposed development are considered separately in order to distinguish the short term and long-term impacts. As can be observed from the checklists, major environmental components, which will be adversely affected by activities of the project, are air quality, water quality and socio-economic environment. All these impacts will arise in operation phase of the project. It should be noted that identification indicated in the Checklist relates to the significant level of impact.

ESIA Report

Table 5-1: Impact Identification Checklist for Proposed Power Project

													Pote	ntial	mpa	cts												
Project Activities	Air Quality-PM	Air quality-Gaseous	Noise	Odor	Traffic	Water-resources	Water-Quality	Soil	Drainage Pattern	Fand use	Hazardous Waste	Landscape/	Acsurence Agriculture	Pasture	Ecology-flora	Ecology-fauna,	Aquatic ecosystem	Socio-economic	Displacement	Livelihood	Health	Infrastructural Development	Social Development	Employment	Local Economy	Cultural	Risk	Occupational health
											Pr	re-con	struct	ion S	tage													
Land acquisition														~														
											(Const	uctio	n Pha	se													
Site Developme nt	~		~				~	~	~	~							~							~	~			~
Transportati on	~	~	~		~			~														~		~	~			
Constructio n Water						~	~																					
Labor Camp	~	~		~		~	~	~				~								~	~				~	~		~
Excavation	\checkmark		✓					\checkmark		\checkmark		✓			\checkmark		\checkmark							\checkmark	✓			✓

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

													Pc	oten	ntial I	mpao	cts												
Project Activities	Air Quality-PM	Air quality-Gaseous	Noise	Odor	Traffic	Water-resources	Water-Quality	Soil	Drainage Pattern	Land use	Hazardous Waste	Landscape/	Aesthetics	Agriculture	Pasture	Ecology-flora	Ecology-fauna,	Aquatic ecosystem	Socio-economic	Displacement	Livelihood	Health	Infrastructural Development	Social Development	Employment	Local Economy	Cultural	Risk	Occupational health
Roads	✓	~	~		√			✓	~	~	~												~	~	~	~			
Jetty Constructio n			~		~																		~	~	~				
Foundation s			~																						~	~			
Piling			~				~											\checkmark							\checkmark	\checkmark			
Buildings/St ructures	√		~			~	~	~	~	~		~						~							~	~			
Transmissio n Towers																							~					~	~
Excavated Material	~		~				~	~	~	~															~				
Other wastes			~	~				~																	~				

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

													Pote	ntial	Impa	cts												
Project Activities	Air Quality-PM	Air quality-Gaseous	Noise	Odor	Traffic	Water-resources	Water-Quality	Soil	Drainage Pattern	Land use	Hazardous Waste	Landscape/	Agriculture	Pasture	Ecology-flora	Ecology-fauna,	Aquatic ecosystem	Socio-economic	Displacement	Livelihood	Health	Infrastructural Development	Social Development	Employment	Local Economy	Cultural	Risk	Occupational health
Wastewater Disposal							~								~		~											
Pipe Laying							~		~																~			
Equipment Installation	~	~	~																					~			~	~
												Oper	ation	Phas	е													
Lubricating Oil							~				\checkmark				~		~				~							
Generation of Consumabl es																					~						~	
Cooling Tower			~				~										~											
Fuel	\checkmark	~																									~	\checkmark

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

													Pote	ntial	Impa	cts												
Project Activities	Air Quality-PM	Air quality-Gaseous	Noise	Odor	Traffic	Water-resources	Water-Quality	Soil	Drainage Pattern	Land use	Hazardous Waste	Landscape/	Agriculture	Pasture	Ecology-flora	Ecology-fauna,	Aquatic ecosystem	Socio-economic	Displacement	Livelihood	Health	Infrastructural Development	Social Development	Employment	Local Economy	Cultural	Risk	Occupational health
Burning																												
Wastewater disposal				~			~								~		~				~							
Waste disposal				~			~				~					~	~				~							
Power Transmissio n												~										~					~	
Green Belt Developme nt										~		~																
Rainwater Harvesting						~	~		~																			
Induced developmen ts																		~		~		~	~	~	~	\checkmark		

Dismantling Infrastructur e	Project Activities	
<	Air Quality-PM	
<	Air quality-Gaseous	
<	Noise	
	Odor	
	Traffic	
	Water-resources	
<	Water-Quality	
<u> ۲</u>	Soil	
<	Drainage Pattern	
< 7	Land use	
	Hazardous Waste	
	Landscape/	
	Aesthetics	-
	Agriculture	oten
	Pasture	tial I
	Ecology-flora	mpac
	Ecology-fauna,	ots
<	Aquatic ecosystem	
	Socio-economic	
	Displacement	
۲.	Livelihood	
	Health	
	Infrastructural Development	
	Social Development	
<	Employment	5
	Local Economy	
	Cultural	E POI
۲.	Risk	
	Occupational health	

ReLIANCE

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

6 ANTICIPATED ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

6.1 GENERAL CONSIDERATIONS

393. The methodology adopted for the study of environmental impacts consist in identification, prediction and assessment/ evaluation of likely effects. The prediction of environmental impacts has a basis in pre-project baseline data and anticipated changes. The main objectives of predicting the effects of project activities are delineation of an appropriate mitigation plan that would minimize the anticipated effects on environment. The methodology adopted for prediction in respect of air quality and noise-level changes are based on mathematical modelling. Any empirical model attempts to quantitatively describe the cause-and- effect relationship between pollution source and the environment. In the present report water, land, biological and socio-economic impact studies have used a combination of quantitative / qualitative techniques as well as professional judgement based on the merits of proposed schemes.

6.2 IMPACT APPRAISAL CRITERIA

394. The criterion which has been employed to appraise impacts on various social and environmental components is presented in **Table 6-1**.

Criteria	Sub-	Defining Limit	Remarks	
	Classification			
Spread: refers to	Local spread	Impact is restricted within	Except for ecology (which is	
area of direct		the foot prints of the Project	defined as loss of vegetation	
influence from		boundary.	only at site) or within the base of	
the impact of a		For transmission line it	tower area	
particular project		should be within the right of		
activity.		way.		
	Medium	Impact is spread from up to	Except for ecology (which is	
	Spread	2 km from the boundary of	defined as loss of vegetation at	
		the Project.	site including large trees with	
		Within 500m on either side	limited disturbance to adjoining	
		of transmission line	flora & fauna)	
	High Spread	Impact is spread up to 2 km	Except for ecology (which is	
		to 5 km from footprint	defined as loss of vegetation at	
		boundary of the Project	site and / or damage to adjoining	
		Beyond 500m on either side	flora and fauna)	
		of transmission line		
Duration: based	Short Duration	When impact is likely to be	The anticipated recovery of the	
on duration of		restricted for duration of less	effected environmental	
impact and the		than 1 year;	component within 2 years	
time taken by an	Medium	When impact extends up to	With an anticipated recovery of	
environmental	Duration	3 years	the effected environmental	
component to			component within 6 years	
recover back to	Long Duration	When impact extends	With anticipated recovery of	

Table 6-1: Impact Appraisal Criteria

Criteria	Sub-	Defining Limit	Remarks
current state	Classification	beyond 3 years	prevailing condition to happen within 6 years or beyond or upon completion of the project life
Intensity: defines the magnitude of	Very Low intensity	When resulting in changes in the environmental baseline conditions is up to 10%	However, it shall be reconsidered where the baseline values are already high.
Impact	Low Intensity	the baseline conditions up to 20%	changes in the existing ecology in terms of their reproductive capacity, survival or habitat change
	Moderate intensity	When resulting in changes in the baseline conditions for up to 30%	For ecology, it refers to changes that are expected to be recoverable
	High intensity	When change resulting in the baseline conditions beyond 30%	While for ecology, high intensity refers to changes that result in serious destruction to species destruction to species, productivity or their habitat
Nature: refers to whether the	Beneficial		Useful to Environment and Community
effect is considered beneficial or adverse	Adverse		Harmful to Environment and Community

395. A significance assessment matrix was developed to assess the impacts based on the appraisal criteria developed above, which is as given in **Table 6-2**.

Table 6-2: Impact Significance Criteria

Spread	Duration	Intensity	Overall Sig	nificance
Opread	Duration	intensity	Adverse	Beneficial
Local	Short	Low	Insignificant	Insignificant
Local	Short	Moderate	Minor	Minor
Local	Medium	Low		
Local	Medium	Moderate		
Medium	Short	Low		
Local	Long	Low		
Local	Short	High	Moderate	Moderate
Local	Medium	High		
Local	Long	Moderate		
Medium	Short	Moderate		
Medium	Medium	Low		
Medium	Medium	Moderate		
Medium	Long	Low		
Medium	Long	Moderate		
High	Short	Low		

Sproad	Duration	Intonsity	Overall Sig	nificance
Spread	Duration	intensity	Adverse	Beneficial
High	Short	Moderate		
High	Medium	Low		
High	Medium	Moderate		
High	Long	Low		
Local	Long	High	Major	Major
Medium	Short	High		
Medium	Long	High		
High	Short	High		
High	Medium	High		
High	Long	Moderate		
High	Low	Low		
High	Low	High		

396. The Impacts for the proposed project are covered under the following subsections:

- Pre-construction Stage
- Construction Phase
- Operational phase
- Decommissioning Phase

6.3 IMPACT DUE TO PROJECT LOCATION

6.3.1 Land Acquisition

397. In general, land acquisition may affect the environment and people by the following ways:

- i. Loss of Homestead land
- ii. Loss of Agricultural Land
- iii. Cultural, historical and Aesthetic Loss
- iv. Loss of sensible places

Mitigation Measures

398. The proposed project didn't require any rehabilitation or relocation of homestead since the project will be established on the Meghnaghat power village allocated by BPDB for the development of power project.

399. About 35 acres of land for the project has been allotted by BPDB. The proposed 750 MW CCPP will be established adjacent west side of Summit Meghnaghat 335 MW CCPP. There is no homestead falls inside the proposed project site. There is no archaeologically important place in the project land and no loss of sensible place. So the above mentioned impacts are absent.

400. The project area has in built access road. There is no need for construction of separate approach road. Since the construction materials and equipment will be carried through river way, the existing access road will be adequate to meet the requirement of the power project.

The access road will be used for the transportation during the construction and operation period. The existing access road should be maintained in proper way.

401. Power Grid Corporation of Bangladesh already has a 400 kV transmission network available at Meghnaghat which will be utilized for evacuation of power from the Project. The length of transmission line for connecting to the transmission network will be 1.9 km only. National Survey Organization has conducted survey on the location for the proposed three Transmission Towers. The facility for LILO attachment will be built in the existing Govt. land where absolutely no land acquisition is needed and therefore, no resettlement is necessary. But local people use the land for one crop cultivation.

A separate 10.94 acres of land adjacent to the proposed plot boundary of the power plant has been earmarked by BPDB for the proposed temporary storage area and construction of temporary labor camp. No separate land acquisition is required for labor camp.

6.3.1.1 Impact Significance

402. Impacts on land resource are minor and insignificant for the project site. The impact significance for land use is detailed in **Table 6-3**.

Table 6-3: Impact Significance on Land Resource

Aspect	Scenario	Spread	Duration	Intensity	Overall
Land Resource	Without Mitigation	Local	Short	Low	Minor
	With Mitigation	Local	Short	Very Low	Insignificant

6.4 IMPACTS DURING CONSTRUCTION PHASE

403. The construction phase, in general, has adverse influence on all the components of environment. Most of these impacts are short lived and reversible in nature. Construction works generally involve are site clearance, excavation, filling of earth materials, dumping of unusable debris materials, transportation of materials to construction site, and other constructional activities and associated works like mobilization of constructional equipment, setting up of different construction plant, setting up of workforce camp, quarrying, transportation of material, material storage, etc. These activities have certain impacts of various magnitudes on different components of environment. A proper care is essential to minimize the adverse impacts to the possible extent to facilitate the restoration of the environment and can be discussed under following sub-heads.

6.4.1 Site Development activities

6.4.1.1 Impacts

404. The project will involve development of Gas Based Combined Cycle Power Plant on 35 acres of land. Each development project more or less requires site preparation. The preparation works generally done during constriction stages includes

- Soil Removal
- Vegetation Removal
- Infrastructure disruption
- Connecting toaccess road

- Cut and fill operation
- Drainage works etc.

405. The impacts generally arise from the above activities are as follows:

• Noise

ReliAnce

- Fugitive dust
- Runoff and flooding
- Soil erosion
- Water Pollution through runoff and sedimentation
- Safety Concerns

406. The proposed site is of the nature that it will cause negligible impacts in the environment. The site will not require land filling. The proposed site has no homestead land so there is no impact from property removal activities. However, site clearing activities, soil excavation and hauling activities will involve movement of heavy machineries which will generate temporary dust and noise. Construction activity during monsoon may lead to run off and flooding of excavated material and construction material which may increase sedimentation load in nearby water bodies and may disrupt aquatic ecosystem temporarily.

6.4.1.2 Mitigation Measures

407. Cutting and filling operation should be kept at a minimum level. The project authority should ensure the construction of proper drainage facility. Regular water sprinkle should be used to minimize fugitive dust emission. Safe working procedures should be ensured by the contractor. The construction work (Cutting and filling) must be undertaken during dry seasons.

6.4.1.3 Impact Significance

408. Impacts on land use are minor and limited for the project site. The impact significance for Land resource is detailed in **Table 6-4**.

Aspect	Scenario	Spread	Duration	Intensity	Overall
Land Resource	Without Mitigation	Local	Short	Moderate	Minor
	With Mitigation	Local	Short	Low	Insignificant

Table 6-4: Impact Significance on Land Use

6.4.2 Labor Camp

6.4.2.1 Impacts

409. It is expected that at any given time during the construction phase, the peak manpower strength on construction site comprising of technical staff, clerical/supervisor, skilled and unskilled workers would be about 400 – 500 persons. Since the area has good labour force it is expected that a majority of the work force will be local will come from nearby villages. A few of those come from outside, may either chooses to stay in a camp or in nearby available residential facilities. The health of the project personnel, construction workers and laborers living at the base camp could be impacted if arrangement of sanitation and drinking water is not ensured adequately and properly. During construction stage, lot of

local labors will work and hence they would generate considerable amount of human waste. These are the potential source for spread of diseases, as various insects will play dominating role in the spread of diseases. There are chances for the spread of water borne diseases also. From the construction labour camp 60 kg of solid waste will be generated daily. During the project construction phase, the major source of water pollution will be sewage from labour camps. It has been estimated that peak domestic water requirements would be 30 kld. The domestic water requirement has been calculated at the rate of 45 lpcd for local labours whereas 100 lpcd for the labour camp. It is assumed that about 80% of the water required will be generated as sewage. Thus, total quantum of sewage generated in peak situation is expected to be around 25 kld. Septic tank with soak pit will be provided to manage the waste water generated from the construction labor camp.

6.4.2.2 Mitigation Measures

410. The labour camp if constructed shall meet the SPS requirement as per the EHS guideline render with the contractor as a part of Contractual agreement annexed with this report as Annexure 6.. Proper sanitation system should be provided and at the same time, regular, proper and safe disposal of human waste should be ensured. Contractors and workers should obey appropriate means of waste removal and sanitation measures. Adequate number of toilets and bathrooms at the rate of four number of toilet and four number of urinal separate for male and female per 100 numbers of workers should be made for the construction labor camp. Proper disposal system of sewage waste should be implemented for sanitation purpose and the workers should be aware to practice those facilities. Sewage generated from the construction camp will be disposed of through septic tank and soak pit. Solid waste generated from the construction camp will be collected, stored and will should be disposed of in municipal landfill site.

6.4.2.3 Impact Significance

411. The impact on shall be limited for construction period and confined within the labor camp site. The mitigation measures shall further reduce the impact intensity. The Impact significance as assessed for the proposed project activities is detailed in **Table 6-5**.

Aspect	Scenario	Spread	Duration	Intensity	Overall
Labor Camp	Without Mitigation	Local	Medium	Moderate	Moderate
	With Mitigation	Local	Medium	Low	Minor

Table 6-5: Impact Significance for Labor camp

6.4.3 Impact on Ambient Air Quality

6.4.3.1 Impacts

412. Fugitive emissions during site clearing operations and construction activities will increase particulate concentration in ambient air. Besides, vehicular emission and fuel-based emissions will increase in the immediate vicinity of construction site. The site-related activities will be intermittent and therefore will result in generation of pollutants for short duration only. Due to the temporary nature of activities, significant long-term impact on air quality is not envisaged during the construction period of proposed power plant. The major construction activities from which air emission mostly dust emission may occur are;

- Site clearing activities;
- Ground excavation;
- Transportation of construction materials to site;
- Handling and mixing of cement

Ground Excavation

ReLIANCE

413. Site preparation in readiness for construction work may require vegetation clearance, stripping off of overburden material, ground levelling and compaction. These activities will openup the ground to wind action and thus potentially resulting in dust generation. This is because of the following:

- Vegetation clearance will directly expose the ground to agents of erosion;
- Stripping off of overburden material will loosen soil aggregates thus making them easily susceptible to wind action;
- Removal of tree stumps and roots will weaken soil bounding and thus can easily be blown by wind

Delivery of Construction Materials to Site

414. Construction materials such as building blocks, cement, sand, steel bars, ballast will be bulky and thus will require to be delivered on site by a fleet of trucks driving in and out of the construction site. During this exercise dust is likely to be generated from the following:

- Handling of cement which is dusty by nature of the way it is
- Handling of ballast which could contain loose dust particles
- Site clearing of area of holding ballast, building blocks and sand will expose the site to wind action

Handling and Mixing of Cement

415. The powdery nature of cement will be a potential source of dust especially during handling and mixing it with other materials such as sand and gravel. Cement dust will likely be of concern during:

- Opening-up of cement bags and emptying the cement in order to mix with other construction material
- During loading and offloading of cement

6.4.3.2 Mitigation Measures

416. Following mitigation measures are proposed to minimize the air pollution during the construction stage:

- The Project authority should ensure complete the paving of the service road
- Regular sprinkling (twice a day) of water to be done on open surface for dust suppression;
- Transport of materials in tarpaulin- covered trucks

ReLIANCE

- The sand and other such dispersible material will be stored at site for minimum working period.
- Removal of soil/mud from trucks and other appliances prior to leaving the project area.
- Storage of soil in a safe space
- Plantation of trees in the construction yard as quickly as possible. Any open area should be planted with appropriate vegetation (trees, flowers and grasses);
- Project management and contractor to enforce strict use of personal protective clothing;
- Complains of dust related ailments among employees and neighbors to be given access to medical attention.
- The construction activity will be carried out during day time only.

417. The emissions are temporary and not expected to contribute significantly to the ambient air quality and will be within prescribed limits for industrial regions by National Ambient Air Quality Standards.

6.4.3.3 Impact Significance

418. Considering the size of the project, impact intensity on air quality part shall be moderate; however, proper mitigation measures shall reduce impact to minor level by implementation of mitigation measures discussed above.

Table 6-6: Impact Significance on Air Quality

Aspect	Scenario	Spread	Duration	Intensity	Overall
Impact on Air Quality	Without Mitigation	Medium	Medium	Moderate	Moderate
	With Mitigation	Local I	Medium	Low	Minor

6.4.4 Impact on Noise Level

6.4.4.1 Impacts

419. Noise and vibration shall be caused by the operation of earth moving and excavation equipment, concrete mixers & transportation of equipment and materials. Movement of traffic during night hours can also disturb the local community.

420. For an approximate estimation of dispersion of noise in the ambient air from the source location, a standard mathematical model for sound wave propagation has been used. The sound pressure level generated by noise sources decreases with increasing distance from the source due to wave divergence. An additional decrease in sound pressure level with distance from the source is expected due to atmospheric effect or its interaction with objects in the transmission path.

421. For hemispherical sound wave propagation through homogenous loss free medium, one can estimate noise levels at various locations, due to different sources using model based on following equation:

 $L_{P2} = L_{P1} - 20 \text{ Log } (r2/r1) - A_E - A_M$

Where, Sound L_{P2} and L_{P1} are the Sound Pressure Levels (SPLs) at distances of r2 and r1 from the source.

 A_{E} and A_{M} are attenuations due to Environmental conditions (E) and Machine correction (M)

422. As per OSHA standard about 90 dB(A) of noise is expected to be generated from construction activity. This noise shall attenuate to less than 45dB(A) i.e. night time prescribed noise level at about 100m. The distance of nearest settlement is about 200m. Therefore, no significant impact on nearby settlement is expected due to proposed project activities.

6.4.4.2 Mitigation Measures

ReliAnce

423. Considering the capacity and nature of the project, use of construction machineries shall be very limited. Most of noise generating activities like piling, excavation, use of heavy earth moving machineries, etc. shall be limited for the construction phase.

424. Noise generating activities should be scheduled not to have simultaneous exposure. All construction equipment shall comply with the applicable noise standards. Regular maintenance of equipment's will be ensured to keep noise level under limits. Noise generating activities should be limited for day time only. The personnel as may involve in high noise generating activities should be provided with personal protective devices to minimize their exposure to high noise levels. Construction vehicles and machinery should be well maintained and confirming the noise standards.

6.4.4.3 Impact Significance

425. Noise impact due to construction activities shall be minor with mitigation measures. Significance of impact on noise level with and without mitigation is presented in **Table 6-7**.

Table 6-7: Impact Significance on Noise Level

Aspect	Scenario	Spread	Duration	Intensity	Overall
Impact on Nosie Level	Without Mitigation	Local	Medium	High	Moderate
	With Mitigation	Local	Medium	Low	Minor

6.4.5 Impact on Water Quality and Resources

426. Adequate supplies of drinking water that is compliant with the national drinking water quality standards to all workers should be ensured. In case of groundwater heavy metals (nitrate, arsenic and coliforms) contamination should be checked and treatd to the national standard level before use.

427. The construction at site can alter the natural drainage pattern of the area at a micro level. There is potential of contamination of low lying areas and surface water quality due to sediment run-off from construction area. Improper disposal of sewage and wastewater from labour camps and construction debris can contaminate the ground water resources in the area.

6.4.5.1 Mitigation Measures

428. Septic tank with soak pit should be provided in labour area, so that, no contamination due to discharge of sewage may take place. The natural slope of the site should be maintained to the extent possible in order to avoid any change in the drainage pattern. Adequate arrangement for storm water management during construction period should be made to avoid sediment runoff from the site. Storm water flow should be routed to the existing channels after passing through the silt and oil traps to avoid contamination of receiving water body. Temporary silt-trap or digging of pond will be provided toward siltation prevention. Strict supervision should be maintained to avoid blockage of natural creeks during the construction period.

6.4.5.2 Significance of Impact

429. Overall the impact on water resources shall be moderate without mitigation, whereas, impacts shall further reduce to minor level with implementation of mitigation measures.

Aspect	Scenario	Spread	Duration	Intensity	Overall
Water Resources	Without Mitigation	Medium	Medium	Moderate	Moderate
	With Mitigation	Local	Medium	Low	Minor

Table 6-8: Impact Significance for Water Resources

6.4.6 Impact due to Waste Handling

6.4.6.1 Impacts

430. Site clearance, excavation, labour camp and installation work shall produce various kinds of waste. The construction demobilisation shall involve deployment of workers, removal of campsite and other temporary structures. These activities shall result in generation of waste. The major wastes as expected are as follows.

- Construction Debris
- Domestic solid waste from labour camp

- Packaging material of the plant parts
- Waste oil from generator and other construction machinery
- Metal scraps, Paint containers, etc.

431. The debris generated due to construction activities may spread out in nearby areas. This may lead to soil and water contamination.

432. Improper disposal of solid waste from the labour camps at site and lack of proper sanitation facility for labour shall lead to unhygienic conditions and spread of diseases in the area. It can lead to discontent of local community and result in conflicts with the labour engaged at site.

433. Improper disposal of packaging materials, boxes, plastics and ropes can lead to littering in the construction site and surrounding areas. Hazardous wastes such as waste oil, lubricants, hydraulic oil etc. can cause contamination of soil and water bodies if adequate precautions for management and handling are not undertaken. Use of chemicals such as paints, curing chemicals can lead to contamination of soil.

6.4.6.2 Mitigation Measures

434. Considering the plant capacity and labour requirement, quantity of waste generation shall be small and limited. Construction debris should be utilised for levelling of the land and unused debris should be disposed-off to nearest waste disposal site. Efforts should be made to use the locally available labour for unskilled work purpose. Proper sanitation and sewage facility in terms of septic tank with soak pit should be provided. Municipal waste as likely from labour area should be disposed as per Environment Conservation Rules, 1997.

435. Hazardous waste like paint empty tins, used oils should be stored in separate designated space and should be given to MoEF approved recyclers. Metals scrap should also be given to the approved recyclers.

6.4.6.3 Impact Significance

436. The overall impact due to solid waste shall be minor and shall reduce to insignificant level after implementation of mitigation measure.

Aspect	Scenario	Spread	Duration	Intensity	Overall
Waste Disposal	Without Mitigation	Local	Medium	Moderate	Minor
	With Mitigation	Local	Medium	Low	Minor

Table 6-9: Impact Significance due to Solid Waste Disposal

6.4.7 Impact on Ecological Aspects

6.4.7.1 Impacts

437. Removal of vegetation may result in loss of habitat for small mammals and birds. However, the ecological survey carried out at site established that the site is primarily open land and does not support any significant ground vegetation. The impact on ecological environment is assessed to be minor for the project. There are water hyacinths around the jetty.

6.4.7.2 Mitigation Measures

ReLIANCE

438. The site is primarily agriculture land and devoid of any dense natural vegetation. Therefore, the loss of vegetation at site is considered to be limited. Efforts should be made to retain some of the boundary trees. The noise generating activities should be scheduled during day time only. Movement of construction and transport vehicles should be restricted to construction site only to minimise any harm to small mammals. Water hyacinths normally deposit where there is stagnant water. So there is no possibility of growing water hyacinths near the jetty.

The construction workers (unless native to the area of project) shall also be debarred from taking out any fishing activity in the vicinity to avoid any impact on local resources.

6.4.7.3 Impact Significance

439. The overall impact on ecological aspect during construction shall be insignificant in nature.

Table 6-10: Impact Significance on Ecological Aspects

Aspect	Scenario	Spread	Duration	Intensity	Overall
Ecology	Without Mitigation	Local	Short	Low	Insignificant

6.4.8 Social acceptability of Construction workers to the host communities

440. In the construction phase, skilled workers might be engaged in the project to perform technical work and they might come from outside the area. However, since the area has good labor force, most of the laborers will come from the local and nearby villages only.

441. The potential impacts that might arise in reference to labor related issues have been mentioned below.

- Once the construction activity for the project gets underway, there is a possibility for inflow of migrant workers from other parts of the country in project area. For unskilled work in the construction phase, the local population and its surrounding areas should be given first preference.
- The influx of migrant workers might put pressure on the existing resources like water supply, supply of fuel, provision of basic facilities, waste handling and sewage disposal of the project influenced population which might create frictions between them and the resident population of the area. However, chance of this scenario is rather low considering the project capacity and nature of work.
- With the inflow of migrant workers and their interaction with the local population, health issues among the local community might emerge. Health problems like STD's and HIV Aids might spread in the area because of this floating population. Medical camps can be conducted amongst the labors and the local population to make them aware about diseases like STD's and HIV Aids.

6.4.8.1 Mitigation measures

442. Reliance Bangladesh LNG & Power Ltd. has practice of working with the workers of different cultures. It is recommended to aware the foreign workers (if any) about the social &

religious acceptability in the area so that they could maintain those when they will have touch with local community. The construction workers will be mainly local people.

6.4.8.2 Impact Significance

RELIANCE

443. The overall impact on cultural aspect during construction shall be insignificant in nature.

Table 6-11: Impact Significance on Ecological Aspects

Aspect	Scenario	Spread	Duration	Intensity	Overall
Social	Without Mitigation	Local	Medium	Low	Minor
	With Mitigation	Local	Medium	Very Low	Insignificant

6.4.9 Impact due to Traffic and Transport

6.4.9.1 Impacts

444. The construction activities shall require transportation of construction material, mounting structures and other components to the site. The additional traffic movement on the road due to project activities shall increase accident probability. Transportation of construction material in open trucks / tippers can also lead to dust generation along the route. Excess traffic on the road shall create discomfort for locals due to increment in noise level and fugitive dust and gaseous pollution expected to exhaust from the vehicles.

6.4.9.2 Mitigation Measures

445. Considering the project capacity, increase in traffic nos. will be very marginal. The site is connected with National Road no 1 (Dhaka-Chittagong Highway). The traffic density on the access road is low and has adequate carrying capacity to accommodate the additional traffic due to the construction activities.

- The traffic movement in settlement areas should be limited for night time only.
- Only PUC certified vehicle should be deployed for the project to keep the air pollution under check. Tool Box training should be arranged for the driver to create awareness about road safety.
- Management to provide for adequate internal parking, for all vehicles coming to the construction site;
- All users of said roads to always observe traffic rules this will give pedestrians and cyclist their space and safety while using the road; and
- Proper signage will be displayed for road and traffic safety.
- The traffic management plan should minimize inconvenience to community by choosing the best alternative routes with less community disturbance, by restricting the unnecessary use of horns while bypas sing any sensitive areas (hospitals, schools, residential areas etc.), water spray on roads, deployement of traffic marshals etc.
- The materials will be carried by the riverway and by roadway which is also a national highway. So the possibility of congestion will be low.

6.4.9.3 Impact Significance

ReLIANCE

446. Without mitigation measures, the impact shall be moderate overall. However, mitigation measures shall be implemented to maintain the impact intensity on minor level.

Table 6-12: Impact Significance due to Traffic and Transport

Aspect	Scenario	Spread	Duration	Intensity	Overall
Impact due to traffic	Without Mitigation	Medium	Medium	Low	Moderate
	With Mitigation	Medium	Medium	Very Low	Minor

6.4.10 Health and Safety Hazards

6.4.10.1 Impacts

447. Loading and unloading operation of the construction material may cause an injury if not handled properly. During construction works, physical injury can result due to road accidents, construction accidents and other occupational hazards. Over exertion injuries and illness shall potentially be the most common health hazards associated with construction activities. Further there is potential for slips and fall on the same elevation associated with poor housekeeping, such as excessive waste debris, loose construction material, liquid spills and uncontrolled use of electrical cords and ropes on ground, which results in injuries and time loss during construction.

