Initial Environmental Examination

April 2017

Myanmar: Third GMS Corridor Town Development Project "Mon State" (Part 4 of 4)

Prepared by SAFEGE International Department for the Asian Development Bank. This initial environmental examination is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. Your attention is directed to the "terms of use" section on ADB's website.

In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area.

TA 8758 - Preparing Third GMS Corridor Towns Development

11 APPENDICES

Appendix 1 Bibliography

Chingmai University. (n.d.). *Overview of Mawlamyine's General Condition and Sample Selection.*

Hadden, R. L. (2008). *The Geology of Burma (Myanmar): An Annotated Bibliography of Burma's Geology, Geography and Earth Science*. Virginia: Topographic Engineering Center.

Istituo Oikos and BANCA. (2011). *Myanmar Protected Areas: Context, Current Status and Challenges*. Milano, Italy.

Ministry of Border Affairs , & Japan International Cooperation Agency. (2013). *Preparatory survey for the integrated regional development for ethnic minorities in the South-East Myanmar.*

Ministry of Environmental Conseration and Forestry. (2012). *Myanmar's Initial National Communication under the United Nations Framework Convention on Climate Change.*Naypyitaw.

Ministry of Immigration and Population. (2015). *The 2014 Myanmar Population and Housing Census, Mon State Report.* Naypyitaw.

Myanmar Information Management Unit. (2014). *Mon State Profile*. UNHCR South-East Myanmar Information Management Unit.

Than, M. M., Tun, T., & Htay, T. T. (2014). *Species composition of some fish from downshtream area of Thanlwin river*. Department of Zoology. University of Mawlamyine.

Fund, W. (2014). Myanmar Coast mangroves. Retrieved from http://www.eoearth.org/view/article/154737

TA 8758 - Preparing Third GMS Corridor Towns Development

Appendix 2 PC Participant List

DATE	Name	DESIGNATION	ORGANIZATION
30 April 2015	i. Daw Mai Aster ii. U TunTunOo iii. U Win TUn	i. Deputy Director, ii. Staff Officer iii. Deputy Staff Officer	Environmental Conservation Department, Mon State, Ministry of Environmental Conservation and Forestry.
30 April 2015	i. U TheinHtwe	i. Deputy Director	Forest Department, Mawlamyine District, Ministry of Environmental Conservation and Forestry.
20 July 2015	i. U AungKo ii. Daw SoeSoeLwin	i. Deputy Director ii. Staff Officer	Meteorological Department, Mon State
22 July 2015	i. Dr. San TharTun	i. Professor	Marine Science Department, University of Mawlamyine
23 July 2015	Not Known	Representatives of General Administrative Offices, Members of Townships Development Committee	Mon State Hluttaw
	iv. Daw Mai Aster v. U TunTunOo vi. Daw ThidaNyein vii. Daw Tin New Ye	iv. Deputy Director, v. Staff Officer vi. Deputy Staff Officer vii. Deputy Staff Officer	Environmental Conservation Department, Mon State, Ministry of Environmental Conservation and Forestry.
28 Sept 2015	Yee Yee Mon	Project Manager	National Enlightenment Institute Auk Kyin Ward
28 Sept 2015	U ThaungHteik	Ward Administrator	Auk Kyin Ward
28 Sept 2015	U MyoNaing	Ward Administrator	TharYar Aye Ward
29 Sept 2015	MiKon Chan Non	Director	Mon Women's Organization
29 Sept 2015	U Min Win Bo	Regional Manager	Local Resource Center

TA 8758 - Preparing Third GMS Corridor Towns Development

Photos of the public consultations

MEETING AT THE ENVIRONMENTAL CONSERVATION DEPARTMENT, MON STATE.

GROUP DISCUSSION AT THE MON STATE HLUTAW ON 23 JULY 2015

DISCUSSION AT THE NATIONAL ENLIGHTENMENT INSTITEUTE ON 28 SEPTEMBER 2015

GROUP DISCUSSION AT THE MON STATE HLUTAW ON 23 JULY 2015

TA 8758 - Preparing Third GMS Corridor Towns Development

Appendix 3 REA Checklists

Urban Development

Screening Questions	Yes	No	Remarks
A. Project Siting			-
Is the project area			
Densely populated?		X	The proposed facilities (WS storage, pumping station, WTP and landfill) are located in non-populated areas.
Heavy with development activities?		Χ	-
Adjacent to or within any environmentally sensitive areas?		X	-
Cultural heritage site	x		One proposed site for WTP for Kinponchone Dam is located close to the house of Rookamanund (Donor of KinponchoneDamBothKinponchone Dam and Three Tank Reservoirs were built in 1904. Appropriate measures have been included in the project design and in the EMP to avoid any negative impact on this heritage site.
Protected Area		Х	-
Wetland		X	-
Mangrove		X	-
Estuarine		X	-
Buffer zone of protected area		X	-
Special area for protecting biodiversity		X	-
• Bay		X	-
B. Potential Environmental Impacts Will the Project cause			-
 impacts on the sustainability of associated sanitation and solid waste disposal systems and their interactions with other urban services. 		Х	-
deterioration of surrounding environmental conditions due to rapid urban population growth, commercial and industrial activity, and increased waste generation to the point that both manmade and natural systems are overloaded and the capacities to manage these systems are overwhelmed?		X	-
degradation of land and ecosystems (e.g. loss of wetlands and wild lands, coastal zones, watersheds and forests)?		X	-

TA 8758 - Preparing Third GMS Corridor Towns Development

Screening Questions	Yes	No	Remarks
dislocation or involuntary resettlement of people?		Х	Not anticipated (no building destruction) but agricultural land or vacant land acquisition possible (but limited in size) for WWTP and composting plant
disproportionate impacts on the poor, women and children, Indigenous Peoples or other vulnerable group?		X	-
degradation of cultural property, and loss of cultural heritage and tourism revenues?		Х	Presence of cultural physical resources (building, pagodas, temples) considered in project design and not affected
occupation of low-lying lands, floodplains and steep hillsides by squatters and low-income groups, and their exposure to increased health hazards and risks due to pollutive industries?		Х	-
water resource problems (e.g. depletion/degradation of available water supply, deterioration for surface and ground water quality, and pollution of receiving waters?		Х	Objective of project is improvement of water supply.
air pollution due to urban emissions?		Х	-
 risks and vulnerabilities related to occupational health and safety due to physical, chemical and biological hazards during project construction and operation? 		X	OHS Plan to regulate safety procedures for workers and the use of PPE as a typical practice worldwide in similar construction activities
road blocking and temporary flooding due to land excavation during rainy season?		X	Not anticipated. The EMP which hasbeen provided in the report will address obligations for contractors during construction
noise and dust from construction activities?	X		Some noise and possibly dust nuisance anticipated but kept compliant with acceptable standards and mitigable through contractor specifications and construction monitoring. Appropriate measures have been included in the EMP to address the issues.
traffic disturbances due to construction material transport and wastes?		X	Not anticipated from construction material transport because the requirements will be limited and spread over the city
• temporary silt runoff due to construction?	X		For new facilities (pumping station, WTP, new water supply networks, solid waste composting plant), the construction sites will be well mitigated with sediment control facilities and procedures, particularly for the activities located next or even in the river (new pumping station)
hazards to public health due to ambient, household and occupational pollution, thermal inversion, and smog formation?		X	Appropriate measures have been included in the EMP to avoid any negative impact on the ambient air quality and health of workers and residents.
water depletion and/or degradation?		Х	Project objective is to reduce water leakages along network, (thus increasing supply without increasing pressure on resource) and to reduce pollution of surface and underground water
 overpumping of ground water, leading to land subsidence, lowered ground water table, and salinization? 		X	Appropriate measures have been included in the EMP to avoid any negative impact on the underground water when it is implemented

page 11-271

SAFEGE

TA 8758 - Preparing Third GMS Corridor Towns Development

Screening Questions	Yes	No	Remarks
contamination of surface and ground waters due to improper waste disposal?		X	Objective of project is to improve waste collection and disposal and to reduce contamination of water bodies
pollution of receiving waters resulting in amenity losses, fisheries and marine resource depletion, and health problems?		Х	-
large population influx during project construction and operation that causes increased burden on social infrastructure and services (such as water supply and sanitation systems)?		Х	Local workforce to be used for construction. Construction sites will be of small size. No in-migration anticipated
social conflicts if workers from other regions or countries are hired?		Х	See above
risks to community health and safety due to the transport, storage, and use and/or disposal of materials such as explosives, fuel and other chemicals during operation and construction?		X	No storage of hazardous materials is anticipated during construction or operation of the facilities, particularly fuel available in several petrol stations. Water disinfection will rely on electrolysis of salt (no chlorine gas)
community safety risks due to both accidental and natural hazards, especially where the structural elements or components of the project are accessible to members of the affected community or where their failure could result in injury to the community throughout project construction, operation and decommissioning?		Х	Appropriate measures have been included in the EMP to avoid any negative impact

page 11-272 SAFEGE

TA 8758 - Preparing Third GMS Corridor Towns Development

A Checklist for Preliminary Climate Risk Screening

S	creening Questions	Score	Remarks ⁷
Location and Design of project	Is siting and/or routing of the project (or its components) likely to be affected by climate conditions including extreme weather related events such as floods, droughts, storms, landslides?	0	Not anticipated.
	Would the project design (e.g. the clearance for bridges) need to consider any hydro-meteorological parameters (e.g., sea-level, peak river flow, reliable water level, peak wind speed etc)?	1	Obviously, the design of components dealing with river water level or drainage will integrate trends and forecasts for rainfall and river level related to climate change
Materials and Maintenance	Would weather, current and likely future climate conditions (e.g. prevailing humidity level, temperature contrast between hot summer days and cold winter days, exposure to wind and humidity hydro-meteorological parameters likely affect the selection of project inputs over the life of project outputs (e.g. construction material)?	0	Anticipated changes in rainfall and temperature are unlikely to affect project inputs or outputs.
	Would weather, current and likely future climate conditions, and related extreme events likely affect the maintenance (scheduling and cost) of project output(s)?	0	Anticipated changes in rainfall and temperature are unlikely to affect negatively project maintenance and output
Performance of project outputs	Would weather/climate conditions and related extreme events likely affect the performance (e.g. annual power production) of project output(s) (e.g. hydro-power generation facilities) throughout their design life time?	0	No impact

Options for answers and corresponding score are provided below:

Response	Score
Not Likely	0
Likely	1

15IAS004

page 11-273

SAFEGE

⁷ If possible, provide details on the sensitivity of project components to climate conditions, such as how climate parameters are considered in design standards for infrastructure components, how changes in key climate parameters and sea level might affect the siting/routing of project, the selection of construction material and/or scheduling, performances and/or the maintenance cost/scheduling of project outputs.

TA 8758 - Preparing Third GMS Corridor Towns Development

	Very Likely	2		
Responses	when added that provi	ide a score of 0 will be	e considered <u>low ris</u>	<u>k</u> project. If adding all response

Responses when added that provide a score of 0 will be considered <u>low risk</u> project. If adding all responses will result to a score of 1-4 and that no score of 2 was given to any single response, the project will be assigned a <u>medium risk</u> category. A total score of 5 or more (which include providing a score of 1 in all responses) or a 2 in any single response, will be categorized as <u>high risk</u> project.

Result of Initial Screening (Low, Medium, High): Low (1)

Other		
Comments:		

Water Supply

Screening Questions	Yes	No	Remarks
A. Project Siting			-
Is the project area			
Densely populated?	Х		Except water storage extension which is in a non-populated area other WS components are in urban area
Heavy with development activities?		Х	-
Adjacent to or within any environmentally sensitive areas?			-
Cultural heritage site	Х		The KinPonChong and the Three Tanks reservoirs in Mawlamyine were built in 1904. Strict construction specifications for the contractor to preserve the original structures of the reservoirs and cultural heritage buildings when improving them.
Protected Area		Х	-
Wetland		Х	-
Mangrove		Х	-
Estuarine		Х	-
Buffer zone of protected area		Х	-
Special area for protecting biodiversity		Х	-
• Bay		Х	-
B. Potential Environmental Impacts Will the Project cause			-
 pollution of raw water supply from upstream wastewater discharge from communities, industries, agriculture, and soil erosion runoff? 1. 		X	-
• impairment of historical/cultural monuments/areas and loss/damage to these sites?		Х	-

TA 8758 - Preparing Third GMS Corridor Towns Development

Screening Questions	Yes	No	Remarks
hazard of land subsidence caused by excessive ground water pumping?		Х	-
social conflicts arising from displacement of communities?		Х	-
conflicts in abstraction of raw water for water supply with other beneficial water uses for surface and ground waters?		Х	-
unsatisfactory raw water supply (e.g. excessive pathogens or mineral constituents)?		Х	-
delivery of unsafe water to distribution system?		Х	-
• inadequate protection of intake works or wells, leading to pollution of water supply?		Х	-
• over pumping of ground water, leading to salinization and ground subsidence?		Х	-
excessive algal growth in storage reservoir?		Х	-
• increase in production of sewage beyond capabilities of community facilities?		Х	-
• inadequate disposal of sludge from water treatment plants?		Х	Issue of sludge management has been clearly addressed in the design.
inadequate buffer zone around pumping and treatment plants to alleviate noise and other possible nuisances and protect facilities?		Х	-
• impairments associated with transmission lines and access roads?		Х	Except very temporary and localized during extension of network
 health hazards arising from inadequate design of facilities for receiving, storing, and handling of chlorine and other hazardous chemicals. 		Х	Treatment relies on salt hydrolysis, no chlorine
health and safety hazards to workers from handling and management of chlorine used for disinfection, other contaminants, and biological and physical hazards during project construction and operation?		Х	Treatment relies on salt hydrolysis, no chlorine
dislocation or involuntary resettlement of people?		Х	
disproportionate impacts on the poor, women and children, Indigenous Peoples or other vulnerable groups?		Х	-
noise and dust from construction activities?	Х		Typical nuisances from construction activities, controllable through detailed specifications for contractors. Appropriate measures have been included in the EMP to address the issues.
• increased road traffic due to interference of construction activities?		Х	Localized temporary increase of traffic during network extension works, but preventive measures considered

TA 8758 - Preparing Third GMS Corridor Towns Development

Screening Questions	Yes	No	Remarks
 continuing soil erosion/silt runoff from construction operations? 		Х	-
• delivery of unsafe water due to poor O&M treatment processes (especially mud accumulations in filters) and inadequate chlorination due to lack of adequate monitoring of chlorine residuals in distribution systems?		Х	O&M shall be addressed in the design preparation
• delivery of water to distribution system, which is corrosive due to inadequate attention to feeding of corrective chemicals?		Х	-
accidental leakage of chlorine gas?		Х	-
excessive abstraction of water affecting downstream water users?		Х	-
competing uses of water?		Х	The project will increase potable water availability and network and will not compete with other water uses. Water is abundant in the area
 increased sewage flow due to increased water supply 		Х	-
 increased volume of sullage (wastewater from cooking and washing) and sludge from wastewater treatment plant 		Х	-
 large population influx during project construction and operation that causes increased burden on social infrastructure and services (such as water supply and sanitation systems)? 		Х	Local workers to be recruited and construction sites of moderate size
social conflicts if workers from other regions or countries are hired?		Х	Same as above
risks to community health and safety due to the transport, storage, and use and/or disposal of materials such as explosives, fuel and other chemicals during operation and construction?		Х	No storage of hazardous materials is anticipated during construction or operation
 community safety risks due to both accidental and natural hazards, especially where the structural elements or components of the project are accessible to members of the affected community or where their failure could result in injury to the community throughout project construction, operation and decommissioning? 		Х	

A Checklist for Preliminary Climate Risk Screening

TA 8758 - Preparing Third GMS Corridor Towns Development

Sc	creening Questions	Sc	Remarks ⁸
		or	
Location and Design of project	Is siting and/or routing of the project (or its components) likely to be affected by climate conditions including extreme weather related events such as floods, droughts, storms, landslides?	0	No effect on project components siting and routing
	Would the project design (e.g. the clearance for bridges) need to consider any hydrometeorological parameters (e.g., sea-level, peak river flow, reliable water level, peak wind speed etc)?	0	The design will obviously consider potential climate change issues but this aspect is not critical for the present project
Materials and Maintenance	Would weather, current and likely future climate conditions (e.g. prevailing humidity level, temperature contrast between hot summer days and cold winter days, exposure to wind and humidity hydro-meteorological parameters likely affect the selection of project inputs over the life of project outputs (e.g. construction material)?	0	Unlikely to affect the project inputs and outputs
	Would weather, current and likely future climate conditions, and related extreme events likely affect the maintenance (scheduling and cost) of project output(s)?	0	Unlikely to affect the project maintenance
Performance of project outputs	Would weather/climate conditions, and related extreme events likely affect the performance (e.g. annual power production) of project output(s) (e.g. hydro-power generation facilities) throughout their design life time?	1	Changing climateconditions and thelikelihood of futuredams along theThanlwin (andperhaps Attran)Rivers may increase salinity intrusion intotube wells and affectwater intake points inMawlamyine,especially duringdry seasons.

Options for answers and corresponding score are provided below:

Response	Score
Not Likely	0
Likely	1
Very Likely	2

Responses when added that provide a score of 0 will be considered <u>low risk</u> project. If adding all responses will result to a score of 1-4 and that no score of 2 was given to any single response, the project will be assigned a <u>medium risk</u> category. A total score of 5 or more (which include providing a score of 1 in all responses) or a 2 in any single response, will be categorized as <u>high risk</u> project.

Result of Initial Screening (Low, Medium, High):_	Low (1)
	, ,

page 11-277 SAFEGE

⁸ If possible, provide details on the sensitivity of project components to climate conditions, such as how climate parameters are considered in design standards for infrastructure components, how changes in key climate parameters and sea level might affect the siting/routing of project, the selection of construction material and/or scheduling, performances and/or the maintenance cost/scheduling of project outputs.

TA 8758 - Preparing Third GMS Corridor Towns Development

: Solid waste

Screening Questions	Yes	No	Remarks
A. Project Siting			
Is the project area			
Densely populated?		Х	-
Heavy with development activities?		Х	-
Adjacent to or within any environmentally sensitive areas?		X	-
Cultural heritage site		Х	Appropriate measures have been included in the EMP to avoid any negative impact on the heritage sites.
Protected Area		Х	Appropriate measures have been included in the EMP to avoid any negative impacts.
Wetland		Х	Not anticipated
Mangrove		Х	Not anticipated
Estuarine		Х	Not anticipated
Buffer zone of protected area		Х	Not anticipated
Special area for protecting biodiversity		Х	Not anticipated
• Bay		Х	Not anticipated
B. Potential Environmental Impacts Will the Project cause			
 impacts associated with transport of wastes to the disposal site or treatment facility 2. 		X	Not anticipated
impairment of historical/cultural monuments/areas and loss/damage to these sites?		Х	No historical/cultural impact anticipated. Appropriate measures have been included in the EMP
degradation of aesthetic and property value loss?		Х	Not anticipated
• nuisance to neighboring areas due to foul odor and influx of insects, rodents, etc.?		Х	Unlikely under regular operation and maintenance of composting plants.
dislocation or involuntary resettlement of people?		Х	Not anticipated
disproportionate impacts on the poor, women and children, Indigenous Peoples or other vulnerable groups?		Х	Not anticipated
risks and vulnerabilities related occupational health and safety due to physical, chemical, biological, and radiological hazards during project construction and operation?		х	Not anticipated
public health hazards from odor, smoke from fire, and diseases transmitted by flies, insects, birds and rats?		Х	Not anticipated
deterioration of water quality as a result of contamination of receiving waters by leachate from land disposal system?		X	Not anticipated