448. Hazards associated with fall of construction material or tools, as well as collapse of constructed slabs, walls and roofs can result in injury to head, eyes and extremities. Transportation and movement of vehicles are associated with road accidents and related hazards, which can lead to injuries and fatalities.

6.4.10.2 Mitigation Measures

449. An H&S plan will be prepared prior to construction. H&S training will be conducted, including good housekeeping, clean-up of debris and spills, and working in confined spaces and at height. The workers should wear PPE (Personal Protective Equipment), safety goggles, and other necessaries. Harnesses and scaffold barriers for work at height will be provided. Segregation of pedestrians and traffic on-site will be segregated.

450. For community Health and Safety, EHS guidelines should be planned and documented. Public access to the site must be restricted. Disease prevention and traffic safety measures should be adopted.

451. Excessive waste debris and liquid spills should be cleaned up regularly. Good housekeeping should be ensured at the construction site to avoid slips and falls. PPEs such as safety glasses with side shields, face shields, hard hats and safety shoes should be mandatory at construction site. Ear plugs should be provided for workers in high noise areas.

6.4.10.3 Impact Significance

452. The project shall have moderate impact on Health and Safety aspect during construction phase. However, this can be reduced to the insignificant level by successful implementation of mitigation measures.

Aspect		Scenario	Spread	Duration	Intensity	Overall
Impact on Health	and	Without Mitigation	Local	Short	Moderate	Minor
Safety Aspect		With Mitigation	Local	Short	Low	Insignificant

Table 6-13: Impact Significance on Health and Safety Aspect

6.4.11 Impact due to Construction of Associated Facilities

6.4.11.1 Impact due to Construction of Jetty

453. A temporary jetty will be built adjacent to the project site to transport the construction material and heavy equipment during the construction period of the power project. The proposed jetty will be constructed on the western bank of the River Meghna or on the southeast corner of the project site and it'll be demolished after the completion of the project. This is a temporary jetty required only for the purpose of transportation during the construction period. The dredged depth of 3 to 4 m is required. The excavation activities and pilling work in the seabed for construction of the island will generate fine sediments and will also result in resuspension of sediments in water. The major impacts on water quality are envisaged due to civil work activities like driving piles, movement of construction equipment etc. will have a high probability to disperse the fine grained sediments in the water, which in turn influence the quality of water in Meghna River. The turbid waters impact on aquatic ecology thus affecting primary productivity. The leakage and spillage of oil and lubricants from machineries and equipment can cause adverse impact on surface water quality. The design of Jetty and necessary facilities would be such that it puts no restriction for the movement of carriers (entry channel, turning circle, berthing etc.) to and from proposed jetty with required navigational aids.

6.4.11.2 Mitigation Measures

454. The construction materials to be used will involve raw materials which are nonhazardous in nature such as steel, cement, gravel, rock etc. Cutting and filling should be avoided during jetty construction at the river bank to avoid the river erosion. Construction of permanent structure should be avoided. There is no regular navigation path way for the river traffics in the Meghna River near the project site so there will not have possibility of obstructing the river way by the loading unloading vessels in the jetty. The vessels that would be berthed on the jetty should not cause any oil or solid waste pollution while loading and unloading. The project authority should obtain proper permission from the Bangladesh Inland Water Transport Authority prior to construct the temporary jetty.

The exact impact shall be assessed along with water intake structure / discharge cahnnel construction (if, any) based on the detailed engineering by EPC contractor. The suitable construction methodology along with mitigation measures to have minimal impact during construction and operational impact, if any, shall be finalized before construction of jetty starts.

There will be further surveys on fisheries activities/ecology undertaken along with two season data and recommendations of these will be taken on board in construction method statements that will aim to minimize disruption to fishermen through use appropriate working methods etc.
6.4.11.3 Impact Significance

ReLIANCE

455. The project shall have moderate impact on EHS aspect during construction phase. However, this can be reduced to the insignificant level by successful implementation of mitigation measures.

Table 6-14: Impact Significance of Jetty

Aspect			Scenario	Spread	Duration	Intensity	Overall
Impact	Significance	of	Without Mitigation	Local	Long	Moderate	Moderate
Jetty			With Mitigation	Local	Long	Low	Minor

6.5 OPERATION PHASE IMPACT

456. The operation phase impacts of the project are minor. The impacts are discussed in detailed under headings below.

6.5.1 Impact on Air Quality

457. Ambient air quality may be affected due to emission of flue gases from the gas turbine stack. Incomplete burning of gases from the operation of gas turbine may also affect the air quality. The situation becomes aggravated when gas contains high percentage of impurities like sulphur, hydrocarbon, nitrogen etc. The high temperature of flue gas also produces impacts on the air quality in terms of thermal pollution. The combustion of fossil fuels for power generation inevitably results in emission of gaseous pollutants to the atmosphere. The major pollutants of potential concern are sulphur dioxide (SO_2) , oxides of nitrogen (NO_2) , carbon monoxide (CO) and Carbon dioxide (CO_2) .

458. Sulphur dioxide (SO_2) emission: The emissions of sulphur dioxide are dependent on the sulphur content of the fuel. Since there is no sulphur content in the natural gas, therefore, there would be no sulphur dioxide emission from the plant.

459. Nitrogen Oxides (NO_x) emissions: Burning of fossil fuels at high temperature (above1600°C) generally produces two forms of nitrogen oxides-nitric oxide (NO) and nitrogen dioxides (NO₂); commonly referred to as nitrogen oxides (NO_x). Since the gas turbine intakes excess air to the tune of 127% more than required for combustion, and if a fully premixed burner (dry low NO_x burner DLN) is used there will be no NOx since the combustion temp is much less (24020F \approx 1317°C) in the case of such a turbine. The proportion of NO_x and NO₂ varies depending on the combustion technology, and in the case of gas turbines approximately 90 percent of the nitrogen oxides is present as NO with the remaining being NO₂. Once the NO enters the atmosphere, it reacts with oxygen in the air and oxidises to NO₂ with passage of time.

460. Carbon monoxide (CO) emission: Carbon monoxide (CO) is generated when incomplete combustion takes place. As per design, the emission of CO from the gas turbine would be an issue. So the impact due to emission of CO would not be significant for the proposed power plant.

461. Carbon dioxides (CO_2) emission: Emission of CO_2 is associated with global warming. CO_2 gas emission depends on the fuel burned and the carbon content of the fuel. The natural gas contains a significant portion of carbon, which reacts with oxygen to produce

 CO_2 and heat; at full capacity CO_2 emission due to the project operation, with its present quantum will not have much impact on global warming.

6.5.1.1 Stack Emission

ReliAnce

462. The proposed Reliance Meghnaghat 750 MW CCPP powerplant will be of advanced design with dry low NOx (DLN) burner with premix burning system which restricts the combustion temperature which is much below the NOx forming temperature ($1600^{\circ}C$). The proposed power plant will produce 25 ppm NOx emission from the gas turbine which will be within the IFC/WB emission limit of 51 mg/Nm³ (25ppm)with15% O₂, for gas turbine power plants more than 50 MW located in the degraded or non-degraded air shed. As per Bangladesh ECR 1997, the NOx emission standard of gas turbine power plant of 500 MW or above is 50ppm irrespective of O₂ content which is also higher than 25ppm.

6.5.1.2 Ambient Air Quality

463. The air quality impact of power plant was predicted using Gaussian model. The model used in the present study is a Gaussian Plume Dispersion Model designed for single/multiple point applications. The model simulates the relationship between air pollutant emission and the resulting impact on air quality. Data relating to plant emission, meteorology and other atmospheric conditions determined by formulating impact scenarios were used as inputs while carrying out the simulation studies.

464. The ambient air quality monitoring data used in the prediction is based on field sampling and analysis. The locations of monitoring stations were earlier fixed based on the occurrence of maximum pollutant concentrations using screening models. Besides, these locations were selected considering the receptor points, prevailing wind directions and settlement. USEPA approved AERMOD view version 9.5.0model was used to estimate emission concentration from the plant. AERMOD view is a Gaussian plume model that incorporates source-related factors, meteorological factors, receptors, terrain and building downwash factors to estimate pollutant concentration from continuous point source emission.

465. The use of site-specific meteorological data has been collected from the Lakes Environmental, Canada, who has provided 1 Year of MM5-Preprocessed site specific Meteorological data for the period of Jan 01, 2016 to Dec 31, 2016 at Latitude: 23°36'25.56"N, Longitude: 90°35'32.16"E, Time Zone: UTC +6. These data contain hourly value of wind speed & direction, wind velocity, surface roughness, Bowen ratio, albedo, temperature & reference height, precipitation rate, relative humidity, surface pressure and cloud cover over the period mentioned above. The data then have been analysed and processed through MET processing model AERMET View which uses Samson format to process the data and create surface met data file & profile met data file were then used in AERMOD view as Met input data for calculation.

466. The proposed power project will have a 2X255 MW gas turbine fitted with 2 HRSG and a 240 MW steam turbine and the model calculates the values in different configurations by considering individual stack emissions with 70m stack height of NO2 emissions. The model assumes the stack tip downwash with receptors on flat terrain and no flagpole receptor heights. The NO₂ concentration contour has been analysed with 50m interval up to 1000m from the

stack and 500 m interval with a radius of 5000m from the point source. The NO₂ concentration contour of 1 hour and annual average of maximum concentration have been analysed.

467. The power project will be operated as combined cycle operation in which the exhaust air will be emitted through 70 m high stack. The project will also have a bypass stack of 44m high which would be used for any emergency operation. The parameters and corresponding values are summarized in **Table 6-15**.

SI. No.	Parameters	Values of 70m	Values of 44 m
		stack	stack
1.	Stack height (m)	70m	44m
2.	Stack inside diameter (m)	6.30m	6.705m
3.	Stack gas exit velocity (m/s)	25 m/s	44.76 m/s
4.	Exhaust temperature (K)	(365+305) = 670	614+303=917
5.	Exhaust flow rate (m3/sec)	615	
6.	NO ₂ emission rate as NO ₂ (g/s)	25 ppm (51 mg/m3)	39.74
		= 39.74 mg/sec	
7.	Ambient temperature (K)	305	305

Table 6-15:	The exhaust	specifications and	stack parameters
-------------	-------------	--------------------	------------------

6.5.1.3 Dispersion Model results

ReLIANCE

A. Stack emission results (Main Stack)

468. **For 50 m interval up to 1km:** The maximum of 1 hour concentration of NO_x (above 7 μ g/m³) have been predicted beyond 700m radius and the concentration are within 4-7 μ g/m³ at a radius of 200-700m at all the sides to the power projects. The maximum incremental annual concentration of NO_x has been detected as 0.10-0.20 μ g/m³ around the project except it increases to 0.20-0.50 μ g/m³ at the 100m to 1000m west of the project.

469. **For 500 m interval up to 5km:** The maximum of 1 hour concentration of NO_X (6-7 μ g/m³) have been predicted beyond 1000m radius around the point source up to 3000m and the concentration are below 6 μ g/m³ after 3000m at all the sides to the power projects. The maximum incremental annual concentration of NO_x has been detected as 0.10-0.20 μ g/m³ around the project except it increases to 0.20-0.40 μ g/m³ at the 100m to 5000m west of the project.

B. Stack emission results (By Pass Stack)

470. **For 50 m interval up to 1km:** The maximum of 1 hour concentration of NO_X (above 5 μ g/m³) have been predicted beyond 700m radius and the concentration are within 2-4 μ g/m³ at a radius of 200-700m at all the sides to the power projects. The maximum incremental annual concentration of NO_x has been detected as 0.249 μ g/m³ at around 600-1000m west to the project whereas the concentrations are within 0.05-0.08 μ g/m³ at the 100m to 1000m around the project.

471. For 500 m interval up to 5km: The maximum of 1 hour concentration of NO_X (4 μ g/m³) have been predicted at around 5km west and 2km south & north sides to the power

ReliAnce

projects. The maximum incremental annual concentration of NO_x has been detected as 0.20- $0.25 \ \mu g/m^3$ around the project up to 5000m radius of the project.

Review of modelling results:

472. The modelling result shows the maximum 1 hour concentration of NO₂ has been predicted as 7 μ g/m³ for 70m stach height and 5-6 μ g/m³ for 44m bypass stack. Whereas maximum yearly concentration of NO₂ has been predicted as 0.2-0.4 μ g/m³ for 70m stach height and 0.2-0.25 μ g/m³ for 44m bypass stack radius which is within the IFC standard (200 μ g/m³) for 1 hour concentration. There is no Bangladesh standard for 1 hour concentration but the maximum annual concentration of NO₂ has also been found less than the Bangladesh (100 μ g/m³), WHO/IFC (40 μ g/m³) and USEPA (100 μ g/m³) standard. These indicate that the expected power plant does not have major significant adverse impact on the prevailing air quality of that area.

473. The Table 6-17 shows the maximum NO2 concentrations at six sampling locations around the project during the baseline study period alongwith their distance from the project. The NO2 contribution from the stack emission has also been compared in the table which also proves the minimum contribution of NO2 from this project after operation. This has to be mentioned here that all the power plants and other projects were in operation during the period of baseline study.

474. Bangladesh National Ambient air quality standard NOx level set for annual average. As the primary data is not available throughout the year to measure at an annual basis, Continuous Air Monitoring Station (CAMS) secondary data is available from Narayanganj CAMS station (Article 4.6) of DOE. The Narayanganj CAMS station (23.63N and 90.51E) is around 10km away from the project site and the concentration of Narayanganj is much higher than the project area considering the volume of industrial activity and emission level. Even considering the highest concentration of NOx at Narayanganj CAMS, still the aggregated NOx concentration is within the limit of IFC/WB and Bangladesh standard.

Pollutants	Average Ambient		Concentration	Total	Standard in µg/m ³			
	period	concentration	From RPLBL		BNAAQS***	WHO/IFC 2007*	US EPA	
NO _x	1 hr	-	7	-		200**	188	
	Annual	35.67****	0.50	36.17	100	40**	100	

Table 6-16: Comp	arison Ambient	air quality	guideline	for NOx
------------------	----------------	-------------	-----------	---------

* IFC Environmental Health & Safety Guidelines 2007

** Ambient air quality standard for small combustion facility using gas fuel and spark engine

***Bangladesh National Ambient Air Quality Standard

****Maximum Annual average of NO_x as per Narayanganj CAMS

Name of the station	Distance from the	Max Ambien		Main stack (0-5km)			Bypas (0-!	ass stack)-5km)		
	project km	t Nox	1 hr	annual	% contribution on IFC/WB Standard		1 hr	Annua I	% con on I Sta	tribution FC/WB ndard
					1 hr	annual			1 hr	annual
Pachani	1.62	11.2	7	0.3	3.5%	0.75%	4	0.2	2%	0.5%
Mograpara	3.12	9.4	6	0.3	3%	0.75%	3	0.2	1.5%	0.5%
Boiddarbazar	5.68	15.7	5	0.3	2.5%	0.75%	3	0.2	1.5%	0.5%
Jamaldi	2.51	8.9	7	0.3	3.5%	0.75%	4	0.2	2%	0.5%
Vhatibalaki	3.92	11.9	6	0.3	3%	0.75%	3	0.2	1.5%	0.5%
Gowalgaon	3.82	9.0	6	0.3	3%	0.75%	3	0.2	1.6%	0.5%
Bangladesh Standard				100				100		
IFC/WB Standard			200	40			200	40		

Table 6-17: Stack emission dispersion GLC at Air Monitoring Stations in $\mu g/m^3$

Note: As per IFC/WB Environmental, Health & safety guideline, ambient air quality, General Approach (page 4), an individual contribution to the air shed should not exceed 25% to the guideline value. So, RBLPL contribution in this case would not be more than 3.5%.

475. The emission contour maps of the proposed project at 1 hour and annual average of NO_x concentration are shown in **Figure 6-2** to **Figure 6-9**.

Figure 6.2: Emission contour map showing the NOx concentration (1 hour average up to 1000m)

Figure 6.3: Emission contour map showing the NOx concentration (annual average up to 1000m)

Figure 6.4: Emission contour map showing the NOx concentration (1 hour average 5000m radius)

Figure 6.5: Emission contour map showing the NOx concentration (annual average up to 5000m)

Figure 6.6: Emission contour map showing the NOx concentration (1 hour average up to 1000m bypass stack)

Figure 6.7: Emission contour map showing the NOx concentration (annual average up to 1000m bypass stack)

Figure 6.8: Emission contour map showing the NOx concentration (1 hour average 5000m radius bypass stack)

Figure 6.9: Emission contour map showing the NOx concentration (annual average up to 5000m bypass stack)

C. Ambient Air Quality by considering the cumulative concentration from other existing power projects near RBPL

476. An effect on ambient air quality has been assessed based on the cumulative ground concentration of NO₂ emissions together with other existing power project of BPDB power village complex. In addition to the 750 MW RBPL CCPP, there are 450 MW CCPP of Meghnaghat Power Limited, 350 MW duel fuel CCPP of Summit Meghnaghat Power Company Limited (SMPCL) and 100 MW HFO based power project of Orion Power Meghnaghat Ltd (OPML) are in operation. USEPA AERMOD view version 9.2.0 model was used to estimate emission concentration from all the plant.

477. Orion Power neither has any NO_x emission data available at site nor has provision in their stack to measure the NO_x data. On the other hand, Summit power didn't agree to share their emission data. So, in this calculation, we have used Meghnaghat power data, Ashuganj 400 MW Gas Turbine CCPP data (instead of Summit Meghnaghat as it is almost near to their capacity) and 750 MW CCPP of RPBL data together as point source to determine the cumulative ground concentration of NOx in the area. Though 100 MW Orion HFO power plants emission data is not used but is already taken care with the monitoring of existing baseline data monitoring. The model assumes the stack tip downwash with receptors on flat terrain and no flagpole receptor heights. The NO₂ concentration contour has been analysed with 500 m interval with a radius of 5000m from the point source. The NO₂ concentration contour of 1 hour and annual average of maximum concentration have been analysed. The parameters and corresponding values are summarized in **Table 6-17** and **Table 6-18**.

SI. No.	Parameters	Values
1.	Stack height (m)	60
2.	Stack inside diameter (m)	5.7
3.	Stack gas exit velocity (M/S)	20.3
4.	Exhaust flow rate (cu.m/sec)	517.9
5.	Exhaust temperature (K)	393
6.	NO ₂ emission rate as NO ₂ (g/s)	20.00
7.	Ambient temperature (K)	293
8.	Receptor height above ground	0.000

Table 6 17: The exhaust	anagifigations of	: "Maabnaabat	Dowor	Compony I td "
I ADIE 0-17. THE EXHAUSE	Specifications of	weumaunat	FOwer	COMPANY LUC.

Table 6-18: The exhaust specifications of	of Summit Meghnaghat Power Ltd.
---	---------------------------------

SI. No.	Parameters	Values
1.	Stack height (m)	50m
2.	Stack inside diameter (m)	6.25m
3.	Stack gas exit velocity (m/s)	9 m/s
4.	Exhaust temperature (K)	(90+293) = 383
5.	NO ₂ emission rate as NO ₂ (g/s)	15.38
6.	Ambient temperature (K)	293
7.	Receptor height above ground	0.000

6.5.2 Dispersion Model results (Cumulative)

478. The NO₂ concentration contour of 1 hour and annual average of maximum concentration have been analysed. The maximum of 1 hour concentration of NO₂ has been predicted within 20-30 μ g/m³ at a radius of 0-5000m north-west and south-east to the project, whereas the concentrations are within 10-20 μ g/m³ at the other sides within the study area. The maximum annual concentration of NO2 has been detected as 0.50-0.80 μ g/m³ in a pocket at a radius up to of 500-200m north-west to the project whereas the concentration are within 0.10-0.08 μ g/m³ at the either sides further down to the project site up to 5000m.

Review of modelling results:

479. The modelling result shows the 1 hour ground level concentration of the NO₂ (max 20-30 μ g/m³) is within the IFC standard (200 μ g/m³) for 1 hour concentration. The maximum annual concentration of NO₂ has been found 0.50-0.8 μ g/m³ is also less than the Bangladesh, WHO/IFC and USEPA standard. These indicate that the expected power plant does not have major significant adverse impact on the prevailing air quality of that area.

480. Bangladesh National Ambient air quality standard NOx level set for annual average. As the primary data is not available throughout the year to measure at an annual basis, Continuous Air Monitoring Station (CAMS) secondary data is available from Narayanganj CAMS station (Article 4.6) of DOE. The Narayanganj CAMS station (23.63N and 90.51E) is around 10km away from the project site and the concentrations at Narayanganj is much higher than the project area considering the volume of industrial activity and emission level. Even considering the highest concentration of NOx at Narayanganj CAMS, the aggregated NOx concentration (36.47 μ g/m³) in the project area is still within the limit of IFC/WB and Bangladesh standard. But the maximum & minimum 24hr NO_x concentration has been found in our baseline study at Vatibalaki as 11.9 μ g/m³ on November and 5.1 μ g/m³ on October respectively.

Pollutants	Average	Ambient	Concentration	Total	Standard in µg/m ³			
	period	concentration	From RPLBL		BNAAQS***	WHO/IFC 2007*	US EPA	
NO ₂	1 hr		30			200**	188	
	Annual	35.67****	0.80	36.47	100	40**	100	

Table 6-19:Comparison	Ambient air q	quality guideline	for NO
-----------------------	---------------	-------------------	--------

* IFC Environmental Health & Safety Guidelines 2007

** Ambient air quality standard for small combustion facility using gas fuel and spark engine

***Bangladesh National Ambient Air Quality Standard

**** Maximum Annual average of NO_x as per Narayanganj CAMS

The emission contour maps of the proposed project at 1 hour and annual average of NO_2 concentration are provided in **Figure 6-4** and **Figure 6-5**. Both BNAAQS and IFC do not have any standard for 24 hours so 24- hour modeling is not considered.

ReliAnce

Figure 6.4: Emission contour map showing the NO_x concentration (1 hour average) combined source

Figure 6.5: Emission contour map showing the NO_x concentration (annual average) combined source

6.5.2.1 Mitigation Measures

ReliAnce

481. It has been discussed earlier that the proposed power plant would be constructed with a modern design and sophisticated machinery setting. The power plant would be operated by natural gas, so CO, Particulate Matter and SO_2 would not be a concern in terms of emission. The NO_x emission from the power plant would be kept at a minimum level with optimum designed cycle efficiency in order to maximize the MW output.

6.5.2.2 Impact Significance

482. Impacts on air quality are assessed as moderate in nature and shall further be reduced to minor after implementation of Management Plan.

The onsite data for baseline represents the worst case scenario. As RBLPL will be collecting further two seasons data hence, will draw a comparison in the data set of baseline and will represent in to updated ESIA.

Table 6-20: Impact Significance on Air Quality

Aspect	Scenario	Spread	Duration	Intensity	Overall
Impact on Air Quality	Without Mitigation	Local	Long	Very Low	Minor

6.5.3 Impact on Climate Change

483. Greenhouse gases are those that absorb and emit infrared radiation in the wavelength range emitted by Earth which eventually contributed to global warming and finally climate change. In order, the most abundant greenhouse gases in Earth's atmosphere are:

- Water vapor (H₂O)
- Carbon dioxide (CO₂)
- Methane (CH₄)
- Nitrous oxide (N₂O)
- Ozone (O₃)
- Chlorofluorocarbons (CFCs)

484. Emission of CO_2 is associated with this project which relates to global warming. CO_2 emission depends on the fuel burned and the carbon content of the fuel. The natural gas contains a significant portion of carbon, which reacts with oxygen to produce CO_2 and heat; at full capacity CO_2 emission due to the project operation, with its present quantum will not have much impact on global warming.

485. The **Table 6-21** shows the comparison of IFC CO_2 Emission rate for Combine Cycle Gas Turbine Plants and the specification of 750 MWCCPP:

Table 6-21: Comparison of IFC CO₂ Emission rate and the specification

Parameter	Performance of CO ₂ emission	IFC/WB Typical Values for CO ₂ Emissions in a CCGT Plant (Natural Gas)				
	as per Engine		% Net, HHV)	Efficiency		
	Catalogue		(with CCS*)	(% Net, LHV)		

Efficiency, (% Net)	58.4	50.8	43.7	54-58
CO_2 Emission, (t CO_2 / GWh)	342.1	355	39	348-374

*CCS-Carbon capture and storage

486. The CO₂ emission factor for RBLPL750 MWCCPP 342.1 tCO₂/GWh. Assuming 85% plant load factor, the total annual CO₂ emissions of RBLPL750 MWCCPP is estimated:

0.75 GW x 8760 hours/year x 0.85 = 5584.5GWh/year

5584.5GWh/year x 342.1 tCO₂/GWh=1,910,457.45 tCO₂/year

Note: All the calculations are done considering efficiency for combined cycle power plant

6.5.4 Mitigation Measures

487. It has been discussed earlier that the proposed power plant would be constructed with a modern design and sophisticated machinery setting. The power plant would be operated by natural gas and a combined cycle operation, so CO₂emission in this project would be minimal and as per the IFC guideline which would be at minimum level with optimum designed cycle efficiency in order to maximize the MW output.During the development or operation phase, if the generation of CO2 emissions is high then according to SPS 2009, CO2 emission of 1,00,000 tCO2/year or more will require monitoring and the provision of offsets through the project. The monitoring should be done as per the calculated value for the emissions.

Table 6-22: Impact Significance on Climate Change

Impacts on climate change are assessed as minor in nature.

Aspect	Scenario	Spread	Duration	Intensity	Overall
Impact on Climate Change	Without Mitigation	Local	Short	Very Low	Beneficial
					(Moderate)

6.5.5 Impact due to Liquid Discharge

6.5.5.1 Domestic Wastewater

488. The wastewater collection system will collect sanitary wastewater from sinks, toilets, and other sanitary facilities, and will be managed by the septic tank. The waste water generated from the above sources will be disposed to underground septic tank and soak well system. Proposed septic tank and soak well details are shown in **Figure 6-6.**It is estimated that15 kld wastewater will flow from the building sewer line to the septic tank where both heavy and light solids are separated from the wastewater. Solids that are heavier than water settle out forming a sludge layer on the bottom of the septic tank. Solids lighter than water float to the top of the wastewater forming a scum layer. A liquid layer of water with suspended solids, nutrients, microorganisms and other pollutants separates the sludge and scum. Anaerobic bacteria — those that can live without oxygen — begin to break down waste in the septic tank. As wastewater flows into the septic tank, an equal volume of the liquid layer, called effluent, flows out of the septic tank into the effluent treatment system. In a properly designed, functioning and maintained septic tank, scum and sludge will not flow out with the effluent.

Figure 6.6: Septic tank details

489. While septic tank effluent may appear clear, microorganisms such as bacteria and viruses, nutrients such as nitrate and phosphorous, dissolved materials and very small particles of suspended solids are present. To protect the environment and human health, effluent must receive additional treatment as soak well system.

490. Solid waste is removed from septic tank every five years interval. This anaerobically digested septic tanks solid waste/sludge will be used as a soil conditioner or fertilizer provided it first tested to confirm suitability per national requirements.

491. If the septic tank will not be constructed 100 m away than any river or tube well then the package sewage treatment plan will be the best option to protect ground water contamination.

However, the inclusion of package sweage treatment plant shall be explored during detailed enigineering to be used during plant operation phase.

6.5.5.2 Wastewater from Plant Drains

492. General facility drainage will consist of area cooling water blow down, occasional equipment& floor wash, service water, rejection from DM water etc. will be collected and treated in a wastewater treatment facility which has a capacity of 20cu.m/hour. Water from these areas will be collected in a system of floor drains, hub drains, sumps, and piping, and routed to the facility wastewater collection system.

493. Treated effluents are equalized in Guard pond before reuse and recycling within the plant. Excess treated and equalized effluent will be disposed off through plant's effluent outfall. This discharge will thus meet the permissible standards

494. Treated Effluent quality shall be as per the following:

pH : 6.0 – 9.0

Suspended solids : 50 mg/l

Oil and grease : <10 mg/

495. The Effluent Treatment Plant conceived will handle effluent from the following facilities-

- Neutralized waste from DM plant
- Cooling tower blow down
- Boiler blow down
- Waste water from the plant wash

496. Neutralized waste from DM Plant, Cooling tower blow down and Boiler blow down do not need any treatment except only dilution and retention of effluent in CMB is envisaged before discharging outside the plant boundary.

497. For waste water from the plant wash, Treatment plant is envisaged with suitable capacity before discharging through CMB. The capacity envisaged is 20 cum/hr. The following treatment will be done in the ETP:

- Collection tank
- Coagulation & Flocculation
- Solid separation by clarifier
- clean water to CMB
- Sludge thickening
- Sludge dewatering by centrifuge

498. Sludge generated from Pre Treatment plant shall be treated suitably and solid waste generated shall be disposed outside plant.

499. Drains that could contain oil or grease will first be routed through an oil/water separator and then directed to the effluent treatment plant. The amount of wastewater generated from this system is anticipated to be minimal.

6.5.5.3 Wastewater from Close circuit cooling system

500. The proposed Combined Cycle power project will use river water in the steam condensing unit at rate of 1098 m3/hour flow for which 990 cu.m/hour will be used as make up water in the close loop steam condensation cooling system. Recirculating cooling system with Induced draft cooling towers using fresh water being most environments friendly should be adopted. The CCCW (Closed Cycle Cooling Water) system meets the cooling water requirements of all the auxiliary equipment of the GTG, STG and HRSG units such as turbine lube oil coolers, generator coolers, BFP auxiliaries, condensate pump bearings, sample coolers and air compressors auxiliaries. The water shall be reused for COC 5. About 206 cum/hr. of water is expected to discharged from the plant to the river after necessary treatment which will have a discharge temperature of about + 3 degree C of the ambient temperature. Hence, the impact of discharge from the proposed project shall be minimal having almost no impact on river water quality.