page 11-278

SAFEGE

Individual Consults

TA 8758 - Preparing Third GMS Corridor Towns Development

Screening Questions	Yes	No	Remarks
contamination of ground and/or surface water by leachate from land disposal system?		Х	Appropriate measures have been included in the EMP to avoid any negative impact due to the leachate
• land use conflicts?		Х	Not anticipated
pollution of surface and ground water from leach ate coming form sanitary landfill sites or methane gas produced from decomposition of solid wastes in the absence of air, which could enter the aquifer or escape through soil fissures at places far from the landfill site?		Х	Appropriate measures have been included in the EMP to avoid any negative impact due to the leachate and gas
• inadequate buffer zone around landfill site to alleviate nuisances?		Х	No residence in immediate vicinity of landfill
road blocking and/or increased traffic during construction of facilities?		Х	Not anticipated as area is remote from dense urban areas
noise and dust from construction activities?		Х	Possible construction noise, but not in populated areas.
temporary silt runoff due to construction?	х		Possible during excavation works of extension of landfill site. Obligations for contractors of peripheral drainage of construction zones and sediments capture facilities (sediment traps, ponds). Appropriate measures have been included in the EMP to address the issues.
hazards to public health due to inadequate management of landfill site caused by inadequate institutional and financial capabilities for the management of the landfill operation?		Х	No hazards as no residential zones next to the landfill
emission of potentially toxic volatile organics from land disposal site?		Х	Composting plants will have appropriate air filtration facilities
surface and ground water pollution from leachate and methane gas migration?		Х	Design will prevent this risk
loss of deep-rooted vegetation (e.g. trees) from landfill gas?		Х	Probably marginal (non-forested area)
explosion of toxic response from accumulated landfill gas in buildings?		Х	Not anticipated
contamination of air quality from incineration?		Х	The incineration plant will have appropriate filtration and will be well designed to prevent incomplete combustion
public health hazards from odor, smoke from fire, and diseases transmitted by flies, rodents, insects and birds, etc.?		Х	No hazards as no residential zones next to the landfill sites
health and safety hazards to workers from toxic gases and hazardous materials in the site?		Х	Typical OHS Plan to be developed and implemented with capacity building and regular health checks
• large population influx during project construction and operation that causes increased burden on social infrastructure and services (such as water supply and sanitation systems)?		Х	Local workforce for construction

page 11-279 SAFEGE

TA 8758 - Preparing Third GMS Corridor Towns Development

Screening Questions	Yes	No	Remarks
social conflicts if workers from other regions or countries are hired?		Х	Local workforce for construction
risks to community health and safety due to the transport, storage, and use and/or disposal of materials such as explosives, fuel and other chemicals during construction and operation?		Х	No significant storage of Hazardous Materials required for this type of construction During operation, site not anticipated to accommodate hazardous waste
community safety risks due to both accidental and natural hazards, especially where the structural elements or components (e.g., landfill or incinerator) of the project are accessible to members of the affected community or where their failure could result in injury to the community throughout project construction, operation and decommissioning?		х	Not anticipated

page 11-280 SAFEGE

TA 8758 - Preparing Third GMS Corridor Towns Development

A Checklist for Preliminary Climate Risk Screening

	Screening Questions	Score	Remarks ⁹
Location and Design of project	Is siting and/or routing of the project (or its components) likely to be affected by climate conditions including extreme weather related events such as floods, droughts, storms, landslides?	0	Appropriate drainage and protection against rainfall is part of the design
	Would the project design (e.g. the clearance for bridges) need to consider any hydrometeorological parameters (e.g., sea-level, peak river flow, reliable water level, peak wind speed etc)?	0	Site is not in a floodable zone or next to river course
Materials and Maintenance	Would weather, current and likely future climate conditions (e.g. prevailing humidity level, temperature contrast between hot summer days and cold winter days, exposure to wind and humidity hydro-meteorological parameters likely affect the selection of project inputs over the life of project outputs (e.g. construction material)?	0	Design takes consideration of projected temperature due to CC and define treatment process accordingly
	Would weather, current and likely future climate conditions, and related extreme events likely affect the maintenance (scheduling and cost) of project output(s)?	0	No
Performance of project outputs	Would weather/climate conditions, and related extreme events likely affect the performance (e.g. annual power production) of project output(s) (e.g. hydro-power generation facilities) throughout their design life time?	0	No in a significant manner for a landfill and composting facility.

Options for answers and corresponding score are provided below:

Response	Score
Not Likely	0
Likely	1
Very Likely	2

15IAS004

Responses when added that provide a score of 0 will be considered <u>low risk</u> project. If adding all responses will result to a score of 1-4 and that no score of 2 was given to any single response, the project will be assigned a <u>medium risk</u> category. A total score of 5 or more (which include providing a score of 1 in all responses) or a 2 in any single response, will be categorized as <u>high risk</u> project.

Result of Initial Screening (Low, Medium, High):_Low (0)					
Other Comments: Methane gas collection significantly reduces GHG emissions from waste					

page 11-281 SAFEGE

⁹ If possible, provide details on the sensitivity of project components to climate conditions, such as how climate parameters are considered in design standards for infrastructure components, how changes in key climate parameters and sea level might affect the siting/routing of project, the selection of construction material and/or scheduling, performances and/or the maintenance cost/scheduling of project outputs.

TA 8758 - Preparing Third GMS Corridor Towns Development

Appendix 4 ADB Monitoring Template

TEMPLATE/FORMAT

Safeguard Monitoring Report

Summary:

(to be included as part of the main Report)

- Summary of EMP/RP Implementation
- Description of monitoring activities carried out (e.g. field visits, survey questionnaire, public consultation meetings, focus group discussions, etc)
- Key issues, any corrective actions already taken, and any grievances
- Recommendations

Safeguards Monitoring Report

(to be included in the annex/appendix of the main Report)

1. Introduction and Project Overview

Project Number

and Title:

Environment

Safeguards Category Indigenous Peoples

Involuntary Resettlement

Reporting period:

Last report date:

This section can include, among others, the following:

Key sub-project activities since last report:

Activities of Proponent

• Progress of Work (% physical completion)

Changes of Surrounding Environment

Status of Permits / Consents

Report prepared

by:

TA 8758 - Preparing Third GMS Corridor Towns Development

2. Environmental Performance Monitoring

a. Summary of Compliance with EMAP Requirements (Environmental Performance)

EMAP Requirements	Compliance Status (Yes, No, Partial)	Comment or Reasons for Non- Compliance	Issues for Further Action
Use environmental impact as main heading and EMAP as listing (see example below)	Use EMoP list as basis for rating/evaluating compliance (see example below)		
Rise of employment opportunities: • Job openings of the project should give priority to local communities. • Recruitment of local laborers should be stipulated in the contract for construction	 Field inspections and interviews with communities - DONE Note each complaint case in the field - 3 COMPLAINTS RECEIVED Set up grievance centre and report as part of monitoring action plan - NOT DONE 		

b. Issues for Further Action

Issue	Required Action	Responsibility and Timing	Resolution

Old Issues from Previous Reports

List of EMoP measures or activities not completed (last column of previous table)

TA 8758 - Preparing Third GMS Corridor Towns Development

New Issues from This Report

c. Other activities

- Other issues not covered by EMAP/EMoP
- Environmental monitoring as required by GOI (e.g., air quality, water sampling)

3. Involuntary Resettlement Performance Monitoring

a. Summary of Compliance with RP Requirements

RP Requirements	Compliance status Yes/No/Partial	Comment or Reasons for Compliance, Partial Compliance/Non- Compliance	Issues for Further Action ¹⁰
Establishment of personnel in PMU/PIU			
Public consultation and socialization process		Provide information on: Public consultation, participation activities carried out Inclusive dates of these activities To be elaborated on in Item 5	

page 11-284

¹⁰ To be elaborated further in table 3.b (Issues for Further Action)

TA 8758 - Preparing Third GMS Corridor Towns Development

Land area to be acquired is identified and finalised

Land acquisition completed

Establishment of Resettlement Site(s)

Compensation payments for affected assets is completed

Transport assistance for relocating affected households

Additional assistance to vulnerable affected household

Please state:

- Number of AHs to be relocated as per agreed RP
- Number of AHs already relocated
- Number of houses built
- Status of installation of community facilities to be provided as per agreed RP

Please state:

- Total Number of Eligible AHs and APs (as per agreed RP)
- Number of AHs and APs compensated as of this monitoring period
- Total Budget allocation as per agreed RP
- Total budget disbursed to AHs as of this monitoring period

As above

Please state:

- Total Number of vulnerable AHs and APs (as per agreed RP)
- Agreed forms of assistance as per RP
- Number of AHs and APs assisted as of this monitoring period

TA 8758 - Preparing Third GMS Corridor Towns Development

Income Restoration Program

Please state progress per income restoration feature/activity and actual period of implementation

Temporary impacts have been addressed (affected properties restored to at least pre-project conditions)

Please state:

- Total Number of AHs affected by temporary impacts as per agreed RP
- Actual Number of AHs and total area affected by temporary impacts (if this differs from the projected number, such as in cases of unforeseen project impacts)
- Status of restoring affected property

Capacity building activities

b. Issues for Further Action

Issue Required Action Responsibility and Resolution

Old Issues from Previous Reports

List of RP activities not completed (last column of previous table)

15IAS004

New Issues from This Report

4. Occupational, Health and Safety (OHS) Performance Monitoring

page 11-286

SAFEGE
Invenieurs Consils

TA 8758 - Preparing Third GMS Corridor Towns Development

a.	OHS for worker					
	Issue	Required Action	Responsibility and Timing	Resolution		
0	Old Issues from Previous Reports					

New Issues from This Report

b. Public Safety

Issue Required Action	Responsibility and Timing	Resolution
-----------------------	------------------------------	------------

Old Issues from Previous Reports

New Issues from This Report

5. Information Disclosure and Socialization including Capability Building

- Field Visits (sites visited, dates, persons met)
- Public Consultations and meetings (Date; time; location; agenda; number of participants disaggregated by sex and ethnic group, not including project staff; Issues raised by participants and how these were addressed by the project team)
- Training (Nature of training, number of participants disaggregated by gender and ethnicity, date, location, etc.)
- Press/Media Releases
- Material development/production (e.g., brochure, leaflet, posters)

page 11-287 SAFEGE

TA 8758 - Preparing Third GMS Corridor Towns Development

***************************************	-

6. Grievance Redress Mechanism

Summary:

- Number of new grievances, if any, since last monitoring period:
- Number of grievances resolved: ____
- Number of outstanding grievances:

Details			
	Required Action,		
(Date, person, address, contact details, etc.)	Responsibility and Timing	Resolution	

Old Issues from Previous Reports

Type of Grievance

New Issues from This Report

7. Conclusion

- Important results from the implementation of EMAP/EMoP and RP monitoring
- Recommendations to improve EMAP/EMoP and RP management, implementation, and monitoring

8. Attachments

- Consents / permits
- Monitoring data (water quality, air quality, etc.)

page 11-288

SAFEGE
Ingénieur Conseils

TA 8758 - Preparing Third GMS Corridor Towns Development

Photographs

Maps

page 11-289 SAFEGE

TA 8758 - Preparing Third GMS Corridor Towns Development

Appendix 5 Myanmar EQEG (2nd draft)

The Ministry of Natural Resources and Environmental Conservation (MONREC), in exercise of the power conferred by sub-section (b) of section 42 of the 2012 Environmental Conservation Law (ECL), hereby issues the following Guidelines.

CHAPTER I

General Provisions

Objective

1. These national Environmental Quality (Emission) Guidelines (hereafter referred to as Guidelines) provide the basis for regulation and control of noise and vibration, air emissions, and effluent discharges—as provided for in sub-sections (e–g) of section 10 of the Environmental Conservation Law —from various sources in order to prevent pollution for purposes of protection of human and ecosystem health.

Definitions

- 2. The expressions contained in these Guidelines shall have the same meanings as are assigned to them under the ECL and Environmental Impact Assessment (EIA) Procedure. In addition thereto, the following expressions shall have the meanings given hereunder:
 - (a) Adverse impact means any adverse environmental, social, socioeconomic, health, occupational safety or human health effect suffered or borne by any entity, natural person, or natural resource, including, but not limited to, the environment, flora and fauna, where such effect is attributable in any degree or extent to, or arises in any manner from, any action or omission on the part of the project proponent, or from the design, exploration, testing, development, construction, implementation, maintenance, operation, or decommissioning of a project or any activities related thereto.
 - (b) **Concentration** means the quantity of a harmful substance in air or water with the dimension of mass per volume (or sometimes mass per mass) calculated according to a common measurement unit (e.g. milligram per liter).
 - (c) **EIA Report** means a report comprising a systematic assessment of a proposed activity or project that is prepared to aid in determining whether such activity or project has the potential to significantly affect the environment, humans or other living things, and in deciding whether such activity or project should be allowed or not. The form, content and structure of the report shall be in accordance with the Ministry's requirements and guidelines, and include an Environmental Management Plan (EMP).
 - (d) **Emission** means the direct or indirect release of any substance, radiation, vibration, heat or noise from individual or diffuse sources into the air, water, land or any subterranean area. Emissions include emissions of solid waste, effluent, gas, noise, odor, light, radiation, vibration or heat.

TA 8758 - Preparing Third GMS Corridor Towns Development

- (e) **Environmental compliance certificate (ECC)** is a legal document through which the Ministry approves an Initial Environmental Examination (IEE) report or an EIA report, or an EMP.
- (f) EMP means a document contemplated with form, content and structure in accordance with the Ministry's requirements and guidelines, which describes the measures to be taken for avoiding, preventing, mitigating, monitoring and compensating for all adverse impacts resulting from the design, exploration, testing, construction, implementation, operation, maintenance, decommissioning, closure and post-closure or other aspects of the proposed project or activity.
- (g) Good practice means that practice which is recognized by a consensus of relevant stakeholders (including without limitation government, industry, labor, financiers, and academia) as having been adopted by leading, reputable companies of international standard, which is capable of being adhered to within the Republic of the Union of Myanmar, and which, when carried out by or in respect of an activity or project, can be expected to further reduce adverse impacts arising from an activity or project related thereto.
- (h) **Guideline Values** maximum level of concentration of pollutants allowed in the emitted waste.
- (i) IEE Report means a report comprising a systematic assessment of a proposed project or activity that is prepared to aid in determining whether or not potential impacts of a project or activity is significant, whether or not it is necessary to carry out EIA, and in deciding whether such project or activity should be allowed or not. The form, content and structure of the report shall be in accordance with the Ministry's requirements and guidelines, and include an EMP.
- (j) **Ministry** means the Union Ministry assigned by the Union Government to perform the matters of environment.
- (k) Parameter means indicators used to measure the level or concentration (population density in case of biological pollutants) against guidelines or standards. The result of measurement could be shown in either numeric or textual form.
- (I) **Point of compliance** means the location on land or in water at which a given substance concentration must meet the applicable Guideline value.
- (m) Pollution means any direct or indirect alteration, effect of the physical, thermal, chemical or biological properties of any part of the environment including land, water and atmosphere by discharging, emitting, dispersion, migration or depositing hazardous substances or wastes so as to effect beneficial use of the environment, or to affect public health, safety or welfare, or animals or plans or to contravene any condition, limitation or prohibition contained in the prior permission issued under the ECL.
- (n) **Pollution prevention** refers to the use of processes, practices, materials, products, substances or energy that avoids or minimizes the creation of pollutants and waste, and reduces the overall risk to the environment or human health.
- (o) Project means any commercial, economic, agricultural, social, academic, scientific, political or other project, activity, program, business, service or undertaking, whether regarded individually or in the aggregate, the performance of which (requires any approval or is licensed, restricted, or otherwise regulated to any extent by any part of the Union government and which) may have an adverse impact.

TA 8758 - Preparing Third GMS Corridor Towns Development

Scope of Application

3. These Guidelines have been excerpted from the International Finance Corporation (IFC) Environmental Health and Safety (EHS) Guidelines, which provide technical guidance on good international industry pollution prevention practice for application in developing countries. The Guidelines are generally considered to be achievable in new facilities by existing technology at reasonable costs. Application of these Guidelines to existing facilities may involve the establishment of site-specific targets, with an appropriate timetable for achieving them.

- 4. Unless otherwise indicated, these Guidelines refer to emission sources, and are intended to prevent or minimize adverse impacts to ambient environmental quality by ensuring that pollutant concentrations do not reach or exceed ambient guidelines and standards. The Guidelines apply to projects or activities that generate noise or air emissions during any stage of the project life cycle, and / or that have either direct or indirect discharge of process waste wastewater, wastewater from utility operations or storm water to the environment
- 5. General and industry-specific Guidelines as specified in Annex 1 Emissions Guidelines shall apply to any project subject to EIA Procedure, as adopted by the Ministry, in order to protect the environment and to control pollution in the Republic of the Union of Myanmar. These Guidelines specifically apply to all project types listed in the EIA Procedure under 'Categorization of Economic Activities for Assessment Purposes' which sets out projects that are subject to EIA, IEE, or EMP.
- 6. Provisions of the general and applicable industry-specific Guidelines shall be reflected in project EMP and ECC and together constitute a project's commitment to take necessary measures to avoid, minimize and control adverse impacts to human health, safety, and the environment through reducing the total amount of emissions generation; adopting process modifications, including waste minimization to lower the load of pollutants requiring treatment; and as necessary, application of treatment techniques to further reduce the load of contaminants prior to release or discharge.
- 7. Original IFC document cited in the Guidelines shall be consulted if the case EMP developers need further advices on ways to achieve the limit vales set in the annex.
- 8. These Guidelines supersede any existing national guideline or standard provision relating to regulation and control of noise, air, and water emissions from activities and projects subject to the EIA Procedure.

TA 8758 - Preparing Third GMS Corridor Towns Development

CHAPTER II

Implementation Procedures

- 9. As specified in Article 56 of the EIA Procedure, all projects are obliged to use, comply with and refer to applicable national guidelines or standards or international standards adopted by the Ministry. These Guidelines will henceforth be applied by the Ministry in satisfying this requirement until otherwise modified or succeeded by other guidelines or standards.
- 10. As specified in Article 77 of the EIA Procedure, following project approval, a project shall commence implementation strictly in accordance with the project EMP and any additional requirements set out in the project ECC, which according to Article 82 of the EIA Procedure, will encompass conditions relating to emissions. In this regard, the Ministry will require that projects shall adhere to general and applicable industry-specific guidelines as specified in Annex 1.
- 11. While these Guidelines are generally applicable to all projects subject to the EIA Procedure, it is the prerogative of the Ministry to decide how Guidelines should be applied to existing projects, as distinguished from new projects. If the Ministry considers that less stringent levels or measures that those provided for in these Guidelines are appropriate, in view of specific project circumstances, a full and detailed justification for any proposed alternatives is needed on an interim basis.
- 12. As specified in Article 95 of the EIA Procedure, projects shall engage in continuous, proactive and comprehensive self monitoring of the project and comply with applicable guidelines and standards. For purposes of these Guidelines, projects shall be responsible for the monitoring of their compliance with general and applicable industry-specific Guidelines. Projects shall be responsible for ensuring compliance at the point of compliance specified in the applicable Guidelines.
- 13. To demonstrate compliance with these monitoring requirements as specified in articles 97 and 98 of the EIA Procedure, projects shall submit monitoring reports to the Ministry at least every six months or more frequently as provided in the EMP and ECC. Monitoring reports shall *inter alia* document compliance, difficulties encountered in complying with EMP and ECC conditions, number and type of non-compliance with EMP and ECC, and monitoring data of prescribed environmental parameters as detailed in the EMP and ECC.
- 14. In instances of self-reported noncompliance or, as provided for in articles 100 and 101 of the EIA Procedure, identification of noncompliance with the EMP and ECC conditions during monitoring and inspection by the Ministry, the project is required to undertake remedial measures to bring the project into compliance within a specified time period.
- 15. In instances of continued noncompliance or insufficient response by the project to control emissions as specified in these Guidelines, the Ministry, as provided for in Article 112 of the EIA Procedure, shall have the right to impose penalties on a project for such breach of environmental obligations.