501. The minimum flow in Meghna river was 2050 cum/sec, considering this mean flow, the abstraction of this project is 0.00014% of the river mean flow and the discharge is 0.00002% of the river flow. The neighborhood power plants are using open circuit cooling and their average discharge flow is around 65000 cum/hour where RPLBL will discharge only 204 cu.m/hour. RBLPL will use the same mixing zone of the other two power projects in which the RBLPL's contribution will only be 0.31% than others, so, there will not be any impact on temperature from RBLPL discharge. Proper care will be taken in the design of water circulation system for the Combined Cycle power plant that no contamination or waste is carried to the river. Thus, the river water will remain free from any sort of negative impact originated from the power plant.

502. Impacts on Water quality are assessed as moderate in nature and shall further be reduced to minor after implementation of Management Plan.

Table 6-23: Impact Significance on Water Quality

Aspect	Scenario	Spread	Duration	Intensity	Overall
Impact on Water Quality	Without Mitigation	Local	Long	Moderate	Moderate
	With Mitigation	Local	Long	Low	Minor

6.5.6 Impact due to Solid & Municipal Waste

6.5.6.1 Impact Origin

503. The operation of the plant itself would not generate any solid waste. Solid waste generated by the people working at the proposed site is paper, cartoons, bags, boxes, office wastes, pallets, empty drums etc. along with negligible quantity of domestic waste. There will have waste Air filters and waste rugs be generated occasionally which need to be properly disposed. During operation phase of the project around 150-200 workers will be employed. It is estimated that around 40 kg/day municipal solid waste will be generated.

6.5.6.2 Mitigation Measures

504. All solid waste will be collected properly. Segregation of solid waste primarily will be at source. The World Bank EHS guidelines on Hazardous Materials Management, Waste Management and Thermal Power will be followed for all solid and hazardous waste management. Recyclable Waste will be sold to the authorized recycler. Other solid wastes will be disposed to designated landfill facility of Sonargaon Upazilla. Records of all waste transfer will be kept. The air filters and waste rugs should be collected in a safe place and should be disposed to the land fill.

6.5.6.3 Impact Significance

505. Impacts on solid and municipal waste are assessed as moderate in nature and shall further be reduced to minor after implementation of Management Plan.

Table 6-24: Impact Significance on Solid and Municipal Waste

Aspect				Scenario	Spread	Duration	Intensity	Overall
Impact	on	Solid	and	Without Mitigation	Local	Long	Moderate	Moderate
Municipa	al Wa	ste		With Mitigation	Local	Long	Low	Minor

6.5.7 Impact of Hazardous Waste

506. Hazardous waste that may also be generated during the operation phase of the proposed project includes small amounts of waste/spent oil, batteries, lighting lamps, E waste, etc.

6.5.7.1 Lubricating Oil

507. Insignificant amount of used lubricating oil would be generated from the plant. The generated waste oil will be stored in a sealed tank.

6.5.7.2 E Waste

ReLIANCE

508. A variety of E-wastes will be generated during the operation of power plant. The quantity/volume and characteristics of e-waste depend on many factors such as nature and scale of operation and maintenance activities. Proper handling and Management of E-Waste is required to avoid any damage to human health, local environment including land, water and air.

509. Kinds of E-wastes generated from different sources/ activities at division/ unit offices/ operational areas are:

- Used and obsolete IT and telecom equipment: electronic and electrical hardware/ components, PC peripherals, etc.
- Faulty/scrap meters and metering equipment, electronic timers;
- PCBs,
- Faulty/used electronic and electrical equipment,
- Capacitors i.e. electrolytic capacitors and capacitors containing Polychlorinated Biphenyls;

6.5.7.3 Battery Waste

510. In the life of the plant, there's a chance that battery waste will be generated and if not handled properly, battery can release hazardous substance harmful for human health at the end of its life.

- Batteries are one of the most common forms of industrial hazardous waste, containing metals toxic to human health and the environment.
- As batteries start to break down in landfill, the heavy metals they contain can leach into surface and groundwater, polluting soil and water, and harming humans and wildlife.

6.5.7.4 Mitigation Measures

511. IFC EHS guidelines on Hazardous Materials Management and Waste Management will be followed. The EHS department of the RBPL will be responsible for proper handling of hazardous waste in compliance with all applicable law. The RBPL will provide personnel training to the related plant workers to handle the hazardous waste, accumulation limits and times, and reporting and recordkeeping. The wastes that require disposal would be characterized based on generator knowledge or analytical testing to determine the appropriate management and handling procedures. Once properly characterized, the wastes

would be temporarily stored at the site in appropriate containers and impermeable storage areas according to all applicable hazardous waste storage law. Impermeable surface should also be used for refueling whilst there will be training of workers for spill response and provision of keeping stock of spill equipment such as bunds, soaking material etc. at project site. Oily waste and chemicals should be stored in a tank have sufficient secondary containment (110% more than its capacity).

512. All the hazardous waste should be properly levelled, where the following information should be added:

- 1. Name & type of waste
- 2. Quantity of waste

ReLIANCE

- 3. Date of waste generation (period of waste generation)
- 4. Waste generation site
- 5. Disposal site
- 6. Responsible authority who handles this waste.

513. The waste will be removed from the site with a regular interval for safe disposal at designated permitted facility.

514. The oil storage of the project (fresh and used) should be done on hard standing floor and roofing with a secondary containment facility of 110% bigger than the allowable maximum storage capacity. The waste lubricated oil thus collected will be supplied /sold to the venders or the Lube Oil Re-cycling plants approved by DoE at throwaway price. As there is no chance of mixing and disposal of oil onto land or water, so there is no mitigating measure to be suggested.

6.5.7.5 Impact Significance

515. Impacts on Hazardous waste are assessed as moderate in nature and shall further be reduced to minor after implementation of Management Plan.

Local

Local

Long

Long

Tuble 0-25. Impact orgin				
Aspect	Scenario	Spread	Duration	Intensity

Without Mitigation

With Mitigation

Table 6-25: Impact Significance on Hazardous Waste

6.5.8 Noise and Vibration Impacts

hazardous

6.5.8.1 Impact Origin

on

Impact

Waste

516. During operation, the maximum expected noise level from turbine generator and other sources will be < 85 dB(A) on any specific source point within plant premises. The sound pressure levels generated by various noise sources decrease with increasing distance mainly due to wave divergence. Since the various plant equipment are located at large distances, higher cumulative levels are not achieved. However, prediction was performed for the maximum expected noise levels at various locations. The community-level

Overall

Minor

Moderate

Moderate

Low

RELIANCE Meghnaghat 750

noise calculation was also performed to arrive at the anticipated levels the community is likely to get exposed to for a longer period of time.

6.5.8.2 Mitigation Measures

517. Necessary noise abatement measures will be taken as required avoiding adverse noise & vibration impact on the neighborhood. To reduce the effect, most costlier and effective **Critical Type Silencer** will be used in the stack. In particular, significant noisy components such as the gas turbine sets are enclosed in buildings acoustically designed, providing **Styrofoam filler of 50 mm width in between 300 mm thick brick walls** around the power house building. Moreover, thick doors are provided and holes which may create sound pollution are sealed with sound proof materials. Vibration pad will also be used at the bed of all power generation units to prevent the vibration.

518. The following are the noise protection capacity of the material which would be used for sound insulation for the power house building:

Material	Thickness, mm	Surface density, kg/sq.m	Transmission loss,dBA
Styrofoam (Acrylic -Poly-Methyl-Meta- Acrylate (PMMA)	15	18	32
Brick with or without plaster	150	288	40

519. As per above calculation the Styrofoam filter and brick wall are capable to absorb more than 112 dB(A) noise from the engine room, but the approximated engine room noise is around 85dBA near the turbines, which is lower enough to minimize the engine room noise by the acoustic measurement. Moreover, Vibration pad will also be used at the bed of all power generation units to prevent the vibration. Proper PPE should be provided to the workers who will exposed to high noise in the control room and turbine room. High noise areas should be signed properly.

520. For the measurement of the dispersion of the stack noise to surrounding environment, a noise modelling simulation has been done by using CUSTIC-3.2 noise modelling software. The model has calculated the noise from the exhaust stack of 85dBA and the result of the modelling has been given below:

521. The distance of the following noise level has been calculated from the center of the stack row.

Radius, m	50	100	200	300	400	500
Output Sound power level in dBA	32.16	26.80	21.44	16.08	10.72	5.36

Figure 6.7: Plot of output noise power level in dB(A)vs Radius in meter

522. The modelling result shows that the power plant will produce max noise 32.16dBA within the boundaries whereas the noise level is 5.36dBAwithin 500m radius of the project. The following are the IFC and Bangladesh standard for the ambient noise:

Standard	Zone	Day time dBA	Night time, dBA
IFC	Residential, Institutional, educational	55	45
EHS Guideline 2007	Industrial, commercial	70	70
Bangladesh	Mixed area	60	50
	Commercial	70	60
ECR, 1997	Industrial	75	70

523. It is observed from the noise emission modelling that the max noise level within the 50m radius is 32.16 dBA. If we consider 1 am (night time) noise level (max 39.2dBA) as the background noise (Article 4.7), the combined effect can be found from the link(-<u>http://www.sengpielaudio.com/calculator-spl.htm</u>) and applying the formula of ($\Sigma L = 10$. Log₁₀ (10^{L1/10} + 10^{L2/10}) dBA. The calculated table is presented below:

The calculated table is presented below:

ReliAnce

Radius, m	50	100	200	300	400	500
Output Sound power	32.16	26.80	21.44	16.08	10.72	5.36
level in dBA						
Ambient sound level in	39.2	39.2	39.2	39.2	39.2	39.2
dBA						
Summation of two sound level	39.98	39.44	39.27	39.22	39.2	39.2

524. Bangladesh Governmentdoesn't have declaration of zones for comparing the noise with standards. From the nature of the development, it is evident that the area falls under

industrial zone since there are many medium and big industries are already exists in the area; moreover, there is no homestead settlement near the project site. The result clearly stipulates that the sound intensity level is within the Bangladesh and WB guideline (70 dBA at industrial zone or even 60 dBA for mixed zone) at all sides from the center of the stack and gradually reduces at further distances. Apparently there will not be effect of noise contribution from the power project beyond 300m radius from the stack. Ear plugs will be provided for working in high noise zone exceeding 85 dB. The noise level in control room shall not exceed 60 dB.

6.5.8.3 Impact Significance

RELIANCE

525. Impacts on noise and vibration are assessed as moderate in nature and shall further be reduced to minor after implementation of Management Plan.

Table 6-26: Impact Significance on Noise quality

Aspect	Scenario	Spread	Duration	Intensity	Overall
Impact on Noise Quality	Without Mitigation	Local	Long	Moderate	Moderate
	With Mitigation	Local	Long	Low	Minor

6.5.9 Occupational Health

6.5.9.1 Impact Origin

526. The proposed project will employ around 160 people during its operational period. The workers who work inside the plant will face occupational health hazards due to different operational processes. Safe and good occupational health status of the employees and workers is important for only the persons working in the plant, but also for the better plant operation and maintenance.

6.5.9.2 Mitigation Measures

527. Protective clothing, earplug, helmets, shoes and accessories should be provided to the workers. Adverse impact on worker's safety would be minimized by implementing an occupational health program. Regular medical check-up would be done to ensure the soundness of health of employees and workers. Pollution control measures would duly adopt if necessary, including noise and air pollution.

6.5.9.3 Impact Significance

528. Impacts on occupational health are assessed as moderate in nature and shall further be reduced to minor after implementation of Management Plan.

Table 6-27: Impact Significance on Occupational Health

Aspect	Scenario	Spread	Duration	Intensity	Overall
Impact on Occupation	al Without Mitigation	Local	Long	Moderate	Moderate
Health	With Mitigation	Local	Long	Low	Minor

6.5.10 Impact on Ecology

6.5.10.1 Impact Origin

ReLIANCE

529. The proposed project will be a 750 MW combined cycle power project and may have long term impact on the ecological resources in the area if not properly addressed. Proper mitigation measures should be implemented if the negative impact identified on this issue

6.5.10.2 Mitigation Measures

530. The following are the ecological resources and discussed individually to address the impact and its mitigation measures:

531. **Flora**: The power plant would not emit any toxic gas or dust during operation so the impact on floral species in the area is insignificant.

532. **Fauna**: The power plant would have close circuit cooling system and will not emit thermal discharge to water body, the nominal discharge from the project would be controlled by in house WWTP and discharge quality will be within national limit, so, the impact on aquatic fauna in the area is insignificant.

533. **Fishery**: Since the project would not have any thermal discharge, so, the impact on fishery in the area would not be an issue. Moreover, the construction workers (unless native to the area of project) shall be debarred from taking out any fishing activity in the vicinity to avoid any impact on local resources.

534. **Forest**: There is no forest in the vicinity of the project. Nevertheless, there would not be any impact on forest by this project activity since there is no toxic emission.

535. **Wildlife**: Since there is no forest in the vicinity of the project, there is no wild life passage in the area. So, there would not be any impact on wildlife by this project activity.

6.5.10.3 Impact Significance

536. Impacts on ecology are assessed as moderate in nature and shall further be reduced to minor after implementation of Management Plan.

Table 6-28: Impact Significance on Ecology

Aspect	Scenario	Spread	Duration	Intensity	Overall
Impact on Ecology	Without Mitigation	Local	Long	Moderate	Moderate
	With Mitigation	Local	Long	Low	Minor

6.5.11 Impact on Fishing Activities

6.5.11.1 Impacts

537. Net raw water requirement for the proposed project is about 1076 m³/hr at full load. Initial year's water requirement will be more and in view of emergency 10% margin has also been considered for raw water pumping system. Cooling water make-up requirement for the proposed project will be about 990 m³/hr considering 5 COC.

538. Power plant intake structures harm waterways. Since intake structures sit well below the surface of the water, fish and other aquatic life are hit the hardest. A single power plant

ReliAnce

can destroy billions of fish eggs and larvae and millions of adult fish in a single year. In addition to fish, intake structures also harm aquatic animals.

6.5.11.2 Mitigation Measures

539. The volume of water requirement for makeup would have been increased by times, hence the quantum of water to be extracted will be too small in comparision to the available volume considering the flow in the Meghna river. The water will be extracted though intake well only wher in fine mesh will be installed at intake pipe to prevent entry of fish in intake structure. On the other hand, there is minimal thermal discharge meeting the \pm 3 Deg C of ambient temperature from the proposed power project and will also have much diluation as the power plants in the vicinity which have adopted Once trhough colling discharges much more water than this proposed power project. Hence the anticipated impact is minimal due to power plant discharge and abstraction.

6.5.11.3 Impact Significance

540. The overall impact on fishing activity shall be moderate in nature.

Table 6-29: Impact Significance on Ecological Aspects

Aspect	Scenario	Spread	Duration	Intensity	Overall
Fishing Activity	Without Mitigation	High	Long	Moderate	Major
	With Mitigation	Medium	Long	Low	Moderate

6.5.12 Socio-economic Impacts

- 541. **Impact on Land**: The land identified for the proposed project is revenue land which is identified for commercial purpose by the government of Bangladesh. Approximately 35 acres of government land has been procured on lease for proposed Thermal Power Project at Meghnaghat, Sonargaon, Narayanganj, Bangladesh. The proposed site has no homesteads land. It does not involve any physical / economical displacement.
- 542. **Rehabilitation and Resettlement**: Based on site investigation, land is identified for commercial purpose by the government of Bangladesh so that it was recorded that the government of Bangladesh has agreed to lease the land to the developer at Meghnaghat site for setting up of the Project. Hence, this project does not involve any resettlement in terms of physical and economical aspects. Therefore, it does not attract Resettlement Plan as per applicable national/state legislation.
- 543. **Impact on Indigenous People:** Based on the site investigation, information provided by Reliance, The land was low lying char land owned by Government (Government Khas land); PDB acquired the land in 1995 and developed the area as Power village. So that there is no any SC or ST land involved in the proposed project. It does not involve any restriction of access of village community to any public resources. There is no any anticipated impact on indigenous people.
- 544. **Community Development Activity**: As per Reliance's CSR Policy, Reliance will propose community development programme on the basis of need based assessment and consultation with local villagers and relevant stakeholders.

545. **Employment:** The local business communities engaged in trade and commerce will be benefited. On the other hand, people living in abject poverty are expected to marginally gain in terms of greater number of employment days. As the labour demand grows, a general wage increase is expected. The socioeconomic enhancement on account of these positive changes is anticipated both in core as well as buffer area. Daily wage labours, mostly in and around project site have been observed during site visit and tried to consult them. Consultation with the labours highlights that as the proposed Thermal Power Project supported their employment during construction period and helped them tackle the seasonal unemployment in the area. The project activities are expected to enhance economic activities in the area which will benefit the overall economic development of the area by way of meeting energy demands. Income generating opportunities will also grow in the area on account of creation of new job opportunities. The job opportunities in non-agricultural sector are likely to increase. The installation of proposed plant is expected to further increase the prospects by bringing in some direct and indirect employment opportunities.

6.6 IMPACT DURING DECOMISSIONING

6.6.1 Impacts

546. The plant has been designed for an operation period of 25 years. Decommissioning of the project involves dismantling of the power plant structure and all associated electrical infrastructure and site buildings. The impacts associated with decommissioning activities are:

- Improper disposal of demolition waste and obsolete machineries shall lead to contamination of soil and discontent of community
- Demolition activities shall lead to generation of dust which can be carried downwind to habitations
- Land may lose fertility potential during the year as no agriculture activity shall take place during the year of Operation

6.6.2 Mitigation Measures

547. Dismantling activities should be taken care by experienced professionals under the guidance of plant EMS Head. All the dismantled infrastructures and debris should be segregated and stored separately with cover facility to negotiate with contamination effects of such wastes.

548. The metal structure should be sold out to the approved recyclers, whereas, debris should be disposed-off as per their characteristics. The construction debris can be utilized for land filling in nearby low areas and debris having contamination potential should be transported to nearby TSDF site.

6.6.3 Impact Significance

549. Decommissioning phase impact shall be limited to the site and minor in nature. However, impact shall further be mitigated to the insignificant level.

Table 6-30: Impact Significance for Decommissioning

Aspect		Scenario	Spread	Duration	Intensity	Overall
Impact o	of	Without Mitigation	Local	Short	Moderate	Minor
Decommissioning		With Mitigation	Local	Short	Low	Insignificant

Table 6-31: - Summary of Environmental and Social Impact of the Construction Phase

Potential Impact	Description of Potential Impact	Criteria for Determining Significance	Mitigations
Environmental Issues Construction Noise— Disturbance to surrounding communities of power plant due to operation of construction machinery at the plant site	Disturbance to communities in surrounding areas of the proposed plant site due to construction machinery operation	The BNEQS for noise require that the sound level in industrial area should not exceed 75 dBA at day time and 70 dBA at night time, IFC guidelines for noise also require that the noise level in commercial/industrial areas should not exceed 70 dB(A) during the day and 70 dB(A) during the night	 Reduction of equipment noise at source Conduct pre operation noise survey Prepare noise control plan Pre-construction noise survey of the construction equipment Select low noise equipment for the power plant Minimization of vehicular noise Training of all staff members for the use of PPE (Personal Protection Equipment, including hearing protective devices) A temporary noise barrier around the site if necessary
Emissions — Particulate matter, NO_x and SO_2 emitted during construction activities can result in deterioration of ambient air quality in the vicinity of the source, and be a nuisance to the community.	Dust—nuisance to surrounding communities of the proposed plant due to emission of dust during construction on the plant site Vehicle and equipment exhaust—Combustion	An increase in visible dust beyond the boundaries of the proposed power plant due to the activities undertaken at the plant site, or onthe access road. Adverse impact on community assets, or There are persistent complaints from the community or the vehicles are not incompliance with the BNEQS for vehicles	 Sprinkling of water on unsealed surfaces for dust suppression Wheel wash No open burning permitted Use of wind shield around aggregate and soil stockpiles Covering of material piles Restrictions on speed on unpaved roads Transportation of material in covered trucks and speed

Potential Impact	Description of Potential Impact	Criteria for Determining Significance		Mitigations
	exhaust from vehicles			limits strictly observed
	and construction can affect the ambient air quality of the Study Area		•	Safe distance between the batching plant and the community
	1		•	Stockpiles will be placed at I 100 m from the community
			•	All vehicles and equipment will be properly tuned and maintained
			•	Medical attention will be free of charge
Vegetation Loss—	Unnecessary or	Preparation of a Reinstatement Plan;	•	Try to avoid unnecessary cutting of trees.
Loss of vegetation as a result of land	excessive removal of trees and shrubs	Minimization of the felling of trees and clearing of vegetation; and avoidance of the use of fuel	•	Plan a proper plantation and green belt plan for creating good landscape.
clearance for the power plant		Wood		
Soil and Water Contamination—	Untreated wastewater	If the run off contains visible	•	Use of spill prevention trays and impermeable sheets to avoid soil contamination
Different types of effluents,	and other effluents from	quantities of oil and grease and	•	Storage of fuels, chemicals and lubricants in bounded
material may contaminate	the construction activities may	if it flows towards the community. If		areas with impervious flooring and secondary containment of 110% capacity.
the water and soil resources of the Study	contaminate the water resources of the study	any BNEQS and IFC non-compliant effluent is released to the	•	Emergency Response plan will be developed for hazardous substances
	materials and non- hazardous waste if disposed of	Environment. If any person is exposed to hazardous waste generated from project related activities. Disposal of waste outside	•	Equipment and material containing asbestos, poly- chlorinated biphenyls(PCBs), and ozone depleting substances

Potential Impact	Description of Potential Impact	Criteria for Determining Significance	Mitigations
	into the surroundings, may contaminate the soil and water resources of the study area	designated areas	 (ODSs) will not be used Material Safety Data Sheet (MSDS) will be maintained
Socioeconomic Issues	The proposed construction activity can potentially be safety hazard for the community. In particular, the increase in construction related traffic on the proposed project access road.	A significant community hazard will also be considered, if a condition is created during the construction activity that would be considered a safety hazard in a standard occupational and safety health assessment	 A public safety plan will be developed A speed limit of 20 km/h will be maintained on the proposed access road Night time driving of Project vehicles will be limited where possible Community complaint register and other means will be adopted for the community to complain about non-adherence of Project traffic to speed limits, safe driving and other safety-related concerns Work areas outside the proposed plant site, especially where machinery is involved will be roped off and will be constantly monitored to ensure that local people, especially children stay away
Employment Conflicts— Conflicts may arise if the nearby communities feel that they are not given substantial share in project	The potential employment related issue includes dissatisfaction among localcommunities over the number of jobs offered to them,	A significant impact will be interpreted if the proportion of available unskilled jobs offered to the locals in the immediate area is less than around 50%	 Maximum number of unskilled and semiskilled jobs will be provided to the local communities A local labor selection criterion will be developed in consultation with the community

Potential Impact	Description of Potential Impact	Criteria for Determining Significance	Mitigations
related job opportunities	disagreement on definition of 'local' and also on distribution of jobs within the local community		
Hazardous and Non- Hazardous Waste Management—Improper waste management may lead to health and aesthetic issues	Exposure to potentially hazardous waste; Generation of excessive waste; Recyclable waste and reusable waste is discarded; Littering; Improper disposal.	A significant impact will be considered, if the waste are not handled and disposed properly. The BNEQS is violated for the collection, storage and disposal of hazardous and non-hazardous waste at site.	Development of a waste management plan; Separation at source of the recyclable material; Regular audits; Maintenance of a Waste Tracking Register; Separation of hazardous waste from non-hazardous waste; On-site storage facility for hazardous waste; Recyclable waste to be disposed via approved waste contractors; Dumping of non-hazardous, non-recyclable waste either to landfill or municipal disposal; Emergency response plan; Trainings; Labelling and avoidance use of asbestos, polychlorinated biphenyls (PCBs), and ozone depleting substances (ODSs)
Project and Community Interface—Inter-cultural differences between the project staff from other areas and the local community	community complaints	A community hazard may be created, if the migrated workers will have social, racial and religious conflict with the local community.	Training of the non-local project staff on local culture and norms; Avoidance of unnecessary interaction of local population with the non-local project staff; Prior notice to residents of the area before project activities

Table 6-32- Summary of Environmental and Social Impact of the Operation Phase

Potential Impact	Description of Potential	Criteria for Determining	Mitigations
	Impact	Significance	
Environmental Issues Plant Noise	Unacceptable increase in noise levels in the	The BNEQS for noise require that the sound level in industrial area	Low noise equipment will be preferred
	communities	should not exceed 75 dBA at day	Fans for cooling tower will be of low noise type
		time and 70 dBA at night time, IFC guidelines for noise also	Silencers will be used on vents and ventilators
		require that the sound level in	 Proper stack height to be maintained
		commercial/industrial areas should not exceed 70 dB(A)	Proper acoustic design for the power house building.
		during the day and 70 dB(A) during the night	 Noise levels will be monitored regularly within the communities in order to take timely corrective measures, if needed
Plant Effluents	The power plant is expected to generate liquid effluents in the form of oily water, plant cooling water,	No discharge of untreated effluent to the environment or the canals	• The power plant water treatment systems will be designed to ensure that the wastewater meets BNEQS before it is drained into the river.
	washing water, blow down		
	water, treatment system		
	effluent and sanitary wastewater		
Emission	Emission from the plant can potentially affect air quality	BNAAQS and the IFC Thermal Power Plants Emission Limits	Low NO _x burner should be selected for turbine selection
			 Proper stack height to be maintained.
Water Resources	An adverse impact on the	The extraction of water for the	Availability of ground water to be studied
	water resources will be	power plant construction activities	
	interpreted if it is	can affect the groundwater	Use surface water where possible
	established that the water	availability for the Study Area	Initiation of a water conservation program
	has directly affected the	communities	

Potential Impact	Description of Potential Impact	Criteria for Determining Significance	Mitigations
	ability of the community to meet their water needs		
Hazardous and Non- Hazardous Waste	Various types of wastes such as packing waste, metal scrap, and excess materials, air filters, oily rags, will be generated during the operation phase. The waste can be a health hazard and pollute waterways, if disposed improperly	Material Safety Data Sheets (MSDS)	 Storage and handling of hazardous materials in accordance with international standards and appropriate to their hazard characteristics. All hazardous waste will be separated from other wastes Storage of fuels, chemicals and lubricants in bounded areas with impervious flooring and secondary containment of 110% capacity Availability of supporting information such as the MSDS
			A Hazardous Materials Register to be in place
Waste Management	Waste generated during power plant operation can potentially damage the environment	Any person is exposed to potentially hazardous waste generated by the Project. Project generates waste that can be	• IFC EHS Guidelines on Hazardous Materials Management, Waste Management and Thermal Power will be followed
		avoided through practicable	Separation of recyclable materials
		means(waste minimization) Reusable waste generated by the	Regular audits of waste management system
		Project is discarded. Recyclable waste instead of separation at the	 Maintenance of a Waste Tracking Register and all records will be kept
		source is dumped at the trash bins. Non-recyclable and non- reusable waste ends up at any	 Separation of hazardous waste from non- hazardouswaste.
		place other than the designated landfill site.	 On-site segregation and initial storage of hazardous waste
			Off-site disposal of hazardous waste in approved

Potential Impact	Description of Potential	Criteria for Determining	Mitigations
	Impuot		hazardous waste disposal facility.
			Recyclable waste to be disposed via licensed waste contractors
			• Audits of the waste disposal contractors and waste disposal facilities
			Develop an emergency response plan for the hazardous substances
			Training of personnel in identification, segregation, and management of waste
			Appropriate labelling of all containers of hazardous waste
Occupational Health	Non-ionizing radiation,	Proper monitoring for work place	• IFC EHS guidelines on Occupational H&S, Community
&Safety of workers	Heat, Noise, Confined	environment, health & safety	H&S and Thermal Power will be followed.
	spaces, Electrical hazards,	condition of the workers, PPE	Regular health check-up of workers
	Fire and explosion hazards,	check, Fire drill and training of	Proper PPE should be provided to protect from the heat,
	Chemical hazards, Dust,	workers	electric shock and noise protection,
	sanitation, safe drinking		Regular awareness and training should be provided for
	water etc.		fire safety & chemical hazard,
			 Safe drinking water should be provided

7 ENVIRONMENTAL AND SOCIAL MANAGEMENT PLAN (ESMP)

7.1 BACKGROUND

550. In the context of a project, Environmental and Social Management Plan is concerned with the implementation of the measures necessary to minimize or offset adverse impacts and to enhance beneficial impacts. All mitigation and monitoring measures will follow the IFC EHS Guidelines and Bangladesh national Rules and Regulations. Unless the mitigation and benefit enhancement measures that identified in the ESIA are fully implemented, the prime function of ESMP cannot be achieved. All the measures are said to be successful when they comply with the Environmental Quality Standard (EQS) of Bangladesh. Thus the objectives of ESMP for the present project would be

- Mitigation measures to reduce or eliminate negative impacts
- Enhancement measures to maximize positive impacts
- Monitoring requirement and
- Monitoring indicators

551. Feasible and economically expedient measures are planned to be implemented at EMP which can reduce to a reasonable level and/or exclude possible essential negative consequences of environmental impact.

At ESMP, in particular:

- Expected adverse environmental impacts at construction stage and operation are identified and generalized;
- Impact reduction measures are described;
- Interrelation with existing impact reduction plans are established;
- Parameters subject to measurement, monitoring methods to be applied, places of supervision, frequency of measurements are specified.

552. The environmental and social management plan includes the following elements facilitating its timely and effective realization:

- Management system reflects implementation mechanism of ESMP;
- Roles and responsibilities identify persons responsible for realization of measures on impact reduction and monitoring;
- Impact importance assessment is intended for timely reveal of aspects invoking particular measures on impact reduction;
- Environmental and social management plan includes the list of actions on impact decrease, monitoring, and also amount of expenses for their realization.