TA 8758 - Preparing Third GMS Corridor Towns Development

Annex 1 Emission Guidelines

1.0 General Environmental, Health, and Safety

1.1 Air Emissions

Projects with significant sources of air emissions, and potential for significant impacts to ambient air quality, should prevent or minimize impacts by ensuring that: (i) emissions do not result in pollutant concentrations that reach or exceed ambient quality guidelines and standards, or in their absence the current World Health Organization (WHO) Air Quality Guidelines; and emissions do not contribute a significant portion to the attainment of relevant ambient air quality guidelines or standards (i.e. not exceeding 25 percent of the applicable air quality standards to allow additional, future sustainable development in the same airshed.

1.2 Wastewater

This guideline applies to projects that have either direct or indirect discharge of process wastewater, wastewater from utility operations or storm water to the environment. It is also applicable to industrial discharges to sanitary sewers that discharge to the environment without any treatment. Process wastewater may include contaminated wastewater from utility operations, storm water, and sanitary sewage. Projects with the potential to generate process wastewater, sanitary (domestic) sewage, or storm water should incorporate the necessary precautions to avoid, minimize, and control adverse impacts to human health, safety or the environment.

TA 8758 - Preparing Third GMS Corridor Towns Development

Indicative Guideline for Treated Sanitary Sewage Discharges¹¹

Parameter	Unit	Maximum Concentration
Biological oxygen demand	mg/L	30
Chemical oxygen demand	mg/L	125
Oil and grease	mg/L	10
рН	S.U.	6-9
Total coliform bacteria	MPNª/100 ml	400 ^b
Total nitrogen	mg/L	10
Total phosphorus	mg/L	2
Total suspended solids	mg/L	50

^a MPN = Most Probable Number

1.3 Noise Levels

Noise prevention and mitigation measures should be applied where predicted or measured noise impacts from a project facility or operations exceed the applicable noise level guideline at the most sensitive point of reception. Noise impacts should not exceed the levels presented below, or result in a maximum increase in background levels of 3 dBA at the nearest receptor location off-site.

	One Hour LAeq (dBA)		
Receptor	Daytime 07:00 – 22:00 (10:00 – 22:00 for Public holidays)	Nighttime 22:00 – 07:00 (22:00 – 10:00 for Public holidays)	
Residential, institutional, educational	55	45	
Industrial, commercial	70	70	

2.0 Sector-specific Environmental, Health and Safety

2.1 Forestry

2.1.1 Board and Particle-based Products¹²

Effluent Levels

¹² Environmental, health, and safety guidelines for board and particle-based products. 2007. International Finance Corporation, World Bank Group.

^b Not applicable to centralized, municipal wastewater treatment systems

¹¹ Environmental, health, and safety general guidelines. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	50
Chemical oxygen demand	mg/L	150
Formaldehyde	mg/L	10
рН	S.U.	6-9
Temperature increase	°C	<3ª
Total suspended solids	mg/L	50

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

Air Emissions

Parameter	Unit	Guideline Value	
Condensable volatile organic compounds	mg/Nm³ (as carbon)	130	
Formaldehyde mg/Nm³ 20 (Wood dryers)		, ,	
		5 (Other sources)	
		20 (Medium density fiberboard)	
Particulate matter mg/Nm³		20 (Wood dryers)	
		50 (Other sources)	

2.1.2 Wood Treatment and Preservation^{a13}

Effluent Levels

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	50
Arsenic	mg/L	0.1
Chemical oxygen demand	mg/L	150
Chromium (total)	mg/L	0.5
Chromium (hexavalent)	mg/L	0.1
Copper	mg/L	0.5
Fluorides	mg/L	5
Oil and grease	mg/L	10
Pesticides (each)	mg/L	0.05
рН	S.U.	6-9
Phenols (mono- and dihydric)	mg/L	0.5
Polychlorinated dibenzo-p-dioxins / dibenzo furans	mg/L	0.1
Polycyclic aromatic hydrocarbons (each)	mg/L	0.05

page 11-296 SAFEGE

¹³ Environmental, health, and safety guidelines for sawmilling and wood-based products. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Temperature increase	°C	<3 ^b
Total suspended solids	mg/L	50
Toxicity	To be determ basis	ined on a case specific

^a Process wastewater containing chemical preservatives should be contained as part of closed loop application system

2.1.3 Sawmill Facilities¹⁰

Air Emissions

Parameter	Unit	Guideline Value
Volatile organic compounds	mg/Nm³	20
Wood dust	mg/Nm³	50

2.1.4 Forest Harvesting Operations¹⁴

The forestry sector does not typically give rise to significant effluent discharges or point source air emissions. Where potentially contaminated water runoff or dust exists, site operations should comply with specified general ambient surface water and air quality standards.

2.1.5 Pulp and Paper Mills¹⁵

Effluent Levels

Parameter	Unit	Guideline Value
Bleached kraft pulp, integrated	•	
5-day Biochemical oxygen demand	kg/ADt ^a	1
Adsorbable organic halogen	kg/ADt	0.25
Chemical oxygen demand	kg/ADt	20
Flow	m ³ /ADt	50
рН	S.U.	6-9
Total nitrogen	kg/ADt	0.2
Total phosphorus	kg/ADt	0.03

page 11-297 SAFEGE

^b At the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

¹⁴Environmental, health, and safety guidelines for forest harvesting operations. 2007. International Finance Corporation, World Bank Group.

¹⁵Environmental, health, and safety guidelines for pulp and paper mills. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Total suspended solids	kg/ADt	1.5
Unbleached kraft pulp, integrated		
5-day Biochemical oxygen demand	kg/ADt	0.7
Chemical oxygen demand	kg/ADt	10
Flow	m ³ /ADt	25
рН	S.U.	6-9
Total nitrogen	kg/ADt	0.2
Total phosphorus	kg/ADt	0.02
Total suspended solids	kg/ADt	1.0
Sulfite pulp, integrated and non-integrated		
5-day Biochemical oxygen demand	kg/ADt	2.0
Adsorbable organic halogen	kg/ADt	0.005
Chemical oxygen demand	kg/ADt	30
Flow	m ³ /ADt	55
рН	S.U.	6-9
Total nitrogen	kg/ADt	0.5
Total phosphorus	kg/ADt	0.05
Total suspended solids	kg/ADt	2.0
Chemi-thermo-mechanical		
5-day Biochemical oxygen demand	kg/ADt	1.0
Chemical oxygen demand	kg/ADt	5
Flow	m³/ADt	20
рН	S.U.	6-9
Total nitrogen	kg/ADt	0.2
Total phosphorus	kg/ADt	0.01
Total suspended solids	kg/ADt	1.0
Mechanical pulping, integrated		
5-day Biochemical oxygen demand	kg/ADt	0.5
Adsorbable organic halogen	kg/ADt	0.01
Chemical oxygen demand	kg/ADt	5.0
Flow	m³/ADt	20
рН	S.U.	6-9
Total nitrogen	kg/ADt	0.1
Total phosphorus	kg/ADt	0.01
Total suspended solids	kg/ADt	0.5
Recycled fiber, without de-inking, integrated		<u> </u>
5-day Biochemical oxygen demand	kg/ADt	0.15
Adsorbable organic halogen	kg/ADt	0.005
Chemical oxygen demand	kg/ADt	1.5
Flow	m³/ADt	10
рН	S.U.	6-9
Total nitrogen	kg/ADt	0.05
Total phosphorus	kg/ADt	0.005
Total suspended solids	kg/ADt	0.15
Recycled fiber, with de-inking, integrated	•	

TA 8758 - Preparing Third GMS Corridor Towns Development

5-day Biochemical oxygen demand	kg/ADt	0.2
Adsorbable organic halogen	kg/ADt	0.005
Chemical oxygen demand	kg/ADt	4.0
Flow	m³/ADt	15
рН	S.U.	6-9
Total nitrogen	kg/ADt	0.1
Total phosphorus	kg/ADt	0.01
Total suspended solids	kg/ADt	0.3
Recycled fibre tissue mills		
5-day Biochemical oxygen demand	kg/ADt	0.5
Adsorbable organic halogen	kg/ADt	0.005
Chemical oxygen demand	kg/ADt	4.0
Flow	m³/ADt	25
рН	S.U.	6-9
Total nitrogen	kg/ADt	0.25
Total phosphorus	kg/ADt	0.015
Total suspended solids	kg/ADt	0.4
Uncoated fine paper mills	1	-
5-day Biochemical oxygen demand	kg/ADt	0.25
Adsorbable organic halogen	kg/ADt	0.005
Chemical oxygen demand	kg/ADt	2.0
Flow	m ³ /ADt	15
рН	S.U.	6-9
Total nitrogen	kg/ADt	0.2
Total phosphorus	kg/ADt	0.01
Total suspended solids	kg/ADt	0.4
Coated fine paper mills		
5-day Biochemical oxygen demand	kg/ADt	0.25
Adsorbable organic halogen	kg/ADt	0.005
Chemical oxygen demand	kg/ADt	1.5
Flow	m³/ADt	15
рН	S.U.	6-9
Total nitrogen	kg/ADt	0.2
Total phosphorus	kg/ADt	0.01
Total suspended solids	kg/ADt	0.4
Tissue mills		
5-day Biochemical oxygen demand	kg/ADt	0.4
Adsorbable organic halogen	kg/ADt	0.01
Chemical oxygen demand	kg/ADt	1.5
Flow	m³/ADt	25
рН	S.U.	6-9
Total nitrogen	kg/ADt	0.25
Total phosphorus	kg/ADt	0.015
Total suspended solids	kg/ADt	0.4
Fiber preparation, non-wood		I