553. In case any non-compliance, change in scope, or unanticipated impact arises during project implementation, corrective action will be taken accordingly as per ADB SPS 2009 and national requirements.

554. Each of these elements is described below in details.

7.2 SYSTEM OF ENVIRONMENTAL AND SOCIAL MANAGEMENT

555. For effective implementation of recommendations on impact reduction it is necessary to organize a system of environmental and social management.

556. The model of the management system consists of four basic components:

- Planning includes development of particular actions and procedures on their realization;
- Introduction and functioning are direct realization of actions;
- Checks and correcting actions include monitoring of environmental objects and control over execution of actions;
- Analysis includes reporting and efficiency assessment of the introduced actions.

557. The system of environmental and social management assumes conformity to the Standard of environmental management system ISO 14001 according to which constant improvement of the developed model (periodic updating with entering necessary revisions) is necessary. It is important to note, that special attention during management is paid to interaction with stakeholders, including submission of report and processing notes and offers received.

7.3 ROLES AND RESPONSIBILITY

558. For realization of ESMP, it is necessary to identify persons responsible for performance of impact decrease/prevention actions, and also those responsible for control over the given actions and to define their role at all stages of the project implementation. The Project proponent Reliance Bangladesh LNG and Power Ltd will be overall responsible for EMP implementation of the project. During construction stage, Project Implementation unit (PMU) will be responsible for EMP implementation whereas during operation stage Operation & Maintenance unit will be responsible for EMP implementation.

559. RPLBL authority has been developed a EHS norms for all the contractors will be working at the project site. Under the provision of the guideline, all contractors should submit their own Environmental & Social Management Plan/System in accordance to ESIA and ADB's SPS Guideline, 30 days before commencing the work. Accordingly they will follow this guideline while performing the job. Refer Annexure 6.1

7.3.1 EMP Implementation during Construction Phase

560. During construction stage, Project Implementation unit (PMU) will be overall responsible for EMP implementation. Construction contractor will be responsible for construction as well as maintenance of sanitary and health condition at construction site including labour camp. The construction contractor will be responsible for preparation and maintenance of records and all

required reporting data as stipulated in the ESMP. The PMU will play oversight supervisory role for implementation of ESMP at site. The roles and responsibilities of EMP implementation during construction stage are heighted in **Table 7-1**.

Role	Responsibilities		
EHS Manager	Preparation and implementation of the Environmental Supervision Plan during construction		
	• Ensure that all construction personnel and subcontractors are informed of the intent of the ESMP and are made aware of the required measures for environmental and social compliance and performance		
	Supervision of contractor performance on implementation of the Construction and Work Camp Management Plan		
	Reporting any incidents or non-compliance with the ESMP to the PMU		
	Ensuring adequate training and education of all staff involved in environmental supervision		
	• Making recommendations to the RBLPL (PMU) regarding ESMP performance as part of an overall commitment to continuous improvement		
Asst. EHS Manager	• Prepare and maintain records and all required reporting data as stipulated by the ESMP		
	• Ensure that all construction personnel and subcontractors are informed of the intent of the ESMP and are made aware of the required measures for environmental and social compliance and performance		
	• Preparation and implementation of the Environmental Monitoring Plan during construction		
	EHS Audit, Training of project Personnel		
Community Manager	GRC / Public & Stake Holder Consultation		
	Fishing & Navigation issues		

7.3.2 **EMP Implementation during Operation Phase**

561. During operation stage, operation and maintenance unit will be overall responsible for EMP implementation. The EHS team of operation and maintenance unit will be responsible for preparation and maintenance of records and all required reporting data as stipulated in the

RELIANCE Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

ESMP. The roles and responsibilities of EMP implementation during construction stage are heighted in **Table 7-2**.

Role	Responsibilities	
Project Director	 Effective and environment friendly operation of the project, Set guiding tools and suggestions which need to be followed at various stages of plant installation, operation and maintenance. 	

Table 7-2. Boles and Res	nonsibilities of FMF	Implementation	During	Operation	Stage
		implementation	During	operation	Jlaye

		various stages of plant installation, operation and maintenance.		
Supervising Engineer	•	 Coordinating with EHS team for effective implementation of Environmental safeguards in O & M schedule of the plant. 		
EHS Manager		Prepare and maintain records and all required reporting data as stipulated by the ESMP		
	•	Ensure that all project personnel are informed of the intent of the ESMP and are made aware of the required measures for environmental and social compliance and performance		
	•	Implementation of the Environmental Monitoring Plan		
	•	EHS Audit, Training of project Personnel		
External Independent Environmental Monitoring Consultant	 Report to RBLPL on project compliance with environmental and social commitments in the ESMP, ESIA and other applicable standards 			
Community Manager		GRC / Public & Stake Holder Consultation		
	•	Fishing & Navigation issues		

7.3.3 Construction stage

562. General construction management and control over conducting technological process during construction works will be assigned to the contractor and RBLPL project management. The contractor, in turn, concludes contracts with subcontract organizations performing works at the construction site. The RBLPL authority bears responsibility under Project Implementation unit (PMU) for selection and assessment of subcontract organizations. Control functions over contract organizations activity in the field of labour safety, industrial safety and preservation of the environment are also assigned to the Consortium. The following are the management team of RBLPL who will be responsible for the monitoring program of the proposed project during the construction period; Team for Environment monitoring and ensuring compliance during construction period is highlighted in **Figure 7-1**.

Figure 7.1: Organizational Structure during Construction Phase

7.3.4 **Operation phase**

563. RBLPL Management will be responsible to operate the power project under Operation & Maintenance unit (O&M) during the operation phase and will be responsible to maintain the environmental and social standard of the project (Figure 7.2). Team for Environment monitoring will ensure compliance during operation.

Figure 7.2: Organizational Structure during Operation Phase

7.4 MITIGATION/BENEFIT ENHANCEMENT MEASURES

564. For effective and environment friendly operation of a project, a set for guiding tools and suggestions are necessary which need to be followed at various stages of plant installation, operation and maintenance. This plan generally has various components of management depending on the type of project or plant activity and types of discharge and their pollution potential. This Environmental and Social Management Plan (ESMP) once prepared forms the basis of environmental management actions from the part of the project authority may need modification or up-gradation because of changes in the plant operation or accurate pollution load/environmental problems detected afterwards.

565. All beneficial and adverse impacts which may likely to occur at different phases of the project have been identified. Predictions, evaluation, aspect of mitigation and benefit enhancement measures have also been discussed concurrently with impact prediction and evaluation. In view of the earlier discussion summary of recommended mitigation and benefit enhancement measures are presented in **Table 7-3**.

Table 7-3: Identification of Impacts	. Mitigation measures.	Monitoring and Mana	aement durina	Construction period
			g	

Issue/Impact	ue/Impact Mitigation Measures Impleme		Monitoring	Responsi	bility	Monitoring	Type and	Management
		Schedule		Implementation	Supervision	Indicators	Frequency of Reporting/ monitoring	and Training
Pre-Construction and Construction	 Undertake additional baseline studies for one year during construction to include: Ambient air quality monitoring at sensitive receptors within the zone of maximum deposition. Seasonal 24hr noise monitoring at nearest sensitive receptors (in absence of construction work) Seasonal monitoring of river water temperature 500m upstream and downstream of the discharge point (away from the influence of the outfall channel). Detailed design for 750MW CCPP to incorporate mitigation measures set out in the ESIA and the EHS General and Thermal Power Plant Guidance. Detailed design to demonstrate: Emission standard of 25ppm NOx will be met through adoption of dry low NOx burner with dust filters on air intake to ensure no particulate or SO2 emission, Noise level of 70dB can be achieved at the site boundary and that there will be no increase in background noise levels greater than 3dB at the nearest sensitive receptors, There will be no increase in the temperature of the river above the existing discharge temperature near the outfall. Structural engineering meets the applicable seismic design standards for location of the power plant, and H&S measures for the EHS of Thermal Power plant guidelines are incorporated, undertake quantitative risk assessment of gas-related and set the site to the coutfall. 	Before and during construction	A continuous daily visual inspection by trained staff of the contractor is needed. Weekly monitoring and supervision by RBLPL is required to ensure the implementation of good site management practices by all contractors during decommissioning.	Implementation of Good Site management practices shall be the responsibility of all contractors on site under supervision of the RBLPL nominated Project Manager.	RBLPL Project Manager in collaboration with the Consultant's Site Manager& third party consultant	Standards for Air (PM10, PM2.5, NO2, SO2 & CO.) as per DoE (ECR, 1997) and WHO air quality guideline	Monthly reporting of summary results and submitted to the RBLPL and any other concerned authorities. (e.g. DOE, ADB, etc.).	RBLPL responsible basic training of persons employed to operate and maintain the monitoring system. RBLPL to ensure all contractors and subcontractors working on site are aware of ESMP and all employees are given basic induction training on good construction and site management practice.
	be no increase in risk level at the							

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

Issue/Impact	Mitigation Measures	Implementation	Monitoring	Responsi	ibility	Monitoring	Type and	Management
		Schedule		Implementation	Supervision	Indicators	Reporting/	and Training
Air Quality: Dust emissionscaused by constructionactivities, construction vehicle movements, and transport of construction materials.	 nearest sensitive receptors from gas leak, fire or explosion. Finalize IEE for associated facilities including grievance redress mechanism and to address hazardous materials and waste management. Prepare Construction Environment Management Plan incorporating site waste management plan and emergency response procedures, Construction Health and Safety Plan incorporating emergency response procedures, and Construction Traffic Management Plan. Follow mitigation measures set out in this ESIA and the EHS Guidelines on Construction. Though air quality in the study area comply with national ambient air quality standards but the dust levels in some of the monitoring stations crosses WHO IT- I value. Therefore, precautionary actions should be ensured that no extra dust load is added in the area due to the project. Mitigation practices including: appropriate sitting and maintenance of stockpiles of materials so as to minimize dust blow (seek to achieve a distance of at least 500m from nearest sensitive receptors); minimizing drop heights for material transfer activities such as unloading of materials; construction phase to begin with construction of access roads; roads will be kept damp via a water browser; provide wheel wash for all vehicles leaving the project site; do not permit any open burning on the project site; 	Before construction and during construction	A continuous daily visual inspection by trained staff of the contractor is needed. Weekly monitoring and supervision by RBLPL is required to ensure the implementation of good site management practices by all contractors during construction. Measurements and analysis of different pollutants to be made on a continuous basis (at least monthly) by a third party consultant and the report to be submitted to the RBLPL authority. Monitoring to be carried out on site and surrounding.	Implementation of Good Site management practices shall be the responsibility of all contractors on site under supervision of the RBLPL nominated Project Manager.	RBLPL Project Manager in collaboration with the Consultant's Site Manager& third party consultant	Standards for Air (PM10, PM2.5, NO2, SO2 & CO.) as per DoE (ECR, 1997) and WHO- Air Quality guideline	Monthly reporting of summary results and submitted to the RBLPL and any other concerned authorities. (e.g. DOE, ADB, etc.).	RBLPL responsible for the management of the air quality monitoring system. Submission of monthly summary reports to DOE and any concerned authorities. Basic training of persons employed to operate and maintain the monitoring system. RBLPL to ensure all Contractors and subcontractors working on site are aware of ESMP and all employees are given basic induction training on good construction and site management practice.

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

Issue/Impact	Mitigation Measures	Implementation	Monitoring	Responsi	bility	Monitoring	Type and Frequency of	Management
		Schedule		Implementation	Supervision	Indicators	Reporting/ monitoring	and Training
	 roads will be compacted and graveled if necessary; site roads will be maintained in good order; regulation of site access; sheeting of lorries transporting construction materials and soil; enforcement of vehicle speed limits on nonmetal roads to <20 km/h. 							
Aquatic Environment: Construction of the intake structure and water discharge structure.	Follow mitigation measures set out in this ESIA and the EHS Guidelines on Construction.	During construction of intake and discharge structures	Continuous daily visual Inspection by trained staff of the contractor. Weekly monitoring and supervision by RBLPL is required to ensure the implementation of good site management practices by all contractors during construction.	Implementation of Good Site Management practices shall be the responsibility of all contractors on site under supervision of the RBLPL the Project Manager.	RBLPL Project Director in Collaboration with the Consultant's Site Manager& third party consultant.	.Standards for Water (Temp., pH, COD. BOD, TSS, TDS, DO, oil & grease etc.) as per DoE (ECR, 1997)	Monthly reporting of summary results and submitted to the RBLPL and any other concerned authorities. (e.g. DOE, ADB, etc.).	RBLPL to ensure that all contractors and subcontractors working on site are aware of ESMP and all employees are given basic induction training on good construction and site management practice These mitigation Measures must be a condition of any construction contracts.
Contamination of the aquatic environment as a result of construction activities on land e.g. spillages, disposal of liquid wastes; surface run- off, exposure of contaminated soils.	 Follow mitigation measures set out in this ESIA and the EHS Guidelines on Construction. River water quality must be within prescribed limits of the national ambient water quality standards. Mitigation activities will include the following: No discharge of effluents into the river- all effluents shall be collected and removed off site for treatment by approved firms or disposed after proper treatment at site (records of effluent transfers to be maintained); No discharge of surface water runoff direct into the river - development of a temporary site drainage plan which reduces flow velocity and sediment load by passing discharge through a sediment pond; 	During construction	Continuous daily visual inspection will be conducted by trained staff of the contractor. Weekly monitoring and supervision by RBLPL is required to ensure the implementation of good site management practices by all contractors during construction. River water sample should be collected monthly by a third party consultant from three locations, 500m upstream and downstream of works and at the works site-outfall, if preliminary monitoring campaign shows strong variations in water quality additional locations may be required	Implementation of Good Site Management practices shall be the responsibility of all contractors on site under supervision of the RBLPL Project management.	RBLPL Project Director in collaboration with the Consultant's Site Manager& third party consultant.	Standards for Water (Temp., pH, COD. BOD, TSS, TDS, DO, oil & grease etc.) as per DoE (ECR, 1997)	Quarterly reporting of summary results and submitted to the RBLPL and other concerned authority, e.g. DOE, ADB, etc., if required.	RBLPL to ensure all contractors and subcontractors working on site are aware of ESMP and all employees are given basic induction training on good construction and site management practices.

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

Issue/Impact	Mitigation Measures	Implementation	Monitoring	Responsi	ibility	Monitoring	Type and	Management
		Schedule		Implementation	Supervision	Indicators	Frequency of Reporting/ monitoring	and Training
Noise:	 Surface water run off should be disposed after passing through sedimentation tank and oil water interceptors. Protection of temporary stockpiles of soil from erosion by using a reduced slope angle where practical, sheeting and by incorporating sediment traps in drainage ditches; Maintenance of well kept Construction site. All fuel, oil and chemicals should be stored in bonded area 110% volume. Impermeable surface should be used for refueling Regular training of all workers in spill response Provision of spill equipment at easily accessible locations around the site No septic tank within 100m of tube well or the river. Treatment of all wastewater must be consistent with the standards and measures in the EHS guidelines on wastewater and ambient water quality 	During	Continuous dasity visual	Implementation of	BBI PI Project	Noise	RBI PL will produce a	RBI PL to ensure all
Increased noise in the project area as a result of the use of noisy machinery and increased vehicle movements.	Totow Initigator measures set out in this ESIA and the EHS Guidelines on Construction. No employee should be exposed to a noise level greater than 85 dB(A) for a duration of more than 8 hours per day without hearing protection. And no unprotected ear should be exposed to a peak sound pressure level of more than 140 dB(C). The use of hearing protection should be enforced actively when the equivalent sound level over 8 hours reaches 85 dB(A), the peak sound levels reaches 140 dB(C), or the average maximum sound level reaches 110 dB(A). Hearing protective devices	construction	inspection will be conducted by trained staff of the contractor. Weekly monitoring and supervision by RBLPL is required to ensure the implementation of good site management practices by all contractors during construction. Monitoring of 24-hr noise levels to be made on a continuous basis (at least monthly) by a third party consultant at the site boundary and nearest sensitive receptors and the report to be	Good Site Management practices shall be the responsibility of all contractors on site under supervision of the RBLPL project management.	Director in Collaboration with the Consultant's Site Manager& third party consultant.	complaints register to identify concerns. Check the noise level using noise Measuring devices.	monthly log of valid complaints and actions taken. Monthly reporting of summary results and submitted to the RBLPL and any other concerned authorities, e.g. DOE, ADB etc., if required.	contractors and subcontractors and subcontractors working on site are aware of ESMP and all employees are given basic induction training on good construction and site management practices.

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

Issue/Impact	Mitigation Measures	Implementation	Monitoring	Responsi	bility	Monitoring	Type and	Management
		Schedule		Implementation	Supervision	Indicators	Reporting/ monitoring	and Training
Flora and Fauna Site Clearance-Vegetation	 provided should be capable of reducing sound levels at the ear to at least 85dB(A). Emissions at the site boundary and nearest sensitive receptors must be within prescribed limits of the EHS Noise Guidelines. Implementation of good site practices including: Provision of noise barrier around the project site to reduce off-site noise levels; enforcement of vehicle speed limits; Strict controls of vehicle routing; Diesel engine construction equipment to be fitted with silencers; Limited noisy construction activities at night; Prohibition of light vehicle movements at night; Ise of protective hearing equipment for workers. 	During construction.	submitted to the RBLPL authority.	Implementation of Good Site	RBLPL Project Director in	Good conservation of	Quarterly reporting No. of floral species	RBLPL to ensure all contractors and
disturbance.	 this ESIA and the EHS Guidelines on Construction. Good site management practices will be observed to ensure that disturbance of habitats off-site are minimized. Specific mitigation measures include restricting personnel and vehicles to within construction site boundaries, lay down areas and access roads. 		Inspection will be conducted by trained staff of the contractor. Weekly inspection and supervision by RBLPL is required to ensure the implementation of good site management practices by all contractors during construction.	Good Site Management practices shall be the responsibility of all contractors on site under supervision of the RBLPL project management.	Director in collaboration with the Consultant.	conservation or floral wealth.	No. of floral species conserved or planted, if any.	contractors and subcontractors working on site are aware of ESMP and all employees are given basic induction training on good construction and Site management practices.
Soils and Hydrology Site clearance, excavation and disposal of material, exposure of potentially contaminated soils, spillage or leakage of substances on land,	Follow mitigation measures set out in this ESIA and the EHS Guidelines on Construction. The potential impacts are largely dependent on management of the construction site and activities. The following mitigation measures will be	During Construction.	Daily visual inspection is required by trained staff of the contractor to ensure the implementation of good Management practices during construction. Weekly inspection and supervision by RBLPL is required to ensure the	Implementation of Good Site Management practices shall be the responsibility of all contractors on site under supervision of the RBLPL project	RBLPL Project Director in collaboration with the Consultant.	 Site drainage. Access only to constructio n site areas. 	Quarterly reporting of summary results submitted to the RBLPL and any other concerned authorities (e.g. DOE, ADB etc., if required.	RBLPL to ensure all contractors and subcontractors working on site are aware of ESMP and all employees are given basic induction training on good construction and site

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

Issue/Impact	Mitigation Measures	Implementation	Monitoring	Responsi	bility	Monitoring	Type and	Management
		Schedule		Implementation	Supervision	Indicators	Reporting/ monitoring	and Training
movement of equipment and vehicles on site.	 implemented: Development of effective site drainage systems designed to include allowance for climate change; •Restriction of access only to construction site areas; Disposal of waste materials unsuitable for reuse on-site, (e.g. for landfilling) at appropriately licensed sites; Provision of oil and suspended solid interceptors; Management of excavations during construction to avoid the generation of drainage pathways to underlying aquifers; Revision of impermeable bases in operational areas to prevent absorption of spillages. 		implementation of good site management practices by all contractors during construction. Quarterly monitoring of drinking water in tube wells within 1km of a septic tank location by third party consultant to confirm that national drinking water standards are met.	management.		 Waste materials. Oily waters. Drainage pathways. Potential spillage in Operational areas. Visual Inspection 		management practices.
Socio-Economic Environment: Positive impacts Identified.	Follow mitigation measures set out in this ESIA and the EHS Guidelines on Construction and Community Health and Safety. Public access to the site must be restricted. All activities related to the construction of the new plant will take place within the area belonging to RBLPL, i.e. there will be no off-site activities or associated land acquisition during construction. Transmission lines & gas line will connect the new power plant to the existing substations and RMS. Ensure H&S measures per the EHS electric power and distribution guidelines and EHS onshore oil and gas development guidelines are incorporated The entire labor force will be daily commuters, thus no worker housing or associated facilities will be erected on	During construction.	Record local employment provided by the project. Daily visual inspection is required by trained staff of the contractor to ensure the implementation of good management practices during construction. Weekly inspection and supervision by RBLPL is required to ensure the implementation of good site management practices by all contractors during construction. Daily monitoring of drinking water provided to construction staff to confirm national drinking water standards are met.	RBLPL Project management	RBLPL Project Director in collaboration with the Consultant.	Workers satisfaction as measured by staff interviews and complaints reported. Visual Inspection	Quarterly reporting	Responsibility of RBLPL.

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

Issue/Impact	Mitigation Measures	Implementation	Monitoring	Responsi	bility	Monitoring	Type and	Management
		Schedule		Implementation	Supervision	Indicators	Frequency of Reporting/ monitoring	and Training
	site during construction. If any off-site accommodation for the labor force needs to be developed the ESIA and EMP should be updated accordingly. The laborers will not be allowed to take up fishing in the area unless they are local fishermen.							
	No forced or child labor (under age 18) to be employed. All employees to be legal. Regular talks on communicable diseases including HIV to be held for all workers.							
	The contractors will be responsible for relevant temporary water / toilet							
	Facilities during construction and the need to provide appropriate services will be specified in their contracts.							
	Provide adequate supplies of drinking water that is compliant with the national drinking water quality standards to all workers. No ground water will be used as drinking water.							
	Provide adequate sanitation facilities as outlined in the ESIA. Toilets and bathrooms must be properly equipped including hand washing facilities with hot water and with separate facilities for men and women.							
	Regular talks on sanitation to be held for all workers to encourage cleanliness. No sewage sludge can be used for fertilizer unless it is tested.							
Traffic and Transport: Disruption, noise and increased air pollution due to increased traffic, light loads and abnormal loads.	 Follow mitigation measures set out in this ESIA and the EHS Guidelines on Construction and Community Health and Safety. Standard good practice measures will be implemented as follows: Adherence of abnormal load movements to prescribed routes, 	During construction.	Daily monitoring of traffic entering the site during morning &evening peaks to ensure the implementation of good site management practices by trained staff of the contractor. Weekly inspection and supervision by RBLPL is	Implementation of Good Site Management practices shall be the responsibility of all contractors on site under supervision of the RBLPL project	RBLPL Project Director in collaboration with the Consultant.	Increased congestion Travel time (compared to reasonable daily commute) Visual Observation	Quarterly reporting of summary results submitted to the RBLPL and any other concerned Authorities (e.g. DOE, ADB etc.), if required.	RBLPL to ensure all contractors and subcontractors working on site are aware of ESMP and all employees are given basic induction training on good construction and Site
	 Adherence of abnormal load movements to prescribed routes, outside peak hours and advance publication of movements if 		Weekly inspection and supervision by RBLPL is required to ensure the	under supervision of the RBLPL project management.		Visual Observation	if required.	training on ge construction and s management practices.

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

Issue/Impact	Mitigation Measures	Implementation	Monitoring	Responsi	bility	Monitoring	Type and	Management
		Schedule		Implementation	Supervision	Indicators	Frequency of Reporting/ monitoring	and Training
	 required; Construction shifts will be staggered; Scheduling of traffic to avoid peak hours on local roads; Routing of transport to avoid residential areas; Provision of adequate signage and flagmen along transport route and at site entrance; Transportation of construction workers by contract bus. Ensure all roads and bridges used by construction traffic are maintained in at least their current state during construction with any damage immediately repaired. Condition survey of roads and bridges to be undertaken by third party consultant prior to start of works to provide a baseline for monitoring compliance. 		implementation of good site management practices by all contractors during construction. Quarterly monitoring of road and bridge condition by third party consultant to ensure maintenance being kept up.					
Archaeology: Potential chancefinds of archaeologicalremains duringconstruction.	The project site does not lie on, or in the immediate vicinity of any known archaeological areas of interest. If remains are found RBLPL is committed to: • Cease activities and consult archaeological department; • Protection in situ if possible; • Excavation of areas where protection not feasible following discussion and agreement of archaeological department;	During construction.	Daily visual inspection is required by trained staff of the contractor to ensure the implementation of good management practices during construction. Weekly supervision of construction activities by RBLPL is required to ensure the implementation of good site management practices by all contractors during construction.	RBLPL project management will allocate in accordance with the construction site plan.	RBLPL Project Director in Collaboration with the Consultant.	Visual observation	Quarterly reporting of summary results And submitted to the RBLPL and any other concerned authorities (e.g. DOE, ADB etc.), if required	RBLPL to ensure that all workers on site are aware of the importance of archaeological remains and must report any potential finds immediately.
Natural Disasters Flash flooding.	Good engineering design will incorporate the following mitigation measures: • Drainage system designed to direct flood water from main plant areas into the river and direct potentially contaminated waters through the oil interceptor.	During construction.	Continuous daily visual inspection will be conducted by trained staff of the contractor. Weekly monitoring and supervision by RBLPL is required to ensure the implementation of good site management practices by all contractors during construction.	RBLPL project management	RBLPL Project Director in collaboration with the Consultant.	Visual observation	Quarterly reporting of summary results submitted to the RBLPL and any other concerned authorities (e.g. DOE, ADB etc.), if required	RBLPL to ensure that all workers on site receive training in emergency preparedness and response procedures.

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

Issue/Impact	Mitigation Measures	Implementation	Monitoring	Responsi	bility	Monitoring	Type and	Management
		Schedule		Implementation	Supervision	Indicators	Reporting/ monitoring	and Training
Solid Waste Management	 Follow mitigation measures set out in this ESIA and the EHS Guidelines on Construction and Waste Management. Good practice measures such as the following: All waste taken off-site will be undertaken by a licensed contractor and RBLPL will audit disposal procedure; Collection and segregation of wastes and safe storage; Recording of consignments for disposal; Prior agreement of standards for storage, management and disposal with relevant authorities. It is of importance that final disposal of wastes shall be strictly adhered to environment friendly disposal Contract. 	During construction.	Contractor to keep daily records of all waste transfers. Weekly monitoring by RBLPL is required to ensure the implementation of good site management practices by all contractors during construction	Implementation of Good Site Management practices shall be the responsibility of all contractors on site under supervision of the RBLPL project management	RBLPL Project Director in collaboration with the Consultant	Management contract in place, visual observation and record check	Quarterly reporting of summary results submitted to the RBLPL and any other concerned authorities (e.g. DOE, ADB etc.), if required	RBLPL to ensure all contractors and subcontractors working on site are aware of ESMP and all employees are given basic induction training on good construction and site Management practices.
Occupational Health & Safety	 Good construction practice (as per the ESIA and EHS Construction and Occupational H&S Guidelines) in Environment, Health and Safety (EHS) will be applied at all times and account will be taken of local customs, practices and attitudes. Regular H&S training will be conducted for all construction staff, including training on good housekeeping, cleanup of debris and spills, and working in confined spaces and at height. Measures include: Implementation of EHS procedures as a condition of contract all construction and subcontractors; Clear definition of the EHS roles and responsibilities for all construction companies and staff; management, supervision, monitoring and record-keeping as set out in plant's operational manual; 	During construction.	Daily inspection is required to ensure the implementation of EHS Policies, plans and practices during construction. Weekly monitoring and supervision by RBLPL is required to ensure the implementation of good site management practices by all contractors during construction. Record all fatalities, accidents and near misses that occur during construction work and implement corrective action to ensure such incidents are not repeated in future.	Implementation of good site management practices and the EHS policies shall be the responsibility of all contractors on site under the supervision of the RBLPL project management.	RBLPL Project Director in collaboration with the Consultant.	Management procedures in place. Workers health and safety as measured by number of incidents.	Daily inspection Quarterly reporting of summary results submitted to the RBLPL and any other concerned authorities (e.g. DOE, ADB etc.), if required	RBLPL to ensure all contractors and sub- contractors for workers on site include reference to the requirement of the ESMP and are aware of the EHS policies of the project. All employees will be given basic induction training on EHS policies and practices. Contractors are responsible for ensuring that a Fire Safety Plan, is prepared and implemented prior to commissioning of any part of the plant under supervision overbill project management.

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

Issue/Impact	Mitigation Measures	Implementation	Monitoring	Responsi	bility	Monitoring	Type and	Management
		Schedule		Implementation	Supervision	Indicators	Frequency of Reporting/ monitoring	and Training
	Pre-construction and operation							
	assessment of the EHS risks and hazards;							
	Completion and implementation of Fire Safety Plan prior to commissioning any part of the plant;							
	 Provision of appropriate training on EHS issues for all workers; 							
	Provision of health and safety							
	information;							
	 Regular inspection, review and recording of EHS performance; 							
	 Appointment of site nurse and provision of free on-site medical care for all construction staff; 							
	Pest and vector control;							
	• Maintenance of a high standard of housekeeping at all times.							
	 Provision of first aid equipment at easily accessible locations around the site 							
Supply Chain Management	 Good and international supply chain guideline should be followed to ensure: Flow of the service of construction workers is experienced and professional to ensure the completion of the project in time. No child labor included Equipment supplier and subcontractors should follow proper guideline during supplying and selecting the equipment and material at site. 	Before and during construction	A continuous daily visual inspection by trained staff of the contractor is needed. Weekly monitoring and supervised by RBLPL is required to ensure the implementation of good site management practices by all contractors during decommissioning.	The contractor assigned for the project	The authority of RBLPL	Adequate propagation of the construction work and completion of each step in time	Weekly monitoring by the contractor and monthly monitoring by the RBLPL authority.	RBLPL to ensure all contractors and subcontractors working on site are aware of ESMP and all employees are given basic induction training on good construction and site management practice.
Institutional setting and implementation arrangements	The EMP (mitigation plan) will be included in the construction contract and the contractor will be responsible for implementation of the measures associated with design and construction	Before and during construction	A continues monitoring is needed in order to ensure the maintenance of the institutional setting	EPC Contractor	RBLPL	Obtaining statutory clearances required during pre-construction stage of the Project.	Once a week by the contractor and once a month by RBLPL	Basic instructions must be given to all the contractors and subcontractors.

ESIA Report

Table 7-4: Identification of Impacts, Mitigation measures, Monitoring and Management during Operational period

				Respons	ibility		Type and	
locuo/Impost	Mitigation Massures	Implementation	Monitoring			Monitoring	Frequency of	Management
issue/impact	willigation measures	Schedule	Monitoring	Implementation	Supervision	Indicators	Reporting/	and Training
							monitoring	
Air Quality	Implement mitigation as set out in the	Life time of plant	Automatic monitoring of stack	The analyzer	RBLPL Top	Standards for noise	Continuous Hourly data	Records must be kept
Emissions from	ESIA and EHS Guidelines on Air	operation.	emissions for NOx, to be installed	stations will be	Management &	Gaseous emission	acquisition.	and summary data
stack are not	Emissions and Air Quality and		in the stacks.	owned and operated	EHS	from Industries or	Quarterly reporting to	(including any deviations
expected to	Thermal Power.		Annual stack emissions testing of	by RBLPL	department.	projects waste	RBLPL.	from DOE and World
exceed	Emissions standards to be achieved		NOx by third party consultant.			(ECR, 1997)	Reports are to be	bank standards) will be
standards.	during operation are 51 mg/m3 or		Monitor and record annual gas				available to any of the	submitted to the DOE
	25ppm NOx.		consumption to calculate annual				concerning Authorities	and ADB as regular
			emissions of CO2.				(DOE, ADB, etc.).	basis.
Ambient air	RBLPL will implement the mitigation	Life time of plant	Conduct continuous ambient air	Third party	RBLPL Top	Standards for Air	Quarterly reporting to	Quarterly reporting by
quality affected	measures suggested in the ESIA	operation.	quality monitoring for NOx, SO2,	monitoring	Management &	(PM ₁₀ , PM _{2.5} , NO ₂ ,	RBLPL.	RBLPL to Government
by emissions	report. If ground level concentrations		CO, PM10 & PM2.5 at four		EHS	SO ₂ & CO.) as per	Reports are to be	and ADB etc. (or more
from the power	are found to be above the National		different locations in the impact		department	DoE (ECR, 1997)	available to any of the	frequently if required)
plant.	Ambient Air Quality Standards,		area located within the zone of		Third party	and WHO- Air	concerning Authorities	highlighting key features
	options for further mitigation will need		maximum deposition.		inspection.	Quality guideline.	(DOE, ADB, etc.).	and comparing results
	to be implemented.							with air quality standards
								and prediction in ESIA
A		Lifetime of the		DDI DI Davis et		Oten dende (al.L. TOO	Oursets du serverte	Percente will be beet and
Aqualic	ESIA and EHS Quidelines on	Diant	and undertake a monthly water	RBLPL Project	RBLPL	standards (pH, 155,	Quarterly reports	Records will be kept and
Discharge of	Wastewater and Ambient Water	1 Idili	Quality monitoring program of all	narty monitoring	FHS	residual chlorine	third party	basis against
process water	Quality and Thermal Power		discharges 500m upstream &	supervised by the	department	temperature BOD &	Reports are tube	Bandladesh and World
process water.	Effluent discharge of process water to		downstream of the project site and	RBI PI Management	doputitioni.	COD) for Sector	available to any of the	Bank standards and
	meet standards set out in Table 5 of		at the outfall location to the river	TELL E Management		wise industrial	concerning Authorities	impacts predicted in
	the EHS Guidelines on Thermal		including: temperature, pH, COD.			effluent as per ECR.	(DOE, ADB, etc.).	ESMP. RBLPL to ensure
	Power. These levels should be		BOD. TSS. oil & grease and			1997.	(, , , .	that all
	achieved, without dilution, at least 95		residual chlorine.					Employees are given
	percent of the time that the plant or							basic induction training
	unit is operating, to be calculated as a							on the requirements of
	proportion of annual operating hours.							the ESMP, good site
	Sanitary discharges to meet national							management practices
	wastewater treatment standards.							and H&S procedures.
	Good site management							
	practices including the following will							
	be implemented:							
	1) Proper treatment of							
	contaminated water or cooling							
	water before discharge to							
	natural water body.							
	2) No disposal of solid wastes into							
	the discharge structure;							
	3) Regular maintenance of site							
	arainage system to ensure							
L	emcient operation;	L					<u> </u>	<u> </u>

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

	Responsibility		ibility		Type and			
Issue/Impact	Mitigation Measures	Implementation Schedule	Monitoring	Implementation	Supervision	Monitoring Indicators	Frequency of Reporting/ monitoring	Management and Training
Noise Quality	 4) All discharges will comply with local and World Bank guidelines. 5) All fuel, oil and chemicals should be stored in bounded area 110% volume 6) Regular training of all workers in spill response 7) Provision of spill equipment at easily accessible locations around the site Implement mitigation as set out in the ESIA and EHS Guidelines on Noise and Thermal Power. No employee should be exposed to a noise level greater than 85 dB(A) for a duration of more than 8 hours per day without hearing protection. And no unprotected ear should be exposed to a peak sound pressure level of more than 140 dB(C). The use of hearing protection should be enforced actively when the equivalent sound level reaches 110 dB(A), the peak sound levels reaches 540 dB(C), or the average maximum sound level reaches 110 dB(A). Hearing protective devices provided should be capable of reducing sound levels at the ear to at least 85dB(A). Emissions at the site boundary and nearest sensitive receptors must be within prescribed limits of the EHS Noise Guidelines. Specific design mitigation measures to minimize noise impacts include: Gas turbines, steam turbine generators; air compressors, pumps and emergency diesel engines are enclosed in the Buildings with proper acoustic design; Provision of a noise barrier 	Life time of the plant operation.	When the plant is fully operational, quarterly noise audit measurements are to be carried out at noise sources and at the fence of the power plant as well as at sensitive noise receptors around the plant. Monitoring to be carried out on site and at the nearest receptor.	RBLPL Project management. Third party monitoring supervised by the RBLPL Management	RBLPL management & EHS department.	Power plant to comply with ESMP suggestions.	Monthly noise reports Prepared by RBLPL or by third party. Reports are to be available to any of the concerning Authorities (DOE, ADB, etc.).	Should any complaints be received regarding noise, these will be logged and the RBLPL EHS team will investigate the problem. RBLPL to ensure that all employees are given basic induction training on the requirements of the ESMP, good site management practices and EHS procedures.
1	around the project site to minimize off-site noise levels.							

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

				Respons	ibility		Type and	
Issue/Impact	Mitigation Measures	Implementation Schedule	Monitoring	Implementation	Supervision	Monitoring Indicators	Frequency of Reporting/ monitoring	Management and Training
Flora and Fauna: Disturbance to habitats as a result of noise, vehicle and personnel movements.	The following mitigation measures will be implemented: • restrict personnel and vehicle movements to access roads and within boundaries of site only; • control of noise during operation.	Lifetime of the plant.	No monitoring is envisaged.	RBLPL Project management	RBLPL management & EHS department.	Good plantation	Yearly report prepared by RBLPL or by third party.	RBLPL to ensure that all employees are given basic induction training on the requirements of the ESMP, good site management practices and EHS procedures.
Visual Impact Visual image of Power plant from surrounding areas.	 The visual effect of the power plant will be improved through: creation of landscaped boundary along the fence of the power plant. Planting sufficient amount of trees around the project site 	Lifetime of the plant.	No monitoring is envisaged.	RBLPL Project management	RBLPL management & EHS department	Improved visual image		Management to consider the landscaped areas to maximize visual image and habitat creation. RBLPL to manage and maintain proper landscaped areas.
Soil and Hydrology: Spillage of oils, chemicals or fuels onsite.	Follow mitigation measures in ESIA and EHS Guidelines on Hazardous Materials Management and Waste Management. Good site management measures as described in the ESMP, under aquatic environment will minimize any potential risks. As part of this, regular checks of bunds and drainage systems will be undertaken to ensure containment and efficient operation. Septic systems should only be used for treatment of sanitary sewage, and are unsuitable for process wastewater treatment.	Lifetime of the Plant	The RBLPL authority will continuously monitor application of ESMP and good site management 6 monthly monitoring of drinking water in tube wells within 1km of a septic tank location by third party consultant to confirm that national drinking water standards are met. See also water quality monitoring program above.	RBLPL Project management	RBLPL management &EHS department	Quality of bunds and drainage systems. Efficiency of operation.	Yearly report prepared by RBLPL EHS department Reports are to be available to any of the concerning Authorities (DOE, ADB, etc.).	RBLPL to ensure all employees will receive related training. Standard Operating Procedure (SOP) of hazardous waste management is enclosed as Annexure 7.1.
Solid Waste	Follow mitigation measures in ESIA and EHS Waste Management Guidelines. Good practice measures undertaken during the construction phase will be continued into the operation phase. It is of highest importance that final disposal of wastes shall be strictly adhered to environment No solid waste should be used as fertilizer unless it is first tested to confirm suitability per national requirements.f Friendly disposal contract.	Lifetime of the plant	Daily records of waste transfers to be kept. Continuous monitoring is required to ensure the implementation of good Management practices during operation.	RBLPL Project management	RBLPL management & EHS department	Efficient waste collection and disposal system should be done by either RBLPL or Contractor in place.	Quarterly reports from the EHS to RBLPL management. Reports are to be available to any of the concerning Authorities (DOE, ADB, etc.).	RBLPL to ensure all employees are given basic induction training on good operation and site management practices.

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

				Respons	ibility		Type and	
Issue/Impact	Mitigation Measures	Implementation Schedule	Monitoring	Implementation	Supervision	Monitoring Indicators	Frequency of Reporting/ monitoring	Management and Training
	Records of all waste transfers to be							
	maintained.							
Occupational Health and Safety, Risks and Hazards	Follow mitigation measures in ESIA and EHS Occupational Health and Safety and Thermal Power Guidelines. Drinking Water provided to employees to meet drinking water standards. Occupational EMF exposure should be prevented or minimized through the preparation and implementation of an EMF safety program. Use of warning signs near noisy environments and high temperature surfaces and provide personal protective equipment (PPE) as appropriate, including ear muffs and	Lifetime of the Plant	Regular on-site training. Regular staff checks, system checks and field tests of emergency procedures by on-site management. Record all fatalities, accidents, near misses and occupational diseases that occur during operation and implement corrective action to ensure such incidents are not repeated in future. Quarterly health check of employees with respect to EMF exposure and other occupational hazards.	RBLPL Project management	RBLPL management & EHS department.	Management procedures in place. Workers health and safety status, incidents, injuries, slip, trip, falls and near misses are properly documented.	Quarterly reports from the EHS to RBLPL management. Reports are to be available to any of the concerning Authorities (DOE, ADB, etc.).	RBLPL to ensure that all employees are given basic induction training on EHS policies and procedures, Emergency Preparedness and Response Plan.
	insulated gloves and shoes. The stand mitigation that has been suggested in the ESMP report will be implemented and followed on site.		Daily monitoring of drinking water provided to employees to confirm national drinking water standards are met.		T	D	0	
Management Penair and	 Good and international supply chain guideline should be followed to ensure: Uninterrupted generation of electricity Continuous supply of raw materials at site. Proper labor law followed and no child labor included Equipment & raw material supplier and other subcontractors should follow proper guideline during supplying and selecting the equipment, material and services at site. 	Life time of the	supervision by RBLPL is required to ensure that all supplies and services procured by RBLPL complies the international supply chain guideline.	REBL project management	RBLPL	Schedule check	Schedule for GT &	RELFL to ensure and contractors and subcontractors working at site are aware of ESMP and all employees are given basic induction training on good construction and site management practice.
Repair and maintenance schedules for the turbines and cooling system	The gas turbine, steam turbine and cooling system require repair and maintenance schedules for the turbines and cooling system to maximize life cycle and operation efficiency.	Lifetime of the Plant	 As per the manufacturer's schedule the gas turbine set needs timely minor, hot gas path and major inspection at specific time interval. The repair and maintenance of steam turbine and cooling water system will be done 	RBLPL Project	KBLPL management & EHS department.	Schedule check	Scnedule for GT & cooling tower maintenance will be carried out as per manufacturer recommendation.	RBLPL to conduct the inspection with specialists as per schedule.

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

				Responsibility			Type and	
Issue/Impact	Mitigation Measures	Implementation Schedule	Monitoring	Implementation	Supervision	Monitoring Indicators	Frequency of Reporting/ monitoring	Management and Training
			according to the manufacturer's recommendation and as required.					

7.5 MONITORING PLANS AND SCHEDULES

7.5.1 During Construction Phase

566. The environmental monitoring program should be carried out as an integral part of the project planning and execution. It must not be seen merely as an activity limited to monitoring and regulating activities against a pre-determined checklist of required actions. Rather it must interact dynamically as project implementation proceeds, dealing flexibly with environmental impacts, both expected and unexpected. For this purpose, it is recommended that the Project Director (PD) for this specific project should take the overall responsibility of environmental management and monitoring. The PD will form a team with required manpower and expertise to ensure proper environmental monitoring, as specified in Table 7.7 below, and to take appropriate measures to mitigate any adverse impact and to enhance beneficial impacts, resulting from the project activities. The PD through its team will make sure that the Contractor undertake and implement appropriate measures as stipulated in the contract document, or as directed by the PD to ensure proper environmental management of the project activities. It should be emphasized that local communities should be involved in the management of activities that have potential impacts on them (e.g., traffic congestion in the surrounding areas). They should be properly consulted before taking any management decision that may affect them. Environmental management is likely to be most successful if such decisions are taken in consultation with the local community.

567. **Table 7-5**summarizes the potentially significant environmental impacts during construction phase, the measures needed to eliminate or offset adverse impacts and enhance positive impacts.

Activity/Issues	Potentially Significant	Proposed Mitigation and Enhancement Measures	Responsible Parties
Influx of Workers	Generation of sewage and solid waste	 Construction of sanitary latrine and septic tank system (one latrine for 20 persons) Erecting "no litter" sign, provision of waste bins/cans, where appropriate Waste minimization, recycle and reuse Proper disposal of solid waste (in designated waste bins) 	Contractor (Monitoring By RBLPL)
	Possible spread of disease from workers	 Clean bill of health, a condition for employment Regular medical check-up of workers 	
Transportation of equipment, materials and personnel; storage of materials	 Increased traffic/navigation Generation of noise, especially affecting the nearby residential areas 	 Scheduling of deliveries during after regular working hours Protecting local community from traffic hazard during construction phase, with installation of proper traffic sign and warnings Speed reduction to 10 km per hour within the RBLPL complex 	Contractor (Monitoring by RBLPL)
	Deterioration of air quality from increased vehicular movement, affecting	 Keeping vehicles under good condition, with regular checking of vehicle condition to ensure compliance with national standards. 	

Table 7-5:	Potentially	Significant	Environmental	Impact	during	Construction	Phase	and
Mitigation	Measures							

Activity/Issues	Potentially Significant	Proposed Mitigation and Enhancement	Responsible
	Impacts	Measures	Parties
	 people in the surrounding areas Wind-blown dust from material (e.g., fine aggregate) storage areas 	 Watering unpaved/dusty roads (at least twice a day; cost estimate provided). Sprinkling and covering stockpiles. Covering top of trucks carrying materials tithe site and carrying construction debris away from the site. 	
Construction activities, including operation of construction equipment	 Generation of noise from construction activities(general plant and access road construction),especia lly affecting the local resident 	 Use of noise suppressors and mufflers in heavy equipment. Avoiding, as much as possible, construction equipment producing excessive noise during at night. Avoiding prolonged exposure to noise (produced by equipment) by workers creating a buffer zone between the neighbouring community and construction site. 	Contractor (Monitoring by RBLPL);
	Deterioration of air quality from wind- blown dust and possible use of equipment, such as stone (aggregate crushers)	 Not using equipment such as stone crushers at site, which produce significant amount of particulate matter. Keeping construction equipment and generators in good operating condition Using equipment, especially generators with high levels of emission control. Immediate use of construction spoils as filling materials. Immediate disposal/sale of excavated materials. Continuous watering of bare areas. 	
	Generation of construction Waste Accidents	 Hauling of construction debris away from the site and their appropriate disposal in a designated disposal site Regular inspection and maintenance of equipment Environmental health and safety briefing 	
	 Spills and leaks leading topsoil and water contamination with hydrocarbon and PAHs Employment of 	 Provision of protective gear Good house keeping Proper handling of lubricating oil and fuel Collection, proper treatment, and disposal of spills. Local people should be employed in the 	

7.5.2 **Operation Phase**

568. Most of the environmental parameters will experience beneficial effects during the operation phase of the power plant project. Efforts should be made to enhance these beneficial impacts, which may include incentives for proper growth of more projects in the area. The plant management authority of RBLPL should be responsible for overall environmental monitoring during the operation phase of the project.

569. **Table 7-6** summarizes the potentially significant environmental impacts during operation phase, the measures needed to eliminate or offset adverse impacts and enhance positive impacts.

Table	7-6:	Potentially	significant	environmental	impact	during	operation	phase	and
mitiga	tion n	neasures							

Activity/	Potentially	Proposed Mitigation and Enhancement	Responsible
Issues	Significant	Measures	Parties
	Impacts		
Power Generation	Emission from the power plant Generation of noise	 Using stack as specified in the design; Using low nitrogen oxide burners, as specified in the design; Installation of stack emission monitoring equipment for major pollutants. An in-house Continuous Air Monitoring Station (CAMS) may be considered; In stack design due consideration should be given to proper insulation; Planting of trees around the project site. Provision of silencers for generators and turbines; Planting of trees around the project site; Regular plant maintenance; Regular noise monitoring, especially at the project boundary and residential quarters located nearby; Use of ear-muffs and ear-plugs by plant personnel working in the generator and turbine facilities of the plant. Control room noise levels should be <60dB and 	RBLPL
		high noise areas to be signed so that PPE must be worn if >85dB	
Surface Water discharge	Increase of river water pollution	 Regular monitoring of surface water discharge and river water quality including at the upstream and downstream of the discharge point 	RBLPL
Waste Generation	 Inappropriate disposal of sewage causing environmental pollution Generation of solid waste including sludge from demineralizer. Possible water pollution 	 Good housekeeping Proper construction and maintenance of wastewater disposal system for the plant premises. Ensuring proper storage, treatment, and disposal of all solid waste Monitoring of effluent quality from treatment plant Monitoring of river water quality and discharge water quality 	RBLPL
Occupational Health & Safety of	Non-ionizing radiation, Heat, Noise, Confined	 Regular health check-up of workers Proper PPE should be provided to protect from the heat, electric shock and noise protection, 	RBLPL

Activity/ Issues	Potentially Significant Impacts	Proposed Mitigation and Enhancement Measures	Responsible Parties
workers	spaces, Electrical hazards, Fire and explosion hazards, Chemical hazards, Dust, sanitation, safe drinking water etc.	 Regular awareness and training should be provided for fire safety & chemical hazard, Safe drinking water should be provided 	
Turbines and cooling system inspection	Machine performance may deteriorate with time.	 As per the manufacturer's schedule the gas turbine set needs timely minor, hot gas path and major inspection at specific time interval. The repair and maintenance of steam turbine and cooling water system will be done according to the manufacturer's recommendation and as required. 	RBLPL

<u>Note</u>: During construction and operation pahse, the drinking water shall be tested on weekely basis or as and when required for potability.

7.6 MONITORING PARAMETERS

7.6.1 Construction Period

570. There are two types of monitoring during construction, 1) Visual Monitoring and 2) Analytical Monitoring. The following are the visual monitoring, its parameters and monitoring frequency for the RBLPL750 MW CCPP:

1) Visual monitoring and observation

Table 7-7: Monitoring plan during construction phase of the project

Issue	Key aspects	Reporting Frequency	Responsibility
Traffic volume	Incoming & outgoing traffic, traffic movement records	Monthly	EPC Contractor/ Consultant
Site Security	Proper fencing, isolation of site from general access, marked passage for workers and visitors	Monthly	EPC Contractor/ Consultant
Personal Protective Equipment	Ensure every single person involved in the construction activity wear proper PPE	Monthly	EPC Contractor/ Consultant
Incident/ accident record & reporting	Documented record of all incident, accident, near misses etc. and its remedial process.	Monthly	EPC Contractor/ Consultant
Solid waste	Quantity of solid waste, segregation and disposal process	Monthly	EPC Contractor/ Consultant
Oily waste generation & disposal system	Quantity of oily waste, storage and disposal process	Monthly	EPC Contractor/ Consultant
Worker's health	Monitoring process of worker's health	Monthly	EPC Contractor/ Consultant
Complain from neighbours	Any significant complain from neighbours and it's remedial procedure	Monthly	EPC Contractor/ Consultant
Safety orientation &	Frequency of training & orientation of workers	Monthly	EPC Contractor/

Issue	Key aspects	Reporting Frequency	Responsibility
training of workers	for safety		Consultant
Sanitation & drinking water facility to workers	Availability of safe drinking water and sanitation to the workers	Monthly	EPC Contractor/ Consultant
Site Drainage	Maintaining proper drainage	Monthly	EPC Contractor/ Consultant
Fishing & navigation	Biodiversity controlling	Monthly	EPC Contractor/ Consultant
All parameters shall	be monitored either on daily / weekely basis a	and reported of	on onthy basis

2) Analytical Monitoring during construction

Table 7-8: Monitoring plan during construction phase of the project (Analytical)

Issue	Parameters	Monitoring	Responsibility
		Frequency	
Ambient air	PM ₁₀ and PM _{2.5}	Monthly	EPC Contractor/
Quality			Consultant
River water	Water temp., DO, BOD ₅ , COD, Oil and	Monthly	EPC Contractor/
	Grease and heavy metals (Cr, Cd, Pb)		Consultant
Groundwater	Groundwater level, p ^H , TDS, Ammonia,	Once in 6 months	EPC Contractor/
	Nitrate, Phosphate, As, Fe, Mn and		Consultant
	Coliforms		
Soil quality	Cr, Cd, Pb and Oil and Grease	Once in 12 months	EPC Contractor/
			Consultant
Noise level	Noise at different locations	Monthly	EPC Contractor/
			Consultant
Drinking water	TSS, TDS, Temperature, p ^H , Ammonia,	Monthly	EPC Contractor/
	Nitrate, chloride, Phosphate, As, Fe, Mn		Consultant
	and Coliforms		

7.6.2 Operational Period

571. The following are the monitoring parameters and monitoring frequency for the RBLPL 750 MW CCPP east during operation:

rubic / of mornitoring plan during operational phase of the project	Table	7-9:	Monitoring	plan	during	operational	phase	of the	projec	t
---	-------	------	------------	------	--------	-------------	-------	--------	--------	---

Issue	Parameters	Monitoring Frequency	Responsibility
Stack emissions	NOx, and Temperature	Continuous through CEMS	RBLPL
Ambient air quality	CO, NO _x , PM ₁₀ , PM _{2.5} , SO ₂	Quarterly at four locations, seasonal or half yearly monitoring at other sensitive receptors	RBLPL
River water	Water temperature (500 mts upstream and 100 mts downstream) and DO, PH, COD. BOD, TOC, DO, TSS, oil & grease etc.	Monthly	RBLPL

Effluent quality	pH, DO, Sulphate, TSS, TDS, BOD, COD,	Monthly	RBLPL
	Total N, Total P,		
	Discharge Water Temperature	On Line	
		measurement for T	
		at Discharge	
		location and manual	
		monitoring	
		provisions for	
		measurement of	
		surface water	
		temperature on 500	
		mts upstream and	
		100 mts down	
		stream of dischrge	
		point	
Groundwater	pH, Colour, Turbidity, TDS, Ammonia,	Once in 6 months	RBLPL
	Nitrate, Phosphate, As, Fe , Mn and		
	Coliforms; Groundwater level		
Noise level	Noise at different locations	Once in 3months	RBLPL
Fisheries, Phyto	Number and Condition	Once in 6 months	RBLPL
&, Zooplankton,			
Vegetation etc.			
OHS	Occupational Health, Safety, Incidents and	Once in a year for	RBLPL
	accidents	OH and others as	
		and when required	
Fishing &	Biodiversity controlling	Monthly	EPC Contractor/
navigation		wonthy	Consultant

NOTE

1. Though the stack emission in the above Table is suggested for operational phase it is suggested to undertake stack emission testing during the commissioning period to confirm that PM and SO₂ emissions contribute negligibily.

2. Monitoring stations for the air quality will be selected at the locations correspond to appropriate receptors in vicinity of the modelled maximum GLC.

3. The operation phase ESMP shall include the location details of monitoring, which will be prepared and submitted to Lenders before operation starts.

Table 7-10: Standards to be followed	d during monitoring	g according to DOE and IFC/WB:
--------------------------------------	---------------------	--------------------------------

Parameter	DOE	IFC/WB	Unit				
Air Quality							
СО	NF	10,000	µg/m³				
NO _x	200	100	µg/m³				
PM ₁₀	150	150	µg/m³				
PM _{2.5}	75	65	µg/m³				
SO ₂	125	365	µg/m³				
SPM	NF	200	µg/m³				

ESIA Report

Parameter	DOE	IFC/WB	Unit				
Ground Water							
рН	6.5-8.5	6.5-8.5	-				
DO	6	NF	mg/L				
TDS	≤1000 mg/L	NF	mg/L				
Conductivity	NF	250	µS/cm				
Alkalinity	NF	NF	mg/L				
Iron	0.3-1.0	NF	mg/L				
Chloride	150-600	250	mg/L				
Hardness	200-500	NF	mg/L				
Temperature	(20-30)°C	NF	O				
Arsenic	0.05	0.01	mg/L				
TSS	10	NF	mg/L				
Turbidity	10	NF	NTU				
COD	5.6	NF	mg/L				
BOD₅ at 20°C	2.3	0.2	mg/L				
ТС	14	0	#/100 mL				
FC	0	0	#/100 mL				
Oil & Grease	54.5	0.01	mg/L				
Color	5	15	Pt-Co				
	Surface Wate	<u>er</u>	·				
рН	6-9	6-9	-				
DO	4.5-8	NF	mg/L				
TDS	2100	NF	mg/L				
Conductivity	NF	NF	μS/cm				
Alkalinity	NF	NF	mg/L				
Iron	2	3.5	mg/L				
Chloride	600	NF	mg/L				
Hardness	200-500	NF	mg/L				
Temperature	40	NF	D ₀ C				
Arsenic	0.02	NF	mg/L				
TSS	150	50	mg/L				
COD	200	250	Pt-Co				
BOD₅ at 20°C	50	50	mg/L				
TC.	0	0	mg/L				
FC.	0	0	#/100 mL				
Color	10	10	#/100 mL				

*NF= Not Found

7.6.3 Monitoring cost

ReliAnce

572. The proposed monitoring parameters and the frequency to be monitored in accordance with the monitoring plan have been presented in Table 7.7& Table 7.8 during the construction and the operation of the proposed project respectively. DOE & IFC/WB guideline will be followed whichone is stringent as threshold value of monitoring parameters. The estimated cost of EMP, environmental monitoring and training program during the construction phase and operation phase has been given in **Table 7-11, Table 7-12& Table 7-13**.

Item	Parameter	Unit cost	Contingency	Unit /	Total cost per
		(Taka)		year	year (Taka)
Ambient air	CO, NO _x , PM_{10} and $PM_{2.5}$	20000.00	5000.00	12	300,000.00
Quality					
River water	Water temp., DO, BOD ₅ ,	20000.00	10000.00	12	360,000.00
	COD, Oil and Grease and				
	heavy metals (Cr, Cd, Pb)				
Groundwater	Groundwater level, pH,	20000.00	10000.00	2	60,000.00
	TDS, Ammonia, Nitrate,				
	Phosphate, As, Fe, Mn and				
	Coliforms				
Soil quality	Cr, Cd, Pb and Oil and	40000.00	10000.00	2	100,000.00
	Grease				
Noise level	Noise at different locations	10000.00		26	260,000.00
Process	Solid waste	1000.00	4000.00	52	260,000.00
waste					
Health	Health status of the workers		20000.00	6	120,000.00
	Total Cost				20,60,000.00
	Contigency Cost (15% of t	otal value)		yearly	3,09,000.00
	Total Cost				23,69,000.00

Table 7-11: Cost estimate for environmental monitoring and environmental management during construction

Table 7-12 Cost estimate for environmental monitoring during operational phase

Item	Parameter	Unit cost (Taka)	Unit / year	Total cost per year (Taka)
Stack emissions	CO, NO _x , SPM, O_2 and temperature	30000.00	04	120,000.00
Ambient air	CO, NO _x , PM ₁₀ , PM _{2.5} ,	30000.00	04	120,000.00
quality				
River water	Water temperature and DO	5000.00	12	60,000.00
Effluent quality	pH, DO, Sulphate, TSS, TDS, BOD,	30000.00	04	120,000.00
	COD, Total N, Total P			
Groundwater	pH, Colour, Turbidity, TDS, Ammonia,	30000.00	02	60,000.00
	Nitrate, Phosphate, As, Fe, Mn and			
	Coliforms; Groundwater level			
Noise level	Noise at different locations	10000.00	12	120,000.00
Vegetation	Vegetation Number and Condition		01	25000.00
OHS	Health status and safety	25000.00	02	50,000.00

Total cost		6,75,000.00
Contigency Cost (30% of total value)	yearly	2,02,000.00
Total Cost		8,77,000.00

Table 7-13: Cost estimate for training during operational phase

Item	Number	unit cost (Taka)	Total cost per year (Taka)
Safety and occupational health	02	200,000.00	400,000.00
Environmental management system	02	300,000.00	600,000.00
Total cost during operational phase			1,000,000.00
		Total	2,000,000.00*

This excludes the cost of CAPEX to be incurred for installation of pollution control devices.