TA 8758 - Preparing Third GMS Corridor Towns Development

5-day Biochemical oxygen demand	kg/ADt	2.0
Chemical oxygen demand	kg/ADt	30
Flow	m³/ADt	50
рН	S.U.	6-9
Total nitrogen	kg/ADt	0.5
Total phosphorus	kg/ADt	0.05
Total suspended solids	kg/ADt	2.0

^a kg/ADt = kilograms of pollutant per 1,000 of air dry pulp

Air Emissions

Parameter	Type of Mill	Unit	Guideline Value
NII.	Kraft, bleached	kg/ADt	1.5 for hardwood pulp
			2.0 for softwood pulp
Nitrogen oxide (as Nitrogen dioxide)	Kraft, unbleached, integrated	kg/ADt	1.5 for hardwood pulp
Titlogen dioxide)			2.0 for softwood pulp
	Sulfite, integrated and non- integrated	kg/ADt	2.0
Cultur diavida (aa	Kraft, unbleached, integrated kg/ADt	kg/ADt	0.4
Sulfur dioxide (as Sulfur)	Sulfite, integrated and non- integrated	kg/ADt	1.0
	Kraft, bleached	kg/ADt	0.4
Total reduced sulfur	Kraft, bleached	kg/ADt	0.2
compounds (as Sulfur)	Kraft, unbleached, integrated		0.2
	Kraft, bleached	kg/ADt	0.5
Total suspended particulates	Kraft, unbleached, integrated		0.5
	Sulfite, integrated and non-integrated		0.15

2.2 Agribusiness / Food Production

2.2.1 Mammalian Livestock Production¹⁶

Effluent Levels

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	50
Active ingredients / Antibiotics	To be determined on a case specific basis	
Chemical oxygen demand	mg/L	250

page 11-300 SAFEGE

Environmental, health, and safety guidelines for mammalian livestock production.2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Oil and grease	mg/L	10
рН	S.U.	6-9
Temperature increase	°C	<3ª
Total coliform bacteria	MPNb/100 ml	400
Total nitrogen	mg/L	10
Total phosphorus	mg/L	2
Total suspended solids	mg/L	50

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

2.2.2 Poultry Production¹⁷

Effluent Levels

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	50
Active ingredients / Antibiotics	To be determined on a case specific basis	
Chemical oxygen demand	mg/L	250
Oil and grease	mg/L	10
рН	S.U.	6-9
Temperature increase	°C	<3ª
Total coliform bacteria	MPNb/100 ml	400
Total nitrogen	mg/L	10
Total phosphorus	mg/L	2
Total suspended solids	mg/L	50

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

2.2.3 Plantation and Annual Crop Production^{18,19}

page 11-301

SAFEGE

Interior Country

The same of the

b MPN = Most Probable Number

^b MPN = Most Probable Number

¹⁷ Environmental, health, and safety guidelines for poultry production. 2007. International Finance Corporation, World Bank Group.

¹⁸ Environmental, health, and safety guidelines for plantation crop production. 2007. International Finance Corporation, World Bank Group.

¹⁹ Environmental, health, and safety guidelines for annual crop production. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Water, Soil and Produce Quality

Parameter	Media	Guideline Value
Nutrient balance	On-site soil	Nutrient surpluses should remain stable; nitrogen surplus should be preferably below 25 kg/ha/year
Pesticides	On-site soil and produce	Below applicable tolerance levels
Pesticides, nitrates, coliform or other potential agricultural contaminants	Irrigation water	Concentrations should not exceed internationally recognized guidelines (e.g. WHO Water Guidelines applicable to irrigation water quality)
Pesticides, nitrates, coliform or other potential agricultural contaminants	On-site water supplies	Concentrations should not exceed internationally recognized guidelines (e.g. WHO irrigation or drinking water guidelines for compounds potentially present in on-site groundwater wells or surface waters)

2.2.4 Aquaculture²⁰

Effluent Levels

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	50
Active ingredients / Antibiotics	To be determined on a case specific basis	
Chemical oxygen demand	mg/L	250
Oil and grease	mg/L	10
pH	S.U.	6-9
Temperature increase	°C	<3ª
Total coliform bacteria	MPNb/100 ml	400
Total nitrogen	mg/L	10
Total phosphorus	mg/L	2
Total suspended solids	mg/L	50

²⁰ Environmental, health, and safety guidelines for aquaculture. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

2.2.5 Sugar Manufacturing²¹

Effluent Levels

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	50
Active ingredients / Antibiotics	To be determined of	on a case specific basis
Biocides	mg/L	0.05
Chemical oxygen demand	mg/L	250
Oil and grease	mg/L	10
рН	S.U.	6-9
Temperature increase	°C	<3ª
Total coliform bacteria	MPNb/100 ml	400
Total nitrogen	mg/L	10
Total phosphorus	mg/L	2
Total suspended solids	mg/L	50

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

2.2.6 Vegetable Oil Processing²²

Effluent Levels

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	50
Active ingredients / Antibiotics	To be determined on a case specific basis	
Chemical oxygen demand	mg/L	250
Oil and grease	mg/L	10
рН	S.U.	6-9
Temperature increase	°C	<3ª
Total coliform bacteria	MPNb/100 ml	400

²² Environmental, health, and safety guidelines for vegetable oil processing. 2007. International Finance Corporation, World Bank Group.

^b MPN = Most Probable Number

^b MPN = Most Probable Number

²¹ Environmental, health, and safety guidelines for sugar manufacturing. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Total nitrogen	mg/L	10
Total phosphorus	mg/L	2
Total suspended solids	mg/L	50

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

Air Emissions

Parameter	Unit	Guideline Value
Dust	mg/Nm ³	10 (dry dust) 40 (wet dust)
Hexane / Volatile organic compounds	mg/Nm³	100

2.2.7 Dairy Processing²³

Effluent Levels

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	50
Active ingredients / Antibiotics	To be determined basis	I on a case specific
Chemical oxygen demand	mg/L	250
Oil and grease	mg/L	10
рН	S.U.	6-9
Temperature increase	°C	<3ª
Total coliform bacteria	MPNb/100 ml	400
Total nitrogen	mg/L	10
Total phosphorus	mg/L	2
Total suspended solids	mg/L	50

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

page 11-304 SAFEGE

^b MPN = Most Probable Number

^b MPN = Most Probable Number

²³ Environmental, health, and safety guidelines for diary processing. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

2.2.8 Fish Processing²⁴

Effluent Levels

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	50
Active ingredients / Antibiotics	To be determined	on a case specific basis
Chemical oxygen demand	mg/L	250
Oil and grease	mg/L	10
pH	S.U.	6-9
Temperature increase	°C	<3ª
Total coliform bacteria	MPNb/100 ml	400
Total nitrogen	mg/L	10
Total phosphorus	mg/L	2
Total suspended solids	mg/L	50

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

Air Emissions

Parameter	Unit	Guideline Value
Ammonia	mg/m³	1
Amines and amides	mg/m³	5
Hydrogen sulfide, Sulfides, and Mercaptans	mg/m³	2

2.2.9 Meat Processing²⁵

Effluent Levels

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	50
Active ingredients / Antibiotics	To be determined on a case specific basis	
Chemical oxygen demand	mg/L	250
Oil and grease	mg/L	10

page 11-305

b MPN = Most Probable Number

²⁴ Environmental, health, and safety guidelines for fish processing. 2007. International Finance Corporation, World Bank Group.

²⁵ Environmental, health, and safety guidelines for meat processing. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

рН	S.U.	6-9
Temperature increase	°C	<3ª
Total coliform bacteria	MPN ^b /100 ml	400
Total nitrogen	mg/L	10
Total phosphorus	mg/L	2
Total suspended solids	mg/L	50

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

2.2.10 Poultry Processing²⁶

Effluent Levels

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	50
Active ingredients / Antibiotics	To be determined	on a case specific basis
Chemical oxygen demand	mg/L	250
Oil and grease	mg/L	10
pH	S.U.	6-9
Temperature increase	°C	<3ª
Total coliform bacteria	MPNb/100 ml	400
Total nitrogen	mg/L	10
Total phosphorus	mg/L	2
Total suspended solids	mg/L	50

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

2.2.11 Breweries²⁷

Effluent Levels

	Parameter	Unit	Guideline Value
--	-----------	------	-----------------

²⁷ Environmental, health, and safety guidelines for breweries. 2007. International Finance Corporation, World Bank Group.

b MPN = Most Probable Number

^b MPN = Most Probable Number

²⁶ Environmental, health, and safety guidelines for poultry processing. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

5-day Biochemical oxygen demand	mg/L	25
Active ingredients / Antibiotics	To be determined on a case specific basis	
Chemical oxygen demand	mg/L	125
Oil and grease	mg/L	10
рН	S.U.	6-9
Temperature increase	°C	<3ª
Total coliform bacteria	MPNb/100 ml	400
Total nitrogen	mg/L	10
Total phosphorus	mg/L	2
Total suspended solids	mg/L	50

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

2.2.12 Food and Beverage Processing²⁸

Effluent Levels

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	50
Active ingredients / Antibiotics	To be determined	on a case specific basis
Chemical oxygen demand	mg/L	250
Oil and grease	mg/L	10
рН	S.U.	6-9
Temperature increase	°C	<3ª
Total coliform bacteria	MPNb/100 ml	400
Total nitrogen	mg/L	10
Total phosphorus	mg/L	2
Total suspended solids	mg/L	50

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

page 11-307 SAFEGE

^b MPN = Most Probable Number

²⁸ Environmental, health, and safety guidelines for food and beverage processing. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

^b MPN = Most Probable Number

Air Emissions

Emissions from food processing activities are principally associated with particulate matter and odor. Particulate matter and odor emissions from point sources such as ventilation exhaust systems and smoking units should be released through good engineering practice-designed stacks. Smoking unit emissions of particulate matter should typically not exceed 50 mg/Nm³.

2.3 Chemicals

2.3.1 Pharmaceuticals and Biotechnology Manufacturing²⁹

Effluent Levels

	Parameter	Unit	Guideline Value
1,2-Dichloroetha	ne	mg/L	0.1
5-day Biochemic	al oxygen demand	mg/L	30
Acetates (each) ^a		mg/L	0.5
Acetonitrile		mg/L	10.2
Active ingredient	(each)	mg/L	0.05
Adsorbable orga	nic halogen	mg/L	1
Amines (each)b		mg/L	102
Ammonia		mg/L	30
Arsenic		mg/L	0.1
Benzene		mg/L	0.02
	Toxicity to fish		2
Bioassays	Toxicity to Daphnia	T.U.°	8
Dioassays	Toxicity to algae		16
	Toxicity to bacteria		8
Cadmium		mg/L	0.1
Chemical oxyger	n demand	mg/L	150
Chlorobenzene		mg/L	0.06
Chloroform		mg/L	0.013
Chromium (hexa	valent)	mg/L	0.1
Dimethyl sulfoxio	le	mg/L	37.5
Isobutyraldehyde	9	mg/L	0.5

page 11-308 SAFEGE

²⁹ Environmental, health, and safety guidelines for pharmaceuticals and biotechnology manufacturing. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Isopropanol	mg/L	1.6
Isopropyl ether	mg/L	2.6
Ketones (each) ^d	mg/L	0.2
Mercury	mg/L	0.01
Methanol / Ethanol (each)	mg/L	4.1
Methyl cellosolve	mg/L	40.6
Methylene chloride	mg/L	0.3
n-Heptane	mg/L	0.02
n-Hexane	mg/L	0.02
o-Dichlorobenzene	mg/L	0.06
Oil and grease	mg/L	10
рН	S.U.	6-9
Phenol	mg/L	0.5
Tetrahydrofuran	mg/L	2.6
Toluene	mg/L	0.02
Total nitrogen	mg/L	10
Total phosphorus	mg/L	2
Total suspended solids	mg/L	10
Xylenes	mg/L	0.01

^a n-Amyl acetate, n-Butyl acetate, Ethyl acetate, Isopropyl acetate, Methyl formate

Air Emissions

Parameter	Unit	Guideline Value
Active ingredient (each)	mg/Nm³	0.15
Ammonia	mg/Sm ³	30
Arsenic	mg/Sm ³	0.05
Benzene, Vinyl chloride, Dichloroethane (each)	mg/Nm³	1
Bromides (as Hydrogen bromide)	mg/Sm ³	3
Chlorides (as Hydrogen chloride)	mg/Sm ³	30
Ethylene oxide	mg/Sm ³	0.5
Hazardous air pollutants	kg/year	900-1,800 ^a
Mutagenic substance	mg/Sm ³	0.05
Particulate matter	mg/Nm³	20
Total Class Ab	mg/Nm³	20°
Total Class B ^d	mg/Nm³	80e
Total organic carbon	mg/Nm³	50
Volatile organic compounds	mg/Nm³	20-150 ^f
Volatile organic compounds	mg/tvm²	50 ^g

^a Process-based annual mass limit

page 11-309 SAFEGE

^b Including Diethylamine and Triethylamine

 $^{^{}c}$ Toxicity unit (T.U.) = 100 / no effects dilution rate (%) of wastewater

^d Including Acetone, Methyl isobutyl Ketone

TA 8758 - Preparing Third GMS Corridor Towns Development

- ^b Class A compounds are those that may cause significant harm to human health and the environment
- ^c Applicable when total Class A compounds exceed 100 g/year
- ^d Class B compounds are organic compounds of less environmental impact than Class A compounds
- e Applicable when total Class B compounds, expressed as Toluene, exceed the lower of 5 tones/year or 2 kg/hour
- ^f Facilities with solvent consumption >50 tones/year
- ^g Waste gases from oxidation plants

2.3.2 Coal Processing³⁰

Effluent Levels

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	30
Cadmium	mg/L	0.1
Chemical oxygen demand	mg/L	150 (40 cooling water)
Chromium (hexavalent)	mg/L	0.1
Chromium (total)	mg/L	0.5
Cobalt	mg/L	0.5
Copper	mg/L	0.5
Cyanides	mg/L	0.5
Heavy metals (total)	mg/L	3
Iron	mg/L	3
Lead	mg/L	0.5
Manganese	mg/L	2
Mercury	mg/L	0.02
Nickel	mg/L	1
Oil and grease	mg/L	10
рН	S.U.	6-9
Phenol	mg/L	0.5
Sulphide	mg/L	1
Ammoniacal nitrogen (as Nitrogen)	mg/L	5
Total nitrogen	mg/L	10

pege 11-310 SAFEGE

³⁰ Environmental, health, and safety guidelines for coal processing. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Total phosphorus	mg/L	2
Total suspended solids	mg/L	35
Vanadium	mg/L	1
Zinc	mg/L	1

Air Emissions

Parameter	Unit	Guideline Value		
Coal Preparation Plant	Coal Preparation Plant			
Conveying, storage and preparation gas opacity	%	10		
Pneumatic coal cleaning equipment opacity	%	10		
Pneumatic coal cleaning equipment particulate	mg/Nm³	40		
Thermal dryer gas opacity	%	20		
Thermal dryer particulate	mg/Nm³	70		
Overall				
Ammonia	mg/Nm³	30		
Carbonyl sulfide + Carbon disulfide	mg/Nm³	3		
Heavy metals (total)	mg/Nm³	1.5		
Hydrogen sulfide	mg/Nm³	10		
Mercury	mg/Nm³	1.0		
Nitrogen oxide	mg/Nm³	200-400 ^a		
Particulate matter ^b	mg/Nm³	30-50 ^a		
Sulfur dioxide	mg/Nm³	150-200		
Volatile organic compounds	mg/Nm³	150		

^a Lower value for plants of >100 MW equivalent, higher value for plants of <100 MWth equivalent

2.3.3 Natural Gas Processing³¹

Effluent Levels

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	50
Cadmium	mg/L	0.1
Chemical oxygen demand	mg/L	150
Chromium (total)	mg/L	0.5

pege 11-311 SAFEGE

^b PM₁₀ = particulate matter 10 micrometers or less in diameter

³¹ Environmental, health, and safety guidelines for natural gas processing. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Copper	mg/L	0.5
Cyanide (free)	mg/L	0.1
Cyanide (total)	mg/L	1
Heavy metals (total)	mg/L	5
Iron	mg/L	3
Lead	mg/L	0.1
Nickel	mg/L	1.5
Oil and grease	mg/L	10
рН	S.U.	6-9
Phenol	mg/L	0.5
Total Nitrogen	mg/L	40
Total Phosphorus	mg/L	3
Total residual chlorine	mg/L	0.2
Total suspended solids	mg/L	50
Zinc	mg/L	1

Air Emissions

Parameter	Unit	Guideline Value
Carbon monoxide	mg/Nm³	100
Nitrogen oxide	mg/Nm³	150 ^a 50 ^b
Particulate matter ^c	mg/Nm³	10
Sulfur dioxide	mg/Nm³	75
Volatile organic compounds	mg/Nm³	150

^aApplicable to facilities with a total heat input capacity of up to 300 MW

2.3.4 Oleochemicals Manufacturing³²

Effluent Levels

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	40
Chemical oxygen demand	mg/L	150
Oil and grease	mg/L	10
pH	S.U.	6-9

pege 11-312 SAFEGE

^b Applicable to facilities with a total heat input capacity greater than 300 MW

^c PM₁₀ = particulate matter 10 micrometers or less in diameter

Environmental, health, and safety guidelines for oleochemicals manufacturing.2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Total nitrogen	mg/L	30
Total phosphorus	mg/L	5
Total suspended solids	mg/L	50

Air Emissions

Parameter	Unit	Guideline Value
Volatile organic compounds	mg/Nm³	100

2.3.5 Nitrogenous Fertilizer Production³³

Effluent Levels

Parameter	Unit	Guideline Value
рН	S.U.	6-9
Temperature increase	°C	<3ª
Ammonia and Nitric Acid Plants		
Ammonia	mg/L	5
Total nitrogen	mg/L	15
Total suspended solids	mg/L	30
Urea Plants		
Ammonia (prill / granulation)	mg/L	5
Urea (prill / granulation)	mg urea/L	1
Ammonium Nitrate / Calcium Ammonium Nitrate Plants		
Ammonium nitrate	mg/L	100
Ammonia	mg/L	5
Total nitrogen	mg/L	15
Total suspended solids	mg/L	30

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

Air Emissions

Parameter	Unit	Guideline Value
Ammonia Plants		
Ammonia	mg/Nm³	50
Total nitrogen	mg/Nm ³	300

page 11-313

SAFEGE

³³ Environmental, health, and safety guidelines for nitrogenous fertilizer manufacturing. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Total suspended solids	mg/Nm³	50		
Nitric Acid Plants				
Ammonia	mg/Nm³	10		
Nitrogen oxide	mg/Nm³	200		
Nitrous oxide	mg/Nm³	800		
Particulate matter ^a	mg/Nm³	50		
Urea / Urea Ammonium Nitrate Plants				
Ammonia (prill / granulation)	mg/Nm³	50		
Particulate matter ^a	mg/Nm³	50		
Urea (prill / granulation)	mg/Nm³	50		
Ammonium Nitrate / Calcium Ammonium Nitrate Plants				
Ammonia	mg/Nm³	50		
Particulate matter ^a	mg/Nm³	50		