7.7 CORPORATE SOCIAL RESPONSIBILITY (CSR)

573. Reliance Bangladesh LNG & Power believes in principle that "Growth Does Not Exist in Isolation". For Reliance, being socially responsible is not an occasional act, but it is an on-going year-round commitment, which is integrated into the very core of their business objectives and strategy. Reliance Bangladesh LNG & Power Ltd. believes that an environment of common trust and confidence building is essential during project implementation.

574. The main principles of RBLPL's Corporate Social Responsibilities are:

- Adopt an approach that aims at achieving a greater balance between social and economic development;
- Adopt new measures to accelerate and ensure the satisfaction of the basic needs of all people;
- Work towards elimination of all barriers to the social inclusion of disadvantaged groups- such as the poor or the disabled; and
- Give unfailing attention to children for in their hands lies the future of the society. It is for their sake that health, education and environment are given priority in their programme and investments.

575. The list of CSR activities will be carried out by Reliance, regularly in surrounding villages of the Reliance Meghnaghat 750 MW CCPP are as follows:

- Organized Health Camps for the villagers in tie-up with nearby hospital and / or local NGOs;
- Distributed free medicines to health sufferers;
- Organized specialized medical camps such as eye treatment, malnutrition, dental treatment, gynaecological treatment, screening cum fitment camps for People With Disabilities (PWDs);
- Distributed free spectacles, performance of cataract operation;
- Organized as Polio & Vaccination drive;

ReliAnce

- Awareness towards child literacy and adult literacy programs;
- Distributed study material (school bag, note books, drawing books, colour box, slates, pencils, pencil box etc.);
- Organized felicitation ceremony for the students who scored higher marks in HSC/SSC examination or received any merit on educational front;
- Equipped schools with reference books, blackboards or other teaching aids, sports kits (as per requirement);
- Cooperated and coordinated in the village festivals; and
- Provided basis civic amenities like street lights, drinking water facilities etc. in the nearby villages

576. During and after the execution of proposed expansion project, the said CSR activities will not only continue but also be enhanced considerably.

7.8 GREEN BELT DEVELOPMENT

577. Even after taking stringent measures for pollution control, in different stages, a significant amount of pollutants are produced such as dust, noise and NO_x during the operational phase. A sustainable and green solution for this problem could be minimized by developing a "Green Belt". In the surrounding areas, trees of specific species can reduce the pollution as well as can provide enhanced oxygen for the surrounding area. Suitable bidegt will be allocated before operation of the plant as this is adealyed activity to be started with stabilization of the power plant.

578. The air pollution that can be emitted by the industries in the area settles on the ground and vegetation of surrounding area. The plants interact with both gaseous and particulate pollutants and to great extent absorb them and thus, remove them from the atmosphere. This pollution removal property of the plants has been known for long time. Many scientists have suggested the green belt for reducing the pollution originated from the industrial operations. (Flemming 1967; Hanson and Thorne 1970)

Name of the Plant	Name in Bangla	Туре	Function
Australian wattle	আকাশমণি	Tree	Reduces Particulate Matter
Bael tree	বেলগাছ	"	11
The Siris Tree	শিরিষগাছ	"	11
White Siris	করই	"	11
Sugar Apple	আতাগাছ	"	11
Kadam	কদম	"	11
Nim	নিম	"	11
Bamboo	বাঁশ	"	11
Australian Whistling Pine	ৰ্বাউ	"	11
Rangan	রঙ্গন	Shrub	Noise Attenuation
Kamini	কামিনী	"	11
Karabi	করবি	"	11

Table 7-14: Suitable plant Species for "Green Belt Developmer

Guava tree	পেয়ারা	"	11
Tagar	টগর	"	11
Mastered Green	সরিষা	Forb/Herb	NO _x Absorption

7.8.1 **Resources and Implementation**

579. The environmental parameters to be monitored during the construction and operational phases along with the monitoring schedule have been presented in the previous sections. The responsibilities for the implementation of the proposed monitoring plan may be entrusted with the external contractor in association with the RBLPL personnel and under the direct supervision of the RBLPL management.

580. It is very important to make sure that the potentially significant impact during both the construction and operation phases are properly addresses through adaptation of the proposed mitigation and enhancement measures. It is equally important to undertake environmental monitoring during both the construction and operation phases according to the proposed monitoring plan.

581. These should therefore be made integral part of the proposed power plant project. The following are the management team of RBLPL who will be responsible for the monitoring program of the proposed project during the construction and operation period; Team for Environment monitoring and ensuring compliance during construction

7.8.2 In house capabilities of RBLPL for Environmental Monitoring

582. It is important for RBLPL to create in house capabilities for Environmental Monitoring for the proper implementation of the EMP during the operational period of the project. For this RBLPL will have to establish their own laboratory with the facility to monitor the parameters that have been suggested in the Environmental Monitoring Plan of the EMP. The probable equipment list and budget for the equipment have been outlined below in Table 7.12:

Item	Quantity	unit cost (Taka)	Total cost (Taka)
High Volume Samplers	02	500,000.00	1,000,000.00
Fine Particulate Samplers	02	600,000.00	1,200,000.00
Online Emission Monitoring Equipment	01	2000,000.00	200000.00
Noise Level meter	02	20,000.00	40,000.00
pH meter	02	15000.00	30,000.00
DO meter	01	50000.00	50,000.00
TDS meter	01	30,000.00	30,000.00
Turbidity Meter	01	25000.00	25,000.00
Incubator	01	250,000.00	250,000.00
Refrigerator	01	50,000.00	50,000.00
Analytical Balance (5 digit)	01	400,000.00	400,000.00
COD reactor	01	100,000.00	100,000.00
Spectrophotometer	01	500,000.00	500,000.00
Decicator	01	25000.00	25,000.00
Distilled water machine	01	20000.00	20,000.00

Table 7-15: Cost estimate for setting Environmental Laboratory

Item	Quantity	unit cost (Taka)	Total cost (Taka)
Magnetic Stirrer	01	50000.00	50,000.00
Burette, conical flask, BOD bottle etc.	1 lot	50,000.00	50,000.00
Other glassware	1 lot	50000.00	50,000.00
Different chemicals	1 lot	150,000.00	150,000.00
Filter papers, thimbles etc.	1 lot	150,000.00	150,000.00
Miscellaneous items		100,000.00	100,000.00
		Total	6,270,000.00

The above laboratory could be set up under the EHS manager and the following:

Chemist	-	01 person
Lab technician	-	01 person
Sample collector	-	02 person
Lab Assistant	-	01 person

7.8.3 **Decommissioning and Dismantling**

583. At the stage of the project planning & implementation process, the necessity for planning and timing of the decommissioning of the construction equipment & structures after the completion of construction and end of life power project of the RPLBL 750 MW CCPP is important. RPLBL authority has planned to prepare a full scale decommissioning plan for the project after construction and after the life expectancy of the project to clean up the site.

7.8.3.1 AFTER COMPLETION OF THE CONSTRUCTION OF POWER PLANT

584. The EPC contractor is responsible for the decommissioning of the Equipment and temporary structure at the project site. After the completion of the construction, there will have plenty of construction equipment, scrap metal, construction materials, different types of waste chemicals as well as the jetty. The EPC contractor should follow the Decommissioning plan that will be prepared by RPLBL before leaving the site.

It will be ensured by the contractor that no hazardous substance will be discharged to the atmosphere.

7.8.3.2 AT THE END OF PLANT'S LIFE

585. After the power plant will reach its end of life, RPLBL authority should dismantle the entire power plant project and restore the project site back to the normal unless otherwise mentioned by the BPDB. The RPLBL will follow the detail decommissioning plan will prepared prior to this.

7.8.3.3 GENERAL PRINCIPLES OF DECOMMISSIONING

586. The general principles of the decommissioning of a project are detailed below. These principles must be required to be revisited and supplemented in the event of decommissioning of the power plant.

587. On decommissioning of the power project, EPC Contractor and RPLBL will:

- Ensure that all sites not only vegetated are vegetated as soon as possible after operation ceases with species appropriate to the area.
- All the temporary & permanent structures, foundations, concrete, and tarred areas are demolished, removed and waste material disposed of at an appropriately licensed waste disposal site.
- All equipment, vehicle and machineries should be dismantled, recycled or disposed of at an appropriately licensed disposal site.
- The aggregates, steel and other construction materials should be sold secondarily to the licensed vendor.
- All disturbed areas are compacted, sloped and contoured to ensure drainage and runoff and to minimize the risk of erosion.
- All hazardous materials should be kept separate, documented and disposed to the safe recycling or disposal site.

588. A detail decommissioning and restoration of site plan should have to be developed prior to the decommissioning of the Power project by EPC contractor and RPLBL.

7.9 ESMP MONITORING AND REVIEW

589. The environmental unit of the RBLPL shall periodically review, monitor and audit the effectiveness of the ESMP, including all sub-plans. The audit program should adequately cover the scope, audit frequency and methods that are typically required for large infrastructure projects. The frequency of audits should reflect the intensity of activities (typically more common during construction), severity of environmental and social impacts and non-compliances raised in prior audits.

7.9.1 Review of the ESMP

590. The environmental unit of the RBLPL shall review the ESMP & ESIA to assess its effectiveness and relevance as follows:

- A full review shall be undertaken annually;
- Following a reportable incident, or a significant non-compliance; and
- Following an addition, up-date or change order to the ESMP, or a sub-plan.
- 591. The review of the ESMP should consider the following:
 - Adequacy of data collection, analysis and review;
 - Reporting;
 - Non-compliances; and
 - Corrective actions implemented.

592. The ESMP shall also be reviewed periodically to evaluate environmental controls and procedures to make sure they are still applicable to the activities being carried out. Reviews will be undertaken by the RBLPL Environmental Unit as follows:

- The full ESMP shall be reviewed at least annually;
- Relevant parts of the ESMP shall be reviewed following a reportable incident;

- Relevant parts of the ESMP shall be reviewed following the receipt of an updated sub plan;
- Relevant parts of the ESMP shall be reviewed on request of stakeholders, Contractor, Supervising Engineer, World Bank/DOE or the host communities.
- The review shall include analysis of the data collection and analysis of data, monitoring reports, incident reports, complaints/grievances and feedback from stakeholders, community reports, and consultation meeting minutes and training records to evaluate the effectiveness of ESMP procedures. Site visits, interviews and other auditing methods may also be used.

8 EMERGENCY RESPONSE AND DISASTER MANAGEMENT PLAN

8.1 INTRODUCTION

593. An emergency is any situation or occurrence of a serious nature, developing suddenly and unexpectedly, and demanding immediate action. An emergency can cause serious injury / loss of life / lives and may cause extensive damage to property and environment causing serious disruption both inside and outside the plant.

594. Emergencies have been broadly classified into two categories:

- On-site Emergency.
- Off-site Emergency.

8.2 ON SITE EMERGENCY

595. An on-site emergency is a kind of situation, which can cause casualties / equipment / property damage, work environment damage within the site premises. It may need to take help of outside agencies to bring the situation under control.

8.3 OFF SITE EMERGENCY

596. An emergency that takes place in an installation and the effects of emergency extends beyond the premises or the emergency created due to an accident, catastrophic incidents, natural calamities, etc. It no longer remains the concern of the installation management alone but also becomes a concern for the general public living outside and to deal with such eventualities will be the responsibilities of district administration.

597. A response plan is required to control and mitigate the effects of catastrophic incidents in above ground installation (AGI) or underground installations (UGI) or road transportation. This plan shall be prepared by the district administration based on the data provided by the installation(s), to make the most effective use of combined resources, i.e. internal as well as external to minimize loss of life, property, environment and to restore facilities at the earliest

598. The off-site emergency plan outlines actions that employers and employees must take in the event of an emergency situation to ensure employee safety and to minimize property damage.

599. Such procedures include:

- a) Ways to alert employees;
- b) Reporting emergencies;
- c) Evacuation;
- d) Designated assembly locations;
- e) Contact people and their telephone numbers;
- f) First aid and medical assistance;
- g) Clean-up and business resumption;
- h) Employee training;
- i) Ways of testing the plan (mock drills); and

- j) Communication with media, community and employees and their families.
- 600. Available off site resources for handling emergency situations:
 - 1. Fire Station: Bandar Fire Station is the nearest fire station which is 14.2 km from the project site. During the Off-Site Disaster, the main role of fire services will be as follows:
 - Fire fighting

Reliance

- Spraying water to knock down toxic gases/vapors
- Washing away spilled chemicals
- Rescue of people trapped in fire services must be aware of the properties and behavior of various industrial chemicals.

While fighting an emergency they themselves should not be get affected by the toxic gases or any other harmful chemicals. Proper protective equipment should be used for this purpose.

Hospital: Nearest General Hospital is 4.2 km from the project site. Quick medical treatment of people injured in a major industrial/transportation accident is essential. Medical services should be geared up to meet special requirements of an industrial accident.

8.4 EMERGENCY SITUATIONS AT 750 MW CCPP PROJECT SITE

601. Based on relevant experience and best professional judgment, it is believed that the following types of hazards (Source, Situation, Act, or combination thereof) have the potential to occur at the plant:

- 1. Excavation cave-ins
- 2. Explosion
- 3. Facility Blackout loss of electric power
- 4. Fire, caused from:
 - a) Bitumen
 - b) Electrical short circuits
 - c) Flammable materials storage areas materials that can cause fire incident include - Adhesives (at stores), Diesel, Hydraulic oil, Lubrication oil /Grease, Paints and Paint thinners
 - d) FRP Storage area (Used for cooling tower works)
 - e) Oil rags/waste at work locations
 - f) Shuttering material storage yard
 - g) Wooden cases storage area
 - h) Wooden scrap yard

Note: Possible quantity of storage has been considered while determining severity

- 5. Medical conditions/emergencies Serious injuries or ill health; causes include but not limited to:
 - a) Asphyxiation from lack of oxygen during working in confined space
 - b) Electric shock / Electrocution (non-fatal)
 - c) Fall from height

- d) Person suspended in safety harness
- 6. Pandemics/epidemics/outbreaks of communicable disease
- 7. Traffic accidents
- 8. Natural calamities
 - a) Earthquakes
 - b) Flooding (heavy rains)
- 9. Presene of other industries

8.5 RISK ASSESSMENT OF POSSIBLE EMERGENCIES AND CONTROLS MATRIX

S. No	Emergency	Likelihood of occurrence	Potential cause / Incident	Area	Severity of consequence	Preventive measures	Mitigation
1	Earthquake	Remote	Earthquake	Whole of project site	 High severity Effects are proportional to earthquake magnitude 	 Site located in Seismic Zone II; no history of such incident Design of plant has considered relevant safety factors of seismic zone potential effects 	Review and implementation of remedial measures after assessing the magnitude of effects – by top management
2	Excavation cave-in	Likely	Excavation cave- ins caused by unsafe work practices	Across site – varied locations	 High severity Effects localized 	 Safe work practices to be established and implemented Work in excavated areas are supervised with prior-to work assessments of conditions for work Work is always carried out under supervision from above the excavation level 	Medical emergency procedures are followed

S. No	Emergency	Likelihood of occurrence	Potential cause / Incident	Area	Severity of consequence	Preventive measures	Mitigation
3	Explosion	Likely	Acetylene gas cylinder – accidental explosion due to pressure build- up; catch fire with nearby flame sparks (if working with)	Gas cutting works area (Max permitted storage is 20 Cylinders)	 High severity – bodily burns Effects localized 	 Safe work practices established and implemented Fire extinguishers kept nearby workplace 	 Fire extinguishing by trained persons Medical emergency procedures are followed for the affected personnel
4	Explosion	Likely	LPG Cylinders	1 or 2 Cylinders at Underground pipe coating area; used for heating coating material	 High severity – bodily burns Effects localized 	 Safe work practices to be established and implemented Fire extinguishers kept nearby workplace 	 Fire extinguishing by trained persons Medical emergency procedures are followed for the affected personnel
5	Facility Blackout	Likely	Loss of electric power	Whole project site	 Low severity Effects localized to the area People may panic and may be affected of it 	 Readily available flashlights; Adequate emergency lighting; Alternative lighting arrangement will be in stand-by at critical work areas while working at night Candles are not lit and kept near any flammable items No burning candles are 	 Depending upon the cause immediate measures will be taken All electrical equipment, especially those will be switched off till the power is reinstated Panic personnel will be counseled Attention is given to the fact that the re- establishment of
RELIANCE

S. No	Emergency	Likelihood of occurrence	Potential cause / Incident	Area	Severity of consequence	Preventive measures	Mitigation
						unattended	electrical power can be with a power surge. Heavy equipment' high electrical load factor could adversely impact
6	Fire	Likely	Shuttering material (wood) – accidental catching up fire due to sparks/ flying fire objects from nearby work area	Shuttering material storage		 The whole site is declared as no smoking zone 	1) Firefighting and
7	Fire	Likely	Bitumen – accidental catching up fire due to sparks/ flying fire objects from nearby work area while material handling	Bitumen stored in project site	 Low severity Effects localized to the area 	 Fire extinguishers are kept near all storage area to extinguish the fire at its initial stage Water hoses are provisioned which is 	 2) evacuation of personnel at that location to the safe place at once
8	Fire	Likely	Oil rags/waste – accidental catching up fire due to sparks/ flying fire objects from nearby work area	Equipment / Piping erection area		near-by	

S. No	Emergency	Likelihood of occurrence	Potential cause / Incident	Area	Severity of consequence	Preventive measures	Mitigation
9	Fire	Likely	Leaks in 200 L Diesel drums	Stores			
10	Fire	Likely	Wooden scrap	Wooden scrap yard			
11	Fire	Likely	Wooden Materials	Wooden cases at material storage yard			
12	Fire	Likely	Due to electrical short circuit	Offices / PC Work Stations	 Low severity Localized to the area 	 Prevent the loose connections Prevent over loading Prevent multiple connections from one source Prevent the overheating of the equipment's Keep the electrical equipment's in healthy condition 	 Switch off the power supply Use suitable fire extinguisher to extinguish the fire
13	Fire	Likely	Accidental catching up fire due to sparks/ flying fire objects from nearby, electrical short circuits in store room, unattended	Stores maintaining: • Adhesives • Diesel • Hydraulic	 Low severity Effects localized to the area 	 The whole site is declared as no smoking zone Fire extinguishers are kept near all storage area to extinguish the fire at its initial stage Water hoses are 	 Firefighting Evacuation of personnel at that location to the safe place at once

S. No	Emergency	Likelihood of occurrence	Potential cause / Incident	Area	Severity of consequence	Preventive measures	Mitigation
			lit candles, etc.,	oil Lube. oil Grease Paints and Paint thinners		provisioned which is near-by	
14	Fire	Likely	FRP – accidental catching up fire due to sparks/ flying fire objects from nearby work area	FRP Storage area (for cooling tower construction works)	 Medium to high severity since FRP fire spreads faster Can affect the surrounding area 	 Prevent multiple electrical connections from one source Do not keep flammable items or materials nearby Fire extinguishers, water hose near-by 	 Switch off the power supply Firefighting by trained personnel and Fire Tender help sought if required
15	Flooding of water in to the site	Likely (during rainy season)	Inundation (deluge / flood) of water due to heavy rains	All work areas	 Low severity Effects mainly in the excavated area / trenches None - since situation can be predicted / detected instantly 	 Pre alert given based on forecast and on situational day-to-day basis Working in excavated areas, trenches, Open confined vessels or areas are provided additional vigilance The drains always kept clean especially in the rainy season 	 Evacuate all personnel from areas of danger - on sensing the danger Rescue team to verify and act to rescue if someone got caught inside Provide medical aid as needed

RELIANCE

S. No	Emergency	Likelihood of occurrence	Potential cause / Incident	Area	Severity of consequence	Preventive measures	Mitigation
						4) Keep the mobile pump ready to pump out the water	
16	Medical Emergency - Electrical Shock / Electrocution	Likely	Due to contact with live wires or due to electrical faults	All work areas wherever there are electrical points	 Low to medium severity Localized to the area 	 Provide double earthling to Equipment; periodical checks for effectiveness Provide E L C B's Provide rubber matting's in front of control panels & isolators. Signage - Never touch the live circuit Safe work practices - Isolating the circuit before carrying out the maintenance Use of PPE's 	 Switch off the power supply Administer artificial resuscitation if required Provide medical aid as needed
17	Medical Emergency	Likely	Asphyxiation from lack of oxygen	During working in confined space at Cooling water pipelines, bypass stack, and HRSG (aftercompletio n of installation)	 Medium to high severity Localized to the area 	 Personnel work competence ensured Preventive maintenance of equipment and machinery Workplace monitoring prior to task execution SCBA provided where 	Follow appropriate medical procedures

S. No	Emergency	Likelihood of occurrence	Potential cause / Incident	Area	Severity of consequence	Preventive measures	Mitigation
						necessary	
18	Medical Emergency	Likely	Fall from height	 Structural erection, Bypass stack erection, Scaffolds, HRSG erection, High roof at Electrical control buildings 	 Medium to high severity Localized to the area 	 No un- protected openings on any roof ensured Safety harness, safety life line provisioned while working at height Only competent & medically fir persons are allowed to work at height 	 Follow rescue procedure in case person is in suspended harness If panic, provide medical counseling
19	Medical Emergency	Likely	Fall from height	While climbing higher heights on ladder (does not have railing) with fall protection	 Medium to high severity Localized to the area 	Fall arrestor used for high rise climbing using ladders	 Follow rescue procedure in case person is suspended harness If panic, provide medical counseling
20	Pandemics/e pidemics/ outbreaks of communicabl e disease	Likely	Unpredictable Outbreaks for unknown reasons	All personnel at site	Medium to high	HR will initiate actions immediately upon getting news from media. Health precautions from Government and Health organizations will be followed	Affected personnel will be provided with medical assistance Affected personnel will not be allowed to workplace till normal health is restored

RELIANCE

S. No	Emergency	Likelihood of occurrence	Potential cause / Incident	Area	Severity of consequence	Preventive measures	Mitigation
21	Traffic accidents (within project site)	Likely	Violation of safety rules, unforeseeable road /terrain conditions	Throughout work site	Medium to high	 Speed limit is restricted Security watch and guide traffic at designated places Road and terrain conditions inspected and attended to correct faults All vehicles mandatorily use reverse horn while moving in reverse / rear direction Only authorized, competent persons are allowed to drive vehicles within site premises 	1) Personnel injury is dealt as per medical procedure

602. Fire resist and extinguish act 2003 has to be followed for fire prevention & safety features as per Bangladesh law. For protection of power plant equipment and operating personal against fire, any one or a combination of the following systems will be provided for all yards, areas, buildings and equipment:

• Hydrant system - Entire Plant

Reliance

- Medium Velocity Water Spray System Cable Gallery
- High Velocity Water Spray System Transformers and LO Tanks
- Portable Fire Extinguishers Entire Plant
- CO₂/ Clean Agent Systems Switchgear Rooms, Control Rooms
- Sprinkler System for Office Buildings
- Foam cabinets and portable foam system
- Fire resistant doors and fire seal walls will be provided as per code requirements.

8.6 PLANT FACILITIES FOR EMERGENCY

- Emergency Control Centre
- Emergency Siren system
- Hand held Wireless Communicator (Walkie-Talkie used) with security & operations personnel Total quantity : 15
- 2 Fire Tenders (One at existing plant which is at less than one KM and another at site)
- Fire hydrant and fire extinguishers at critical / identified locations (In addition, being a multi-employer work site, respective contract organizations also maintain required emergency response facilities)
- Call points intercom phone in all departments
- Trained Fire Fighting team
- Trained First-Aiders
- First Aid facility at Occupational Health Centre at 750 MW CCPP
- Ambulance Van 1

Table 8-1: Supportive resources exclusively maintained for emergency response activities

S. No.	Particulars	Qty	S. No.	Particulars	Qty
1	Leather glove 16"	4	12	Artificial resuscitators	4
2	PVC Glove 16"	4	13	Helmets	4
3	Rubber Glove 16"	4	14	Rain coats	4
4	Shock proof glove 16"	4	15	Gum Boots	4
5	FIRE Suite 36" 42"	4	16	Stretchers	2
6	Leather apron	4	17	Blankets	2
7	Plain glass goggles	4	18	Torch light with cells	4
8	Goggle for gas welding	4	19	Safety Belt	4

S. No.	Particulars	Qty	S. No.	Particulars	Qty
	& cutting				
9	Welding Shield	4	20	Gas mask	4
10	Spark resistant tools	1 Kit	21	Barricade tapes	1 Rollof 5 Kg.
11	SCBA Sets	3			

8.7 EMERGENCY CONTROL ORGANIZATION [ECO]

8.7.1 Emergency Control Centre (ECC)

603. There will be an emergency control center inside the premises of the project to take action as soon as possible.

8.7.2 Emergency Siren

604. A wailing siren with different frequencies (short intervals) indicating that there is an emergency situation at site.

605. An emergency siren will be installed for the Project. If the emergency arises at proposed plant and if it is determined that situation will affect the power plant, then siren will be blown at existing plant control room as well as project site control room.

8.7.3 **Emergency mitigation teams**

606. Two teams function separately in emergency mitigation activity.

Team 1: Incident Control Team (emergency mitigating team functioning at the site of incident)

607. The team is headed by the incident controller (who is HOD of the concerned area, where emergency situation occurred) and he is assisted by:

- Emergency mitigating (Firefighting) team
- Emergency technical support team
- First aid team
- Rescue team

Team 2: Emergency Control Team (assists emergency mitigation activities from emergency control center)

608. The team is headed by CPD. In his absence Vice President (C&I) takes charge as Chief emergency Controller. (In his absence next higher official \ delegated person takes the charge as chief emergency controller). Chief emergency controller is assisted by Emergency advisory team.

ReliAnce

Figure 8.1: Emergency Control Organization Chart

8.7.4 Roles and Responsibilities

609. The roles and responsibilities described hereunder are in full. However, all elements may not be applicable to all emergencies. The responsibilities that need to be executed are specific to a type of emergency. The response procedure for each category of emergency is described in section 8.

8.7.4.1 Role of Unit Head (Chief Emergency Controller (CEC) - Project

- Assumes charge as Chief Emergency Controller
- Establish contact with incident controller through cell phones or public address system and other available systems, assesses the severity of the emergency.
- Alert other CEC and rush to the spot if required.
- In case of requirement declares emergency by arranging for blowing of emergency siren.
- Directs the team members who are assisting him regarding
- Medical arrangements at outside hospitals if required
- Transportation for evacuation of personnel
- Contacting and interacting with statutory authorities / media / relatives of the injured persons in case of any casualty through Head HR.

- Arranging additional outside help from the nearby fire stations and industries for mitigating the emergency through Head- HR/Security
- Necessary food supplies etc. for the emergency mitigating team.
- Authorizes the sounding the All Clear siren after the emergency is over.
- Arranges for investigation of the incident.

ReliAnce

8.7.4.2 Incident Controller (HOD / In charge of the area or delegated person)

610. The Incident Controller will take control of handling the emergency. The responsibilities of the Incident Controller include:

- To stop all the activities at the affected area, isolates power supply if needed
- To assess the scale of the incident and take decisions as may be required.
- After assessment of risk, if necessary, inform CPD / VP- Project to declare emergency.
- To establishes contact with chief emergency controller and inform about the situation from time to time
- To initiate the emergency procedures with the help of available facilities to secure the safety of employees, minimize the damage to plant and property and minimize the loss of material; to guide fire squad, salvage squad, first-aid squad and auxiliary team
- To direct rescue and fire-fighting operations.
- To search for casualties
- To arrange for evacuation of non-essential workers to assembly areas.
- To setup a communication point with the emergency control team within the Plant
- To assume the responsibilities of the Chief Emergency Controller till the person arrives.
- To provide support to the emergency services as requested.
- To issue verbal communication to engineers for necessary isolations and precautions, this will be treated as permit to attend emergency situations.
- To ensure that all clear siren is given in consultation with Fire squad / Combat team when emergency has been brought under control.
- To arrange for clearing of spills and waste at the site and restoring normalcy for regular operations / activities
- To collect evidences that will be necessary for subsequent inquiry to the root cause of the emergency and for concluding corrective measures to avoid recurrence

8.7.4.3 Role of Emergency Technical Support Team

- Arrange for the resources / material for controlling the emergency and to get back to normal operations
- Arranging for cranes, required tools, equipment, electrical assistance for controlling the emergency and to get back to normalcy

RELIANCE Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

- Evaluate the technical aspects in the control / mitigation of the emergency & operational continuity
- Carrying out the technical study and recommend as per the requirement
- Communicate with emergency advisory team and furnish required clarification
- Identifying and establishing contact with outside technical expertise as per requirement and getting advices or necessary help from them

8.7.4.4 Role of Emergency Advisory Team

- In absence of CPD (CEC Project), VP- Project assumes responsibility as Chief Emergency controller and carries out the activities as mentioned under the role of Chief Emergency controller.
- Others report to the Chief emergency controller guides him in controlling the situation and acts as per his instructions.
- Log the sequence of events so that report of the emergency action can be prepared for review and for identifying flaws, so as to correct the same.
- If required establishes contact with statutory authorities and media personnel as per the advice of Chief Emergency controller and gets outside help or to appraise about the situation and get help in case event turns off site emergency.
- Establishes contact with outside hospitals / nursing homes for prior information and readiness in case of sending injured to the hospitals, getting additional ambulances etc.,
- Prepare record of affected personnel with local and permanent address, establishes contact with the relatives of the injured or victimized personnel and assures them about the situation and renders necessary help as per Chief Emergency controllers' advice.
- Keep additional vehicle with drivers as stand-by and authorized to utilize any vehicle during emergency.
- Provide vehicles as directed by the emergency control Center.
- Co-ordinate with state transport authorities and other transport agencies for maximum mobilization of vehicles.
- Arranging for food, water and other requirements
- Establishing contact with nearby / industries and appraise them about the situational requirements and agree upon mutual help during emergencies. Alert them in case they are getting affected of an emergency at site to get additional help from them.

8.7.4.5 Role of Emergency Mitigating (Fire Fighting) Team

- Immediately after hearing the emergency siren the team will get ready to face the incident
- After receiving the information from CEC or Incident Controller they should report to the incident controller (HOD / in charge of concerned dept.).

- Takes directions from incident controller they should start fighting of emergency situation for general fire.
- During firefighting shall follow :
 - 1. Personnel Safety by wearing the required PPE.
 - 2. Plant, Property and Environment Safety.
 - 3. Minimum loss due to the incidence.

8.7.4.6 Role of First Aid / Rescue Teams

- Immediately after hearing the siren they should report to the incident controller (HOD / in charge of concerned dept.).
- To have directions from incident controller to start rescuing the entrapped personnel and give the necessary first aid before sending them to actual medical aid.

8.7.4.7 Role of Security

- Stop entry of all external vehicles and personnel from outside the premises.
- Shall stand in readiness for further instructions from Chief Emergency Controller and shall act as per the instructions given by him.
- Direct all the vehicles (such as ambulances, fire tenders etc.) coming for help from outside organizations to the incident spot.
- During nights if any incident which is alarming or which can cause emergency, security guard should immediately inform the same to the senior official available in the shift by mobile phone and act as directed by him.

8.7.4.8 Mutual Aid / Role of Nearby Companies

Role played by members of neighboring industries

- On receiving information and call for assistance they shall extend all possible help.
- The place of incident shall be informed and guided by the main gate security guard once they approach for providing assistance.
- Fire Crew in-charge on arrival will report to the incident controller of Reliance and as per his directions, he shall go to the site of emergency and report to the incident controller and starts their activity as directed by him.

8.7.4.9 Head – HR

- He is the only authorized person to issue public statements; coordinate & liaise with the GOVT. Officials
- He shall coordinate & liaise with medical team for arranging medical help
- He shall coordinate with the Chief Emergency Controller & arrange for required help from external agencies

8.8 TRAINING & MOCK DRILLS

8.8.1 Training

ReliAnce

611. Emergency plan and response procedures have been prepared taking in to consideration prevailing industrial / sector safety best practices. Accordingly the roles & responsibility to the concerned personnel are assigned and they are trained to carry out tasks effectively. The following aspects have been emphasized during training:

- Saving the life has been given top priority
- Reducing the loss & damage to the property

612. The emergency response team members undergo periodical refresher program to ensure their continued ability to render services more effectively.

613. Mock drills are conducted to ensure ever-preparedness of the teams to respond to any identified emergencies.

8.8.2 Mock Drills

614. Emergency response procedures are established for the identified emergencies. Mock drills for identified potential emergencies shall be conducted as per the mock drill schedule.

615. Mock drill includes any of the following scenarios:

- Fire emergencies
- Other OH&S emergencies

616. Of the above emergencies, one live mock drills and a table-top mock drill areconducted alternatively. The scenario for the mock drill may be chosen from any of the above mentioned emergencies and all aspects of the emergency.

8.8.3 Review of Mock Drill

617. For every mock drill, the safety committee reviews the efficiency and response time of the exercise as per the following criteria:

- Did the operations go on as per the plan?
- Did all persons assigned with specific responsibilities perform as planned?
- Did they experience any difficulty in performing their duties?
- How was the cooperation between the teams?
- Were there reasons for any confusion or conflicting instructions?
- Were all the persons contacted in time?
- Could they isolate plant equipment as per standard operating procedure
- 618. Rating of response to emergency is done based on the following parameters:
 - a) Communication;

- b) Equipment;
- c) Manpower and skill;
- d) Coordination within the team and with other teams.

619. The safety committee designates two observers for each of the Mock Drill and their Evaluation Report is discussed and corrective actions are implemented.

8.9 EMERGENCY RESPONSE PROCEDURE - FIRE INCIDENT

8.9.1 **Emergency response procedural steps**

- All personnel at site shall move out of their workplace and assemble at the nearest safe assembly point
- Emergency mitigating (Firefighting) team Mitigate the Fire as per procedure (Trained)
- Emergency technical support team Mobile resources as need for the situation
- First aid team Provide first-aid to the affected persons before sending them to actual medical aid
- Rescue team Assist and ensure all personnel in the emergency affected site are evacuated; carry out intensive search in the area to make double0sure that no person is left un attended
- Security Stop vehicle / personnel entry in to the site; control traffic within site
- Head HR Coordinate with rescue team and arrange for additional help such as logistics and other medical arrangements for the affected personnel
- Incident controller Blow siren for all clear indication after the emergency is over.
- Concerned HODs and Contractors Shall ensure that they take stock of their personnel to determine whether anybody is missing. Coordinate with security, HR as needed

8.9.2 Clean-up and/or restoration

620. The Emergency mitigating (Firefighting) team and the Emergency technical support team shall ensure clean-up of affected area to enable restoration of normalcy for work– Mobile resources as need for the situation

8.9.3 **Reporting**

621. The concerned contractor organization's safety representative / safety officer (if the emergency location is SMPL office, then it will the responsibility of Manager-Safety) shall report the emergency incident. This reporting is done on completion of the emergency response.

8.10 OTHER EMERGENCIES

622. Action to be taken is given against each of the identified potential emergency. On observing any of the following situations, the first observer shall report it to Safety Officer. Based on the need, Safety Officer shall plan and depute competent personnel / team to mitigate the situation.

ReliAnce

8.11 EXCAVATION CAVE-IN

- Raise alarm as per requirement or disperse unwanted personnel move away from sight of incident to
- Inform the emergency to the concerned persons as per plan
- Rush ambulance, first aid, rescue teams to the scene of incident
- Arrange to provide artificial respiration such as oxygen masks etc., if needed
- Check for any toxic gas presence before sending the rescue if possible
- Give prior information to the nearby / tie up hospitals for emergency attention to the injured
- Arrange proper equipment for removal of soil and careful rescue of trapped persons
- Deal with the injured persons carefully in case of fractures such that the fractured portion is stabilizing and not disturbed.
- Take roll call of persons working at the area to identify any missing persons and for continuing the search.
- Follow Medical emergency procedures

8.11.1 Explosions

623. Fire emergency procedures are described in section 8-7.

8.11.2 Facility Blackout - loss of electric power

- 624. Safety measures include:
 - a. Readily available flashlights;
 - b. Adequate emergency lighting; and
 - c. Security measures to prevent theft and vandalism

Safety tips in case of loss of electric power:

- NEVER use a generator indoors (example, small gen set in a room or like structure at site) where there are possibilities that exhaust fumes which contain carbon monoxide can be deadly if inhaled.
- USE portable generators outdoors only, in a dry, ventilated area
- PLUG individual appliances into the generator using heavy-duty outdoor-rated cords with a wire gauge adequate for the appliance load.
- DO NOT USE wet electrical appliances.
- DO NOT TURN ON damaged electrical appliances.
- DO NOT PUT candles on or near anything that will burn.
- NEVER leave burning candles unattended.

8.11.3 Fire, caused from other sources (with a less magnitude of severity)

625. Following materials used at construction site has the potential to cause fire:

ReliAnce

- Bitumen,
- Electrical short circuits
- Flammable materials storage areas materials that can cause fire incident include Adhesives (at stores), Diesel, Hydraulic oil, Lubrication oil /Grease, Paints and Paint thinners
- FRP Storage area (Used for cooling tower works)
- Oil rags/waste at work locations
- Shuttering material storage yard
- Wooden cases storage area
- Wooden scrap yard

8.11.3.1 Fire mitigation:

626. Use a fire extinguisher only if ALL of the following apply:

- the fire is small, contained and not spreading beyond its starting point;
- the exit is clear so you can exit safely;
- you can avoid smoke inhalation;
- a proper extinguisher is readily available; and
- You know how to use the extinguisher.

627. If any of these conditions do not apply, do not use the fire extinguisher. Call on "Emergency Number" for help and leave the area immediately.

8.11.4 Typical extinguishers and their uses

628. Water extinguishers are suitable for class A (paper, wood, etc.) fires.

629. **Dry chemical extinguishers** are useful for class ABC fires and are your best all-around choice. Their advantage over CO2 extinguishers is that they leave a blanket of non-flammable material on the extinguished material which reduces the likelihood of re-ignition. Dry chemical extinguishers cause a messy residue that will need to be cleaned.

630. **CO**₂ (carbon dioxide) extinguishers are for class B and C fires. Their advantage over dry chemical is that they leave behind no harmful residue.

8.12 MEDICAL CONDITIONS/ EMERGENCIES SERIOUS INJURIES

631. Medical Conditions/ Emergencies Serious Injuries or III Health; Causes Include but not Limited to:

- Asphyxiation from lack of oxygen during working in confined space
- Electric shock / Electrocution (non-fatal)
- Fall from height
- Person suspended in safety harness

RELIANCE Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh ESI.

ESIA Report

632. In case of any medical emergency call occupation health centre; either doctor or the paramedical staff will guide for further action. Use emergency numbers to immediately communicate the emergency and to initiate action

633. The rescue of a worker who has fallen and is being suspended in his/her safety harness needs to be undertaken as quickly as possible for several reasons:

- The worker may have suffered injuries during the fall and may need medical attention.
- Workers suspended in their safety harness for long periods may suffer from blood pooling in the lower body and this can result in "suspension trauma."
- The suspended worker may panic if they are not rescued quickly.
- The event that led to the fall may create additional risks that need to be addressed.

8.12.1 General Rescue Procedures:

A. If Elevating Work Platform is available on site:

- Bring it to the site and use it to reach the suspended worker.
- Ensure that rescue workers are protected against falling.
- Ensure that the EWP (Elevated work platform) has the load capacity for both the rescuer(s) and the victim.
- If the victim is not conscious, 2 rescuers will be probably be needed to safely handle the weight of the victim.
- Position the EWP platform below the worker and disconnect his lanyard when it is safe to do so.
- Treat the victim for Suspension Trauma and any other injuries.
- Arrange for transport to nearest hospital.

B. If no Elevating Work Platform is available:

- Where possible, use ladder(s) to reach the victim.
- Rig separate lifelines for rescuers to use while carrying out the rescue from the ladder(s).
- If worker is not conscious or cannot reliably help with his/her own rescue, at least 2 rescuers may be needed.
- If worker is suspended from a lifeline, where possible, move the suspended victim to an area that can be safely reached by the ladder(s).
- If victim is suspended directly from his/her lanyard or from a lifeline, securely attach a separate lowering line to the victim's harness.
- Other rescuers should lower the victim while he/she is being guided by the rescuer on the ladder.
- Once the victim has been brought to a safe location, administer First Aid and treat the person for Suspension Trauma and any other injuries.
- Arrange for transport to nearest hospital.
- C. If the injured person is suspended near the work area and can be safely reached from the floor below or the area they fell from:

- Ensure that rescuers are protected against falling.
- If possible, securely attach a second line to the workers' harnesses to assist in pulling them to a safe area. (Note: at least 2 strong workers will be needed to pull someone up.)
- Ensure that any slack in the retrieving lines is taken up to avoid slippage.
- Once the victim has been brought to a safe location, administer First Aid and treat the person for Suspension Trauma and any other injuries and arrange for transport to the nearest hospital.

D. If a person has fallen and is suspended in an inaccessible area (e.g. a tower, against a building or structure that has no openings):

- Specialized rescue techniques are needed for this type of situation. It may involve a rescuer rappelling or being lowered down to the victim, it may involve using the lifeline to retrieve the fallen worker, or the use of high-reach emergency equipment.
- Due to the inherent risk to the rescuers and/or the victim, this type of rescue should not be undertaken by people without specialized training and experience

8.13 PANDEMICS/EPIDEMICS/ OUTBREAKS OF COMMUNICABLE DISEASE

634. Generally media (Newspapers / TV) provides alerts of such situation. If any person working on SMPL site is suffering from or has symptoms of or someone else at site suspects co-worker of having pandemic / epidemic / outbreaks of communicable disease, immediately inform HR. HR and Admin will take immediate action to protect the workforce at site

8.13.1 Traffic accidents

- 1) Disperse unwanted personnel move away from sight of incident to the nearest assembly points
- 2) Inform the emergency to the concerned persons as per plan
- 3) Rush ambulance, first aid, to the scene of incident
- 4) Give prior information to the nearby / tie up hospitals for emergency attention to the injured
- 5) Deal with the injured persons carefully in case of fractures such that the fractured portion is stabilizing and not disturbed

8.13.2 Natural calamities

8.13.2.1 Earthquake

635. In case of earth quake, no siren will be given all the personnel inside the plant are instructed to shut down their operations and come out in to open yard and assemble at the assembly points. If required, transportation will be arranged for sending the people to safer places. Rescue operation will be carried out by security personnel for any possible casualties and the same are given first aid treatment and will be sent to the nearest hospitals in case of requirement.

RELIANCE Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

8.13.2.2 Flooding (Heavy rains)

636. When there is a flood caused by heavy rain, those who are in the basements and ground floor should reach the upper floors through the exit stairways and assemble just outside main gate. Water flood will endanger building basement and low level floors. Remain in the upper floors till the water recedes or as instructed.

8.14 ACTIONS TO BE TAKEN

637. De-energize equipment immediately if the flood is isolated to your facility due to sprinkler system activation, broken pipes. Cover equipment with waterproof sheeting.

- a) Monitor conditions and escape routes.
- b) Shut off electrical power and utilities if flooding is imminent.
- c) Immediately evacuate to higher ground—flood waters often raise rapidly.
- d) Call fire services if needed.

8.14.1 Recovery action

- a) Ensure that facilities and equipment are cleaned, dehumidified, sanitized and deodorized before allowing the re-entry of employees.
- b) Do not turn on utilities until the structure, appliances and utilities are dry and the building is checked for safety.
- c) Be sure water supplies are safe to drink. Dispose of any food or consumables that may have been in contact with flood waters.
- d) Begin mitigation planning to avoid repetition of same problems in future.

8.14.1.1 Cyclones / heavy winds

- a) Know about the severity / direction of the cyclone from news bulletins / meteorological dept.
- b) Review the activities / operations planned and stop operations which may create an emergency situation due to cyclone / high winds
- c) Ensure emergency equipment such as batteries / torches etc., are in availability
- d) Ensure food supplies to the work force
- e) Ensure readiness of emergency vehicles / medicines, medical center with staff etc.

8.15 DISASTER MANAGEMENT PLANNING FRAMEWORK DURING NATURAL CALAMITIES

9 ANALYSIS OF ALTERNATIVES

9.1 SITE DESCRIPTION

638. Apart from fulfilling the existing environmental guidelines as per ADB and IFC, one of the utmost priorities is to identify the potential alternatives for the site(s) as well as technological aspects.

639. Selection of potential sites for power plant operations depends on availability of land, transmission facilities, accessibility in transportation, and proximity to fuel, water sources, and infrastructural and power evacuation facilities.

640. The present land for the proposed 750 MW gas base CCPP has been allotted by BPDB. The present land is owned by BPDB and has been earmarked for development of power plant only. The site has distinct advantages in respect of the following:

- Availability of land
- Rail/road accessibility
- Availability of fuel and proximity to source
- Availability of water and proximity to source
- Proximity to the grid for evacuation of power
- Environmental consideration
- Rehabilitation & Resettlement issues

641. The most important criteria for selection of site for TPS is availability of land with least R&R issues, fuel availability and its transportation, water availability within a reasonable distance and the acceptability from the environmental considerations. After investigating the overall site features discussed above conforming to the requirements and considering the demand of power generation as per Power system Master Plan 2010 in the Bangladesh, the land agreement has been accorded between Reliance Bangladesh LNG and Power Limited and BPDB for the development of power project.

9.2 SITE SUITABILITY

642. No major impact on environmental conditions around the Site location. Reliance Bangladesh LNG and Power Limited finally decided to establish the Power plant at Meghnaghat where already 3 other power projects are in operation, Project Location is suitable for the proposed LNG based CCPP at Meghnaghat. Site suitability has been described in following section:

9.2.1 Land

643. Land is acquired by the BPDB in 1995 for the Power projects. Bangladesh is a densely populated country due to which land cost is generally very high and acquisition is a serious concern if the land is inhabitable. No other land area in this district is suitable for the setup of power plant since it is away from the urban setting.

9.2.2 Accessibility

ReliAnce

644. The site location is 2 km away from the Dhaka-Chittagong Highway and 8.9 km away from the Narayanganj Railway Station. But since accessibility of the road network from the regional road network to the project site requires much of strengthening of roads and bridges, transportation of the heavy equipment through construction jetty is an alternate cost effective option.

9.2.3 **Fuel**

645. The fuel proposed for this project is primarily Natural gas and RLNG. The gas requirement for 750 MW CCPP is about 130 mmsc fd at 100% loads& 110 mmscfd at 85% load respectively. The fuel (LNG) will be brought to the site through existing gas pipeline network. It is found that natural gas to the existing power project site consists of 20 pipelines with gas supply from Titas gas. However, the gas requirement of 130 mmscfd at 100% load will be tied up with FSRU terminal & other swapping mechanism with the gas grid. Proposal has been made for 500 mmscfd FSRU based LNG terminal for supplying re-gasified LNG to the power plants, to be setup together with the Plant at Kutubdia Island in Cox's Bazar region of Bangladesh.

9.2.4 Water

646. The main source of water in Bangladesh is from river, ground or sea. For the project operations, water will be needed for

- Cooling water system for steam condenser. This system in a power station is the largest consumer of water.
- Cooling water for STG & HRSG auxiliaries, compressors, A.C. System etc.
- Cooling of Gas Turbine auxiliary equipment.
- Make-up water for power cycle (HRSG make-up).
- Other auxiliaries like service and make up water.

647. The fresh water requirement envisaged for the project is around 1076 cum/hr with closed cooling water system. It is identified that the demand of water will be fulfilled through Meghna stream adjacent to the site location.

9.2.5 **Power Evacuation**

648. The power generated from the proposed plant will be evacuated at 400 KV voltages having adequate nos. of transmission lines and connected to Grid. Govt. of Bangladesh shall facilitate firm power evacuation for the Project. For the plant capacity of 750 MW, 400kV two double circuit lines will be used for the evacuation of power. It is proposed to connect plant substation to the 400kV lines connecting Amin bazar using a LILO as a temporary measure. Further, it will be connected to PGCB400 kV AI Sat Meghnaghat in future once it is ready.

9.2.6 **Resettlement and Rehabilitation**

649. The project site is located on a government land which has pre-existing power plants. The land doesn't belong to any individual or personal owner; hence requires no R&R consultation or component.

9.3 ALTERNATIVE TECHNOLOGY OPTIONS

9.3.1 Alternative Technology Option with respect to configuration

650. Alternative technology options for combined cycle power plant configuration are:

- Option 1: Single block of 750 MW in single shaft configuration
- Option 2: Two blocks of 375 MW in single shaft configuration

9.3.1.1 Option1: Single block of 750 MW in single shaft Configuration

651. For the project, Reliance Power Limited has proposed LNG based combined cycle power generation technique with latest available modern technology to maximize the efficiency of power generation process. The proposed 750 MW gas-fired combined cycle plant will consist of two gas turbines, two heat recovery steam generators and one steam turbine. Advanced Hot Gas Path is envisaged and is an integrated system solution that delivers improved reliability, higher efficiency, increased power output, while maintaining NOx and CO emission levels. Heat Recovery Steam Generator (HRSG) which converts the exhaust heat generated from the gas turbine into steam and delivers it to the Steam turbine further which delivers additional electricity. If HRSG not used, the exhaust heat would otherwise escape through the stack into the air.

9.3.1.2 Option 2: Two blocks of 375 MW in single shaft configuration

652. The site gross output varies from about 339 MW to about 364 MW and the efficiency varies from about 55.92% to 56.79%. This configuration would be suitable for base load application. The start-up time is shorter and the operation would be simpler compared to the multi-shaft configuration. Here the Gas turbine and steam turbine design has to be coordinated as the GT, HRSG and ST would be offered as a single block. The area required for two blocks of 375 MW (in total 750 MW) power, each block comprising of 1 GT, 1HRSG and 1 ST and a common generator along with their auxiliaries in single shaft configuration would be about 50% extra. The number of generators for a typical block of 350 MW power island in single shaft configuration would be one (common for both GT and ST) and for the ultimate capacity of 750 MW comprising totally 2 blocks of 350 MW, there would be 2 generators.

9.3.2 Single v/s Combined Cycle

653. A gas turbine could function in simple cycle, in combined cycle or in both cycles. In simple cycle, high-temperature exhaust gases are released directly into the atmosphere through bypass stack, while in combined cycle exhaust gases enter the recovery boiler for production of steam. The steam then enters the steam turbine for production of electric energy.

9.4 CONCLUSION

ReliAnce

654. BPDB has acquired the land back in 1995 and since then it has been uses only for the purpose of building power plant projects. There are three other projects adjacent to the site and there is no better ground in sight for the power plant project at this moment. The project aesthetic looks are modern and environment compatible, the site is environmentally acceptable. Currently, there are some existing power plants at the area and the site area has been developed for power hub of BPDB. Therefore, the project site is suitable for the proposed Reliance Meghnaghat 750 MW Combined Cycle Power Plant.For the project, Reliance Power Limited has proposed LNG based combined cycle power generation technique with latest available modern technology to maximize the efficiency of power generation process. So there is no logical need to look into alternative sites or alternative technology.

SI	Site Selection options	Selection Criteria			Remarks
		Negative	Nutral	Positive	
1	Site Suitability				Allocated for power plant
2	Land			\checkmark	Developed land
3	Accessibility			\checkmark	Built access road
4	Fuel			\checkmark	Clean fuel, Natural Gas
5	Water			\checkmark	Near to river
6	Power Evacuation			\checkmark	Built in for other projects
7	Ressettlement & Rehablitation			\checkmark	Not an issue
8	Technological options			V	The best available technology from techno commercial point of view is considered.
a.	Combined cycle operation			\checkmark	More efficient
b.	Close loop cooling			\checkmark	No thermal pollution
C.	Turbine selection of low NOx and H class high efficient turbine			\checkmark	Highly efficient compared to conventional one.

Table 9.1: Site selection matrix

10 INFORMATION DISCLOSURE, CONSULTATION, AND PARTICIPATION

10.1 STAKEHOLDERS CONSULTATION

655. Stakeholder consultation is a means of involving all primary and secondary stakeholders in the project's decision-making process in order to address their concerns, improve project design, and give the project legitimacy. Stakeholder consultation, if conducted in a participatory and objective manner, is a means of enhancing project sustainability. Public consultation and participation has been viewed as a continuous two ways process involving, promoting of public understanding of the processes and mechanisms through which developmental problems and needs are investigated and solved. The public consultation, as an integral part of environmental and social assessment process throughout the project preparation stage not only to minimizes the risks and unwanted hurdle against the project implementation but also bridges the gap between the community and the project formulators which leads to successful and timely completion of the project and making the project people friendly.

656. Therefore, keeping in mind the above objective public consultation with the people of different section of the society, like local administrative officials, some related social agencies, business groups, community representatives, respectable and influential persons of the project, area were made. Moreover, potential vulnerable people were also consulted with the aim to make people aware and minimize adverse impacts of the project. The option of alternative design was also discussed to achieve accelerate the implementation of proposed solar project with people's involvement.

657. Community input (both of knowledge and values) on socioeconomic and environmental issues can greatly enhance the quality of decision-making. Stakeholder consultation was therefore conducted in the project area not only to satisfy the legal requirements of the ESIA process in Bangladesh but also to improve and enhance the social and environmental design of the project.

658. As per the Safeguard Policy Statement (SPS) of ADB, Public Consultation and participation plan needs to be included in the EIA/ESIA Report for all stages of the project (project design, construction and operations phase) for categories "A" and "B". Also, a documentation of meaningful consultation with affected local communities especially project affected persons needs to be carried out.

10.2 IDENTIFICATION OF THE STAKEHOLDERS

659. People who live near and around the project who will be directly and indirectly affected by the project are considered as the stakeholders. For this particular project, stakeholders are the fishermen, the people who live near the project, the cow owners and the workers of the nearby factory. For the sake of their interest, it is an absolute necessity to consult all primary and secondary stakeholders.

Key stakeholders Identified							
FGDs conducted	Local communities, Men, Women and local elders						
Meeting	Local Government representatives Chairman and Secretary of Pirojpur						
	Union Parishad)						
Meeting	NGOs						
FGDs	Community involved in Fishing activity and their family						
FGDs	Cow Owners						
Meeting	District Fisheries Department						
Meeting	Department of Environment. (DoE)						

Table 10-1: Identified Key stakeholders

10.3 OBJECTIVES OF STAKEHOLDERS CONSULTATION

660. The process of public participation and consultation was endorsed in the United Nations Conference on the Environment and Development (UNCED) in 1992 through one of the key documents of the conference Agenda 21. Agenda 21 is a comprehensive strategy for global action on sustainable development and deals with issues regarding human interaction with the environment. It emphasizes the role of public participation in environmental decision-making for the achievement of sustainable development.

661. For projects that have environmental and social impacts, consultation is not a single conversation but a series of opportunities to create understanding about the project among those it will likely affect or interest, and to learn how these external parties view the project and its attendant risks, impacts, opportunities, and mitigation measures. Listening to stakeholder concerns and feedback can be a valuable source of information that can improve project design and outcomes and help a company to identify and control external risks. It can also form the basis for future collaboration and partnerships. For stakeholders, a company's consultation process is an opportunity to get information, as well as to educate company staff about the local context in which a project will take place, to raise issues and concerns, ask questions, and potentially help shape the project by making suggestions for the company to consider and respond to through the public consultation process, the Reliance Bangladesh LNG and Power Ltd. hope to:

- Promote better understanding of the project, its objective, and its likely impact;
- Identify and address concerns of all interested and affected parties of project area;
- Provide a means to identify and resolve issues before plans are finalized and development commences, thus avoiding public anger and resentment and potentially costly delays;
- Encourage transparency and inculcate trust among various stakeholders to promote cooperation and partnership with the communities and local leadership;
- Assessment of possible requirement of improvements;
- Solicit the views of affected communities/individuals on environmental and social problems;
- Improve environmental and social soundness;
- To settle problems with mutual consent;

• Create accountability and sense of local ownership during project implementation.

10.4 CONSULTATION PROCESS

662. The process of stakeholder consultation include:

- Identification of the relevant stakeholders including all those individuals, groups and organizations potentially affected by or interested in the project;
- Imparting information about the project and its potential impacts on their lives in local and simple language;
- Recording of their concerns and aspirations through survey and discussions;
- Responding to their queries in a neutral manner.

663. In the primary survey a list of open-ended questionnaire is used in both the focus group discussions and the individual interviews. A two-person survey team carried out the discussions and the interviews. Project proponent, Local communities, Men, Women and Old persons, Members of Narayanganj, Local Fishermen and their Family member, Cow owners, Consultation with NGOs, villages, government officials of revenue and rural development department, local labours, contractors were our stakeholders to whom we consulted.

664. Primary stakeholders were consulted during informal and formal meetings held in the project area. The consultation process was carried out in both languages Bangla and English. During these meetings a simple, non-technical, description of the project was given, with an overview of the project's likely human and environmental impact. This was followed by an open discussion allowing participants to voice their concerns and opinions. In addition to providing communities with information on the proposed project, their feedback was documented during the primary stakeholder consultation. The issues and suggestions raised were recorded in field notes for analysis, and interpretation.

665. By reaching out to a wider segment of the population and using various communication tools—such as participatory needs assessment, community consultation meetings, focus group discussions, in-depth interviews, and participatory rural appraisal—ESIA involved the community in active decision-making. This process will continue even after this ESIA has been submitted, as well as during future ESIAs in which similar tools will be used to create consensus among stakeholders on specific environmental and social issues in the context of a proposed project.

666. It was important not to raise community expectations unnecessarily or unrealistically during the stakeholder consultation meetings in order to avoid undue conflict with local leaders or local administrators. The issues recorded in the consultation process were examined, validated, and addressed in the ESIA report.

10.5 PROJECT DISCLOSURE: AWARENESS ABOUT THE PROJECT

667. A focused group discussion / public consultations were conducted in District Meghnaghat, Narayanganj and Village Char Balaki. All the attendees expressed their full support for Combined Cycle Power Plant. Local community found comfortable with proposed

development. Locals were already aware of the upcoming project. In consultation, approximately 10-12 people at each location were participated. Consultant team has also consulted/discussed informally with youths, women and daily wage workers in and around the project site. At the very beginning of the public consultation/discussions the participants were introduced about the details of CCPP. It was explained to them that the project was explained and those present were informed that the project will be constructed in Narayanganj. No acquisition of land is needed for the proposed project. No permanent acquisition of land and consequent resettlement will be required for the project. Some noise, air pollution may occur, but it will be minimized using proper methods. The consultant has carefully studied all types of impacts in the locality likely to be affected by the proposed plant and informed the gatherings of the impacts. Information dissemination and consultation will continue throughout the project implementation period.

10.6 STAKEHOLDER CONSULTATION TECHNIQUE

668. In recognition of the diversity of views within any community, it is very important to obtain a clear understanding of the different stakeholders and to analyze their capacity and willingness to be involved in some or all of the project and its planning process. It is important to be aware of how different power relations can distort participation. It is also important to examine how community skills, resources, and 'local knowledge' can be applied to improve project design and implementation. All of this can be achieved by careful use of the various tools of Stakeholder Consultation. Therefore, the following participatory technique was employed during stakeholder consultation:

• Informal meetings with communities in surrounding areas. Men, women and local elders attended these meeting.

10.7 STAKEHOLDERS CONSULTED

669. In the consultation process for ESIA, there were two types of stakeholder consultation; Formal and Informal. Formal stakeholder comprises of those government officials and institutions whose consent and consultation views would be prime i.e. Government agencies, NGOs, and District fisheries department. Given below is a description

10.7.1 Informal Stakeholder Consultation

670. Following key stakeholders were consulted during the informal consultation process:

10.7.1.1 Local communities, Men, Women and local elders

671. People of different age group attended the meetings. They were briefed about the project activities and its impact on the environment. The participants talked about their concerns and expectations.

10.7.1.2 Local Fishermen & their family members

672. The local fishermen are one of the most significant stakeholders of this project. They were consulted on multiple occasions including in two focused group discussions (FGD). They were well informed after the consultation process and they discussed about their concerns and their expectations.