^a PM₁₀ = particulate matter 10 micrometers or less in diameter

2.3.6 Phosphate Fertilizer Manufacturing³⁴

Effluent Levels

Parameter	Unit	Guideline Value
Ammonia	mg/L	10
Cadmium	mg/L	0.1
	mg/L	20
Fluorides	kg/ton NPK	0.03
Tidonacs	Kg/ton Phosphorus oxide	2
Heavy metals (total)	mg/L	10
рН	S.U.	6-9
Total nitrogen	mg/L	15
Total phosphorus	mg/L	5
Total suspended solids	mg/L	50

page 11-314 SAFEGE

³⁴ Environmental, health, and safety guidelines for phosphate fertilizer manufacturing. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Air Emissions

Parameter	Unit	Guideline Value
Phosphoric Acid Plants		
Fluorides (gaseous as Hydrogen fluoride)	mg/Nm ³	5
Particulate matter ^a	mg/Nm ³	50
Phosphate Fertilizer Plants		•
Ammonia	mg/Nm³	50
Fluorides (gaseous as Hydrogen fluoride)	mg/Nm³	5
Hydrogen chloride	mg/Nm³	30
Nitrogen oxide	mg/Nm³	500 (nitro-phosphate unit) 70 (mix acid unit)
Particulate matter ^a	mg/Nm³	50

^a PM₁₀ = particulate matter 10 micrometers or less in diameter

2.3.7 Pesticides Formulation, Manufacturing and Packaging³⁵

Effluent Levels

	Parameter	Unit	Guideline Value
5-day Biochemical o	oxygen demand	mg/L	30
Active ingredients (e	each)	mg/L	0.05
Adsorbable organic	halogens	mg/L	1
Ammonia		mg/L	10
Arsenic		mg/L	0.1
	Toxicity to fish	T.U.ª	2
Bioassays	Toxicity to Daphnia		8
Dioassays	Toxicity to algae		16
	Toxicity to bacteria		8
Chemical oxygen de	emand	mg/L	150
Chlorinated organic	S	mg/L	0.05
Chromium (hexavale	ent)	mg/L	0.1
Chromium (total)		mg/L	0.5
Copper		mg/L	0.5
Mercury		mg/L	0.01
Nitrorganics		mg/L	0.05

pege 11-315 SAFEGE

³⁵ Environmental, health, and safety guidelines for pesticides formulation, manufacturing and packaging. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Oil and grease	mg/L	10
рН	S.U.	6-9
Phenol	mg/L	0.5
Total phosphorus	mg/L	2
Total suspended solids	mg/L	10-20 ^b
Zinc	mg/L	2

^a T.U. = 100 / no effects dilution rate (%) of wastewater

Air Emissions

Parameter	Unit	Guideline Value
Ammonia, gaseous inorganic chlorine compounds	mg/Nm³	30
Bromines, Cyanides, Fluorines, Hydrogen sulfide	mg/Nm³	3
Chloride	mg/Nm³	5
Chlorine	mg/Nm³	3
Particulate matter ^b	mg/Nm³	20, 5 ^a
Total organic carbon	mg/Nm³	50
Volatile organic compounds	mg/Nm³	20

^aApplicable where very toxic compounds are present

2.3.8 Petroleum-based Polymers Manufacturing³⁶

Effluent Levels

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	25
Adsorbable organic halogens	mg/L	0.3

page 11-316 SAFEGE

^b Lower value for pesticide manufacturing, higher value for pesticide formulation

^b PM₁₀ = particulate matter 10 micrometers or less in diameter

³⁶ Environmental, health, and safety guidelines for petroleum-based polymers manufacturing. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Benzene	mg/L	0.05	
Cadmium	mg/L	0.1	
Chemical oxygen demand	mg/L	150	
Chromium (hexavalent)	mg/L	0.1	
Chromium (total)	mg/L	0.5	
Copper	mg/L	0.5	
Lead	mg/L	0.5	
Mercury	mg/L	0.01	
Nickel	mg/L	0.5	
Oil and grease	mg/L	10	
рН	S.U.	6-9	
Phenol	mg/L	0.5	
Sulphide	mg/L	1	
Temperature increase	°C	<3ª	
Total nitrogen	mg/L	10	
Total phosphorus	mg/L	2	
Total suspended solids	mg/L	30	
Toxicity	To be determine	To be determined on a case specific basis	
Vinyl chloride	mg/L	0.05	
Zinc	mg/L	2	

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

Air Emissions

Parameter	Unit	Guideline Value
Acrylonitrile	mg/Nm³	5 (15 from dryers)
Ammonia	mg/Nm³	15
Dioxin / Furans	ng TEQ/Nm ³	0.1
Formaldehyde	mg/m ³	0.15
Heavy metals (total)	mg/Nm³	1.5
Hydrogen chloride	mg/Nm³	10
Mercury	mg/Nm³	0.2
Nitrogen oxides	mg/Nm³	300
Particulate matter ^a	mg/Nm³	20
Sulfur oxides	mg/Nm³	500
Vinyl chloride (VCM)	g/t s-PVC	80
	g/t e-PVC	500
Volatile organic compounds	mg/Nm ³	20

^a PM₁₀ = particulate matter 10 micrometers or less in diameter

TA 8758 - Preparing Third GMS Corridor Towns Development

2.3.9 Petroleum Refining^{a,37}

Effluent Levels

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	30
Benzene	mg/L	0.05
Benzo(a)pyrene	mg/L	0.05
Chemical oxygen demand	mg/L	150
Chromium (hexavalent)	mg/L	0.05
Chromium (total)	mg/L	0.5
Copper	mg/L	0.5
Cyanide (free)	mg/L	0.1
Cyanide (total)	mg/L	1
Iron	mg/L	3
Lead	mg/L	0.1
Mercury	mg/L	0.02
Nickel	mg/L	0.5
Oil and grease	mg/L	10
рН	S.U.	6-9
Phenol	mg/L	0.2
Sulphides	mg/L	1
Temperature increase	°C	<3 ^b
Total nitrogen	mg/L	10°
Total phosphorus	mg/L	2
Total suspended solids	mg/L	30
Vanadium	mg/L	1

^aAssumes an integrated petroleum refining facility

Air Emissions

Parameter	Unit	Guideline Value
Hydrogen sulfide	mg/Nm ³	10

page 11-318

SAFEGE

^b At the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

^c The effluent concentration of total nitrogen may be up to 40 mg/L in processes that include hydrogenation

³⁷ Environmental, health, and safety guidelines for petroleum refining. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Nickel	mg/Nm ³	1
Nitrogen oxide	mg/Nm³	450
Particulate matter ^a	mg/Nm ³	50
Sulfur oxide	mg/Nm³	150 (for sulfur recovery units) 500 (for other units)
Vanadium	mg/Nm ³	5

^a PM₁₀ = particulate matter 10 micrometers or less in diameter

2.3.10 Large Volume Petroleum-based Organic Chemicals Manufacturing³⁸

Effluent Levels

Parameter	Unit	Guideline Value
1,2-Dichloroethane	mg/L	1
5-day Biochemical oxygen demand	mg/L	25
Adsorbable organic halogens	mg/L	1
Benzene	mg/L	0.05
Cadmium	mg/L	0.1
Chemical oxygen demand	mg/L	150
Chromium (hexavalent)	mg/L	0.1
Chromium (total)	mg/L	0.5
Copper	mg/L	0.5
Lead	mg/L	0.5
Mercury	mg/L	0.01
Nickel	mg/L	0.5
Oil and grease	mg/L	10
pH	S.U.	6-9
Phenol	mg/L	0.5
Sulphide	mg/L	1
Temperature increase	°C	<3ª
Total nitrogen	mg/L	10
Total phosphorus	mg/L	2
Total suspended solids	mg/L	30
Vinyl chloride (VCM)	mg/L	0.05
Zinc	mg/L	2

page 11-319 SAFEGE

³⁸ Environmental, health, and safety guidelines for large volume petroleum-based organic chemicals manufacturing. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

^a At the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

Air Emissions

Parameter	Unit	Guideline Value
1,2-Dichloroethane	mg/Nm³	5
Acrylonitrile	mg/Nm³	0.5 (incineration) 2 (scrubbing)
Ammonia	mg/Nm³	15
Benzene	mg/Nm ³	5
Caprolactam	mg/m ³	0.1
Dioxin / Furans	ng TEQ/Nm ³	0.1
Ethylene	mg/Nm³	150
Ethylene oxide	mg/m ³	2
Formaldehyde	mg/m ³	0.15
Heavy metals (total)	mg/Nm³	1.5
Hydrogen chloride	mg/Nm³	10
Hydrogen cyanide	mg/m ³	2
Hydrogen sulfide	mg/m ³	5
Mercury and compounds	mg/Nm³	0.2
Nitrobenzene	mg/m ³	5
Nitrogen oxides	mg/Nm³	300
Organic sulfide and Mercaptans	mg/m ³	2
Particulate matter ^a	mg/Nm³	20
Phenols, Cresols and Xylols (as Phenol)	mg/Nm³	10
Sulfur oxides	mg/m ³	100
Vinyl chloride (VCM)	mg/Nm³	5
Volatile organic compounds	mg/Nm ³	20

^a PM₁₀ = particulate matter 10 micrometers or less in diameter

2.3.11 Large Volume Inorganic Compounds Manufacturing and Coal Tar Distillation³⁹

Effluent Levels

Parameter	Unit	Guideline Value
рН	S.U.	6-9

page 11-320 SAFEGE

³⁹ Environmental, health, and safety guidelines for large volume inorganic compounds manufacturing and coal tar distillation. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Temperature increase		<3ª
Ammonia Plants	1 0	
Ammonia	mg/L	10 ^b
Total suspended solids	mg/L	30
Nitric Acid Plants	IIIg/L	30
Ammonia	ma/l	10
	mg/L	
Nitrates Tatal guaranteed policies	mg/L	25
Total suspended solids	mg/L	30
Sulfuric Acid Plants