10.7.1.3 Cow owners

673. There are no formal cattle farm near the project area but some people lived near the project area use to graze some of their domestic cows on the project land due it is unprotected and have no fence. The num2ber of $_{co}$ ws is merely 25-30 and there are plenty of green fields around the project vicinity where they could find alternative grass land for the grazing of their cows. They are aware of the project and they informed that they will drive their cows elsewhere once the proposed land is occupied.

10.7.2 Formal Stakeholder

10.7.2.1 Local Government representatives

674. The local government representatives were made aware of the project and they extended their help during collecting statistics of the local establishments.

Figure 10.1: Consultation with Local Government Representative (Chairman and Secretary of Pirojpur Union Parishad)

Figure 10.2: Consultation with Local Community

10.7.2.2 NGOs

675. The local NGOs working in the community were consulted during the consultation process and they provided help during collecting data of the socio economic condition and the present employment statistics.

Figure 10.3: Consultation with NGOs

10.7.2.3 FGD with Fishermen

676. The village, Char Balaki, has roughly 200 families living there nearly for many years. Most of the households depend on the fishing for their livelihood. On the aspect of livelihood currently their greatest needs are:

- Lack of safe landing station for travellers, commodities and goods;
- No proper communication means to reach from mainland to the char;
- Lack of variety of fish nets;
- Seasonal variation of number of fishes found.

677. Nearly 70% people in the village are poor, 20% are low middle class and 20% middle class who earn nearly BDT 5000.00-10000.00 and 10000- 20000 per month respectively as reported by the participants. They identified the major reasons of concern are as:

- Lack of capital;
- Traditional Fishing methodology;
- Provide them opportunity for safe fishing with the intervention from District and Local Administration;
- RBLPL should pursure for them for a permanent landing station in both side of the river for safe fishing,
- Establish primary schools.
- Provide them capital with easy and low interest rate,
- Establish one cyclone shelter that can be used as primary schools during normal time,
- Arrange income generation activities for women along with training.

- Provide employment opportunity for the poor both men and women,
- Provide electricity for the betterment of the people from all age

678. The participants including men and women were noticed from the local people about installation of Reliance Meghnaghat 750 MW CCPP and they do not find any negative impact on their livelihood/fishing. Instead they welcome the power generation activities for the betterment of the country but they regret being deprived of electricity till days. In the past, they didn't find the activities of the power plants detrimental to the fishing activity. They seek help from the "Reliance" to provide employment to skilled and unskilled workers. They also hope that Reliance will contribute to the betterment of the locality by providing hospitals, training centres and roads for gentrification of the community.

Figure 10.4: Consultation with Fishermen (FGD)

10.7.2.4 Inventory of Fishing Activity of the Surrounding Area

679. Fishermen in the village do fishing within 5-6 kilo meters around the char including 40-50 meters from the outfall. Some fishermen do fishing in other areas sometimes. Each fishermen consisting of two members can catch 5-10 kg fish per day in rainy season and 1.5 - 2 kg per day in winter season. Per kg of fish is sold ranging from BDT 500.00 to 700.00 tk.

680. The fishermen generally catch small fish like prawn and catalee. They also catch Aiyeer, Ruhi, Ishish, Boyal, Kachki, Chapila, Cheowa etc. abundantly from this area. Some fishermen make their living entirely on catching prawns of different size. The whole surrounding area near the project site and Char Balaki is enriched with various fishes.

ReliAnce

Figure 10.5: Types of Fishes Caught in the Area

681. In the entire island of Char Balaki, there are more than 100 fishermen families whose incomes are primarily dependent on fishing activity. According to the fishermen, they make somewhere between 10,000 to 20,000 tk per month depending on the season and availability of fish.

682. The main concern of the fishermen is that after the heavy industrialization of the area (especially chemical factories and ship breaking yards), the amount of fishes that can be caught daily has lowered than it used to be 10-15 years ago. But they stated that the power plant projects have not affected their fishing activities because the existing power plants have imposed strict regulations in terms of the discharge. The people fishing around the power plant discharge points are mainly intermittent or recreational fishermen and they have not complained about the river water near the existing power plants.

- 683. The seasonal availability of fishes is shown in **Figure 10-6** (according to fishermen).
- 684. After consultation they have stated a few demands:
 - As the cows are their second source of income, the project authority must consider them while recruiting for the construction and operation phase.
 - The road across Mongoler Gaon is in terrible shape and them what the authority to help them fix their road.

Figure 10.6: Areas of Fish availability in the Monsoon (According to the Local Fishermen

10.7.2.5 FGD of Cow Owners

685. As the project site is empty at present and without any fencing, people living around the area use the area as a cattle grazing ground. There are 25 to 30 cows that graze in the existing project site every day. People living in the area named Mongoler Gaon are the ones who own most of these cows. It is their secondary source of income and many of them are workers of existing power plants. They have been consulted about the future of their now used grazing ground. They have been informed about how much place will be occupied by the proposed project.

ESIA Report

10.7.3 Alternate Grazing Ground

ReliAnce

686. According to the cow owners, the Project site is not the only place they use for grazing their cows. They graze their cows wherever they can manage an empty piece of land covered with grass. The project will not occupy the entire land; therefore the remaining land can be used as a grazing ground. As per their indication, the future grazing ground has been shown in **Figure 10.3**.

Figure 10.7: Consultation with Local Cow Owners (Mongoler Gaon)

Figure 10.8: Consultation with Local Cow Owners (Mongoler Gaon)

ReliAnce

Meghnaghat 750 MW Combined Cycle Power Plant, Narayanganj, Bangladesh

Figure 10.9: Alternative Grazing Ground after the Completion of the Project

10.8 STAKEHOLDER CONCERNS AND RECOMMENDATIONS

10.8.1 Community Concerns

ReLIANCE

687. The community consultations demonstrated that goodwill towards the project proponents indeed exists; approval for project activities by the communities is evident. The proponent recognizes that benefits from the project should be distributed judiciously and equitably especially among primary stakeholders in the project area, and will continue to ensure that this principle is followed in its projects and community development program. The consultation process should include the local people with different life styles.

10.8.2 Resettlement/ Relocation

688. The proposed project is situated in the Meghnaghat mauza of Sonargaon, Narayanganj. The site is surrounded by Meghna River in the north, west and south direction. There are three major power plants situated in the east of the project site. The land was low lying char land owned by Government (Government Khas land); PDB acquired the land in 1995 and developed the area as Power village. Therefore, resettlement or relocation is not an issue for this proposed project.

10.8.3 Local Employment

689. Communities in the project area emphasized that local people should be given priority when employing people for various project-related works and activities according to their skills.

10.8.4 Compensation

690. As the proposed power plant site will be established in an empty land leased by BPWD to Reliance, compensation is not required in the proposed project activities.

10.8.4.1 Interaction with Local Community

691. Non-Local work force coming in the project area that will not be aware of the local customs and norms, may result in conflicts with the local community, keeping in mind the sensitive law and order situation and culture of the area.

10.8.4.2 Impact on Environment & Livelihood

692. The public consultation should include the impact on people of their living environment and livelihood. In the public consultation meetings, people should be asked regarding this issue.

10.8.4.3 Impact on Fishing

693. Since the proposed project would have close circuit cooling and no thermal discharge, the temperature rise in the Meghna River not be an issue for such project; therefore, the project will not hamper aquatic life.

10.8.4.4 Impact on Grazing

694. The project site is currently empty, unprotected and not confined. Currently scattered cow owners use this land to graze their cows taking the advantage of unprotected nature. After consulting the cow owners, it appeared that they are concerned about their activities

and they are motivated themselves to find alternative space for the cow grazing near the river bank once the project will be implemented. They still appreciated this endeavor which will lead to the development of the surrounding area and create employment opportunities.

10.9 COMMUNITY RECOMMENDATIONS

RELIANCE

- They local community recommends and demands development of infrastructures surrounding the project area to provide better communication.
- They demand employment of the local young manpower during construction and operation phase.
- They want to be provided with technical and vocational training centers to help them build up their skills.
- They want training centers for the local women so that they can join the workforce as well.
- There is no hospital nearby the project site. A medical facility will be a great facility for the community.
- Primary and high schools need to be built up to ensure educational facility for the local children so that they can propel towards a better future.

10.10 LOCAL GOVERNMENT & OTHER REPRESENTATIVES

695. During the consultation, the proponent and Local Government representatives were present and consulted. The local NGO people were welcomed and consulted. By considering all local people, government officials and NGO people, the meetings were be run through direct queries and feedbacks.

10.11 FORMAL STAKEHOLDER CONSULTATION

696. A formal stakeholder consultation was carried out on August 28th, 2017 with a vision to engage with the community a lot better than the informal ones.

10.11.1 Public Notice

697. An advertisement was published on 21st August, 2017 in Daily Iyad (फिनिकडेग़ाफ), a local newspaper of Narayanganj, to send the announcement to the general dwellers of Sonargaon. A detailed Public consultation process is enclosed as Annexure – 10.3

Photographs of the Public consultation

10.12 FUTURE STAKEHOLDER ENGAGEMENT PLAN

698. Almost all categories of the stakeholders have been considered during the stakeholder consultations and focus group discussions. Moreover, newspaper advertisement was also published prior to conduct formal public consultation so as to convey the information to all type of people within the area.

699. Stakeholder consultations are ongoing process, for the betterment of the community, the Reliance Bangladesh LNG & Power Limited authority is advised to hold future stakeholder consultation during construction and operation phase in order to make sure that the dwellers are not being harmed by any means.

700. The consultation process must be carried out at regular interval with people near and around the project site. It can be carried out half yearly or annually and in those meetings, the Reliance authority must listen to their voices and try to solve their problems if any that will be caused for the project.

Declaration

701. It is hereby declared that Adroit Environment Consultants Ltd. has collected the baseline data and prepared this report named "Environmental & Social Impact Assessment and Management Plan for 750 MW Gas based Power Station at Meghnaghat, NaraynGanj, Bangladesh. M/s Voyant Solutions Pvt Ltd. was entrusted to re-write the report in alignment with Safeguard Policy of Asian Development Bank, SPS 2009. We hereby validate and declare the ownership over the data and content of the report for all purposes.

11 GRIEVANCE REDRESSAL MECHANISM

702. Public participation, consultation and information disclosure should be undertaken as part of the local ESIA process. Continued public participation and consultation have been emphasized as a key component of successful project implementation. As a result of this public participation during the initial stages of the project, major issues of grievance are not expected. During the construction and operational phase of the project, the complaints that may be anticipated are mostly related to dust, noise & vibration of the construction activities and turbines. However, unforeseen issues may also occur. To settle such issues effectively, an effective and transparent channel for lodging complaints and grievances will be established. The grievance redress mechanism should be scaled to the risks and adverse impacts of the project. It should address affected people's concerns and complaints promptly, using an understandable and transparent process. It should also be readily accessible to all sections of the community at no cost and without retribution.

703. The Grievance Redressal Mechanism will be implemented during both the construction and operational period of the project to ensure that all complaints from local communities are dealt appropriately, with corrective actions being implemented, and the complainant being informed of the outcome. It will be applied to all complaints from affected parties. The mechanism will be accessible to diverse members of the community, including more vulnerable groups such as women and youth. Multiple means of using this mechanism, including face-to-face meetings, written complainants should be honored where this is seen as necessary or important.

704. A grievance redressal mechanism and procedures is setup to provide opportunity for project affected persons to settle their complaints and grievances amicably. The established grievances redress procedures and mechanism ensures that project affected persons are provided with the appropriate compensations and that all administrative measures are in line with the law. It also allows project affected persons not to lose time and resources from going through lengthy administrative and legal procedures. Grievances are first preferred to be settled amicably.

ReliAnce

705. RBLPL shall set-up a grievance redressal committee that will address any complaints during both the construction and operational period of the project. RBLPL through its Grievance Redressal Mechanism intents to form a committee, where the Project Manager will be the prime contact and officer who will drive the action. In the panel female members will be deputed who will be from project itself, as to bring inclusion of all gender related issues and grievances identified. Team leaders from workers community and site/village panchayat level will also be made prime stakeholders. All the grievances from the individual/ community level will be directly addressed to PMU/Project Manager in written and verbal form, further an apt action will be taken to address the query. If the grievance is related to women or has some gender sensitive component it will directly be transferred to senior female authority deputed in GRM of RBLPL. Given below is a tentative diagram to clarify the mechanism:

ReliAnce

ESIA Report

Figure 11.1: Flowchart of Complaints/Grievance Procedure

706. The representation in the committee makes project affected persons to have trust and build confidence in the system. The grievance redressal committee will report its plan and activities to the Implementation committee. The committee will be formed in near future and will be included in the final ESIA report.

707. The **Table 11.2** is an official form based on the ADB guidelines, which comprises of the essential components like; age, sex, caste, religion, gender of the complainer along with a detailed form which will entail all the issues or hindrances a person is suffering from. Due to its transparent approach the GRC will ensure full confidentiality in complainer's information or issues. At later stage in implementation or operational phase an official form for the aforesaid GRM will be brought/ disclosed in public domain. RBLPL proposes now to have such robust mechanism in its system of project planning and execution.

708. GRC will maintain a Complaints Database, which will contain all the information on complaints or grievances received from the communities or other stakeholders. This would include: the type of complaint, location, time, actions to address these complaints, and final outcome. The GRC will maintain records of the grievances received, in written and oral form, including the details of the complaint, the subject of the grievance, the appropriate department, and the status of the grievance. A sample recording format is provided in the following **Table 11-1**.

Table 11-1: Sample Recording Format for Grievance Redressal:

ReLIANCE

SI No.	Date	Village	Name of Complainant	Details of Grievance	Concerned Department	Status	Remarks

709. The procedures to be followed and adopted by the grievance redress should be transparent and simple to understand. Uniform process for registering complaints will provide project affected persons with free access to the procedures. The response time between activating the procedure and reaching a resolution should be as short as possible. An effective monitoring system will inform project management about the frequency and nature of grievances. GRC will arrange half yearly meetings where the activities and the outcomes/measures taken according to the Complaints. Database is to be monitored and reviewed by third party consultant to ensure the required transparency. In addition to the above, if there are any grievances related to environmental management issues in the project area, the GRC will record these grievances and suggestions and pass it on to the relevant consultant for necessary action and follow-up.

710. GRC will be responsible to response for the grievances within a time limit. The initial movement to identify the causes should be taken within 48 hours. The GRC will not take more than two weeks to take the final initiative.

711. In case a dispute is not resolved by arbitrational tribunal, then if any of the Party disagrees, the aggrieved party has the right to appeal to the ordinary courts of law. However, the preferred option of dispute settlement ought to be the option of settling the dispute amicably because recourse to courts may take a very long time even years before a final decision is made and therefore, should not be the preferred option for both parties.

11.1 GRIEVANCE REDRESSAL MECHANISM FOR EMPLOYEES AND CONTRACTUAL WORKERS

712. A schematic representation of the grievance redress procedure for employee and contractor will be followed by RBLPL is shown in **Figure 11-2**.

Figure 11.2: Grievance Redressal Mechanism for Employees and Contractual Workers

713. As stated in the above figure, the employees and contractual workers can register their grievances in verbal or written form by communicating their grievances to the compliance personnel or group audit personnel or by dropping the grievance in the compliant box, which will be located at every strategic location of the facility. The GRC will maintain a log of all complaints received in the form of a Grievance Register. Grievance log will help to track cases, respond to grievances in a timely manner, check the status of complaints and track progress, measure effectiveness, and report on results.

714. The GRC will then review and investigate the grievance, along with the representatives from the concerned departments; will identify measures to resolve the grievance as appropriate. This could involve provision of information to clarify the situation, undertaking measures to remedy actual problems or compensate for any damage that has been caused, and introduction of mitigation measures to prevent recurrence of the problem in the future. Where a grievance is found to be not a real problem a clear explanation will be provided to the complainant.

715. On the basis of the investigation, a formal response detailing how the grievance has been resolved will be provided to the complainant within 15 days where possible, and at the most within 4 weeks. Where resolution is delayed the complainant will be provided with regular updates on progress. On the basis of the response, the grievance form will be updated and the grievance will be closed.

11.2 SUGGESTIONS AND COMPLAINT HANDLING MECHANISM:

ReliAnce

716. RBLPL recognizes the importance of complaint handling mechanism and hence intends to establish a SCHM (Suggestions and Complaint Handling Mechanism) for the project. The communication channels to report project related complaints/concerns will be disclosed at all levels of institutions. Under the provisions of the Right to Information Act, 2009, an Act of the Republican of Bangladesh which provides for setting out the practical regime of right to information for citizens, any citizen may request information from a "Responsible Officer" who shall provide the information within 20 working days from the date of receipt of application. In case more than one information providing unit or authority is involved with the information requested, then information shall be given in 30 working days from the date of application. The Act also requires every public authority to computerize their records for wide dissemination and to pro-actively publish certain categories of information so that the citizens need minimum recourse to request for information formally. However, it is quite likely that many people may not use the provisions of this Act, and will only restore to the Act in limited cases covering serious concerns. Being a project involving several divisions, districts and large scale of civil works along with Environment issues, the project is likely to receive many suggestions, complaints, inquiries, etc. through the project implementation period.

11.3 FUNCTIONAL PREMISES OF GRC FOR GRIEVANCE REDRESSAL:

717. The GRC meetings will be held in RBLPL project office at site and the same will be widely publicized in project area for the knowledge of general public. The key responsibilities of GRC are as follows:

- Review, consider and resolve grievances related to social and environmental aspects received by the RBLPL site office.
- Entertain grievances of indirectly affected persons and/or persons affected during project implementation.
- Resolve grievances within a period of two weeks at the GRC level and communication of the resolution to the aggrieved party.
- The GRC shall not engage in any review of the legal standing of any "complaint" nor shall deal with any matters pending in the court of Law.
- Arrive at decisions through consensus, failing which resolution is based on majority vote. Any decision made by the GRC must be within the purview of Environmental Management Plan, Corporate EHS and Social Policies or any such documents of relevance of that matter.
- If needed, may undertake field visits to verify and review the issues, dispute or other relevant matters.

11.4 MONITORING AND EVALUATION:

718. Similar to other project components, GRM will be monitored to ensure that the stakeholders are having no or limited issues with the project and in case there are concerns, they are being adequately addressed as per the mandate. In order to keep track on the

effectiveness of GRM, it is the responsibility of the GRC to compile and maintain database on grievances for periodic review. The process of monitoring will include an internal monitoring and an external monitoring process.

719. The internal monitoring will be undertaken by the GRC, on a regular basis (at least at an interval of 6 months). This process will allow for a review of the GRM to be undertaken, in terms of the efficacy of the mechanism and the average time taken for the redressal of the grievance received. These monitoring reports will be shared with the PMU of RBLPL.

720. In addition to the internal monitoring process, the project will consider engaging an external agency for undertaking monitoring of the GRM on an annual basis. This monitoring process will allow for an assessment to be undertaken of the number and nature of grievances received, the manner in which the grievances were settled and the number of pending grievances. The external monitoring report will also be disclosed to the local community and other identified stakeholders.

11.5 DISCLOSURE OF THE GRIEVANCE REDRESSAL MECHANISM:

721. The process of existing disclosure mechanism of GRM followed by RBLPL facility, will keep the following aspects in mind:

- The grievance redress process shall be disclosed and the procedures mentioned therein shall be properly disseminated to the identified stakeholders.
- RBLPL shall integrate the grievance redress mechanism as a part of the induction training programme especially those conducted for self-employees and the contractors.
- The disclosure of the information shall clearly mention the name and designation of the grievance redress officials, office location and their respective contact details.

11.6 BUDGETING

ReLIANCE

722. The RBLPL administration shall ensure adequate budgeting and resource allocation for implementing the grievance redressal mechanism.

12 CONCLUSION

723. Reliance Meghnaghat 750 MW Combined Cycle Power Plant, an upcoming project of Reliance Bangladesh LNG & Power Ltd., intends to build and operate a 750 MW gas turbine combined cycle power plant at Sonargaon, Narayanganj inside Meghnaghat power village. An ESIA has been prepared for the project according to the requirement of DoE for necessary environmental clearances as it is made mandatory in ECA'95 for any new industrial set up. The ESIA has been prepared through identifying the potential impacts, assessing them and recommendation possible mitigating and enhancing measures for negative and positive impacts, respectively.

724. The assessment process included scoping, site visits, site surveys for impact assessment based on project level information provided by the project developer, primary baseline studies and monitoring and extensive stakeholder consultations along with reviewing of Site and Configuration Selection Report, Reconnaissance Survey Report and studying satellite imageries. Through this process, an assessment has been undertaken of the potential environmental and social risks and impacts that may be attributed by the development of the project in its pre-construction, construction and operation phases. Assessments of the impacts have been presented with impact rating of each potential impact. Alternatives to the Project and key design aspects were also taken into consideration.

725. The existing land that has been identified for the proposed power plant project is a government Khas Land. The land is currently empty and has been leased out by the Bangladesh Power Development Board (BPDB), Government of Bangladesh. There is no locality within the two kilometers radius of this project site. This part of Meghnaghat is mainly used for industrial land use. There are few industries in this area including 3 other power plants adjacent to the proposed Reliance Meghnaghat 750 MW CCPP.

726. Land will also be required for the 1.9 meter transmission line. There will be three Transmission Towers. The facility for LILO attachment will be built in the existing Govt. land where absolutely no land acquisition is needed and therefore, no resettlement is necessary. But local people use the land for one crop cultivation. If those lands are used, they need to be paid for the crop 2-3 times from market price.

727. During the construction phase of the Project, the key Environmental issues are noise and dust generation. There is also a risk of contamination of soil, groundwater and Meghna river water from accidental spills and leaks of hazardous materials (e.g. oil) during handling, transportation, and storage at the site. In addition, erosion of soil and infill material brought to the site during the rainy season may lead to increased turbidity in the Meghna river water. Construction of jetty will require excavation of seabed material near shore and will involve piling work. The excavation activities and pilling work in the seabed will generate fine sediments and will also result in re-suspension of sediments in water. This expected to increase the turbidity of water and this have an adverse impact on surface water quality. The turbid water may have impact on aquatic ecology; thus affecting primary productivity. Labour camp will be constructed for accommodation of the labours. There will be sewage and solid waste generation from the labour camp. ReliAnce

728. Increase noise and dust levels including contamination of ground water constitute public health concerns. Deterioration of environment quality would be considered as a moderate adverse impact. Various mitigation measures will be developed by the Project Developer for implementation through the EPC Contractor. Regular monitoring and supervision will be implemented for effective implementation of environment management plan to protect the environment. An Environmental Monitoring Plan will be designed as a regular supervision of environmental quality.

729. During the operation phase of the Project, the three key impacts will be from the increase in ambient noise, Water consumption and air quality levels due to operation of plant equipment and auxiliary machinery. It has been demonstrated through air guality dispersion modeling that the incremental ground level concentrations due to the operation of the plant will be well within the applicable GOB and WHO ambient air quality standards. Continuous emission monitoring from the stacks and periodic ambient air quality monitoring throughout operations will verify adherence with the applicable standards and enable identification of further measures to reduce impacts. Incremental noise levels are planned to be within the applicable GOB standards for industries. Critical Type Silencer will be used in the stack. In particular, significant noisy components such as the gas turbine sets are enclosed in buildings will be acoustically designed, providing Styrofoam filler of 50 mm width in between 300 mm thick brick walls around the power house building. Moreover, ambient noise monitoring at the nearby sensitive location will be conducted to check and assess the requirements for further mitigation to reduce impact. Water requirement for the project will be 1076 m³/hr. Surface run off from oil storage waste handling unit (waste oil, used oil, etc.) may lead to the pollution of receiving water bodies. The surface run off may contain oil and lubricant, in case there is spillage from above mentioned areas. However, taking into account the provision of onsite drainage system with sedimentation tank, oil filters, etc., pollution load will not be significant. The sewage generated from the residential facilities or office area of will be treated through septic tank and soak pit; therefore, any direct discharge is not envisaged. Effluent from plant operation will be treated in Effluent Treatment Plant. However a surface water quality monitoring program, along with quarterly monitoring of aquatic ecology and fisheries will be undertaken. The effective implementation of the EMP and adherence with the GOB and IFC guidelines will assist in minimizing the environmental impacts to acceptable levels.

730. From the flora study, out of 192 recorded plant species, terrestrial habitats represent 153 (79.69%) species whereas the aquatic /or wetland habitats harbored 39 (20.31%) species in the present power plant project sites. According the DAFOR status, the existing flora of the visited site represents 17, 39, 74, 50 and 12 species as rare, occasional, frequent, abundant and dominant respectively. According to the Red List categories, out of 192 recorded plants, 1 species were Near Threatened (NT), 1 species were Conservation Dependent (CD), whereas 1 species was recognized as Vulnerable (VU) categories. There are no protected areas like National Park, Wildlife Sanctuary of Ecologically Critical Areas etc. within the study area of 5 km radius. Meghna river estuary is the largest estuarine ecosystem of Bangladesh and support diverse fisheries communities. Several types of big fishes like Rui, Catla, Ayre, Mrigel, Boal along with different types of small fishes are very common. But at present number of all types of fishes has declined greatly.

731. The Project Proponent should ensure that construction activities be limited in the project site only. The project proponent should also consult with Forest Department and NGOs involved in conservation of species for in situ conservation measures of species of significance, if any.

732. The Project will have both positive impacts on social environment. The positive impacts will include temporary employment opportunity for the local laborers during the construction period, business opportunities for the local vendors.

733. Post environmental assessment, surveillance and monitoring are essential to track and sustain the effectiveness of the mitigation measures suggested. A detailed monitoring plan has been prepared as part of the EMP.

734. The environmental analysis has revealed that the project can be set-up according to the proposed design and configuration in the proposed site and location. The environmental impacts are of limited nature, whereas the benefits of the project are many.

12.1 RECOMMENDATION FOR THE PROJECT

735. No development can be expected without any adverse impact on the environment. The beneficial impacts on the nation as well as human beings would only be meaningful and sustainable development would only be possible if adverse impacts are minimized through strict maintenance and control measures as mentioned for this project. All this would need vigilant care and cost money, and the project authority should take these into consideration.

736. The primary reason why the environmental impact from the plant is minimal is that the project proponent is abide by Bangladesh/ADB/ IFC Standards and build a plant, which will meet the emission standards of Bangladesh, ADB and the World Bank. The excellent characteristics of the fuel used, equipment and machinery, which conform to international standard and good operation practices all combine to make the proposed power plant project acceptable one

737. However, the following are the recommendations should be followed by the RBLPL during the construction and operation of the project:

738. The Environmental monitoring Plan should be followed properly and review of the EMP should be done as per plan.

739. Seasonal continuous baseline study for water, aquatic ecology and fishing should be conducted for filling any gaps before works start.

740. **Continuation of the baseline air monitoring study:** Since the baseline air monitoring study has been conducted from Sep-December, a follow up baseline air quality monitoring should be conducted at July-Aug and Jan-Feb so that the proper monsoon and dry season data would be reflected. It is suggested to monitor air quality for 9 locationsto get the seasonal monitoring.

741. **Continuation of the Stakeholder Consultation:** To evaluate the true consequences of the project, the Stakeholder consultations should be continued during the Construction and operation of the project in a regular interval. The stakeholder consultation should address the following issues while doing future consultations:

- Social Conflict
- Acceptance of the Foreign and migratory workers
- Change in livelihood.

REFERENCES

- 1. Metcalf & Eddy (1991), "Wastewater Engineering", McGraw-Hill Inc., Singapore.
- 2. Peavy& Rowe (1985), "Environmental Engineering", McGraw-Hill Inc., Singapore.
- 3. Eckenfelder (1989), "Industrial Water Pollution Control", McGraw-Hill Inc., Singapore
- 4. Sawyer & McCarty (1994), Chemistry for Environmental Engineers", McGraw-Hill Inc., Singapore.
- *5.* S.S Dara (1995), "Environmental Chemistry and Pollution Control", S. Chand & Company Ltd., New Delhi, India.
- 6. A.K De (1989), "Environmental Chemistry", Wiley Eastern Ltd., New Delhi, India.
- 7. Arceivala (1994), Wastewater Treatment for Pollution Control", Tata McGraw-Hill Publishing Co. Ltd., New Delhi, India.
- 8. Sincero&Sincero (1999), "Environmental Engineering", Prentice Hall of India Private Ltd., New Delhi.
- 9. Kudesia (1996), "Industrial Pollution", PragatiPrakashani, Meerut, India.
- *10.* BBS (1998), "The Statistical Yearbook of Bangladesh." Bangladesh Bureau of Statistics, Dhaka, Bangladesh.
- 11. Canter, G. T. (1983), "Environmental Impact Assessment Handbook". McGraw Hill, England
- 12. DOE (1995) "The Bangladesh Environment Conservation Act", Department of Environment, Govt. of Bangladesh.
- 13. DOE (1997) "The Environmental Conservation Rules", Department of Environment, Govt. of Bangladesh.
- 14. GOB, (1992), "Bangladesh Environmental Policy".
- 15. GOB, (1995), "National Environmental Management Action Plan (NEMAP)".
- *16.* Munn, R.E. (1979), "Environmental Impact Assessment: Principal and Procedures." Jhon Wiley & Sons.
- 17. Nemerow, N. L. (1979) "Industrial Water Pollution" Addision-Wesley publishing Co

Adroit Environment Consultants Ltd.

A House of Complete Environmental Management Solutions

Declaration

Date: 15th September 2017

Adroit Environment Consultants Ltd. has collected the baseline data and prepared this report named "Environmental & Social Impact Assessment and Management Plan for 750 MW Gas based Power Station at Meghnaghat, NaraynGanj, Bangladesh.

M/s Voyant Solutions Pvt Ltd. was entrusted to re-write the report in alignment with Safeguard Policy of Asian Development Bank. 2009.

We hereby validate and declare the ownership over the data and content of the report for all purposes.

(Dr. Nasir Khan) Managing Director ADROIT ENVVIRONMENT CONSULTANTS LTD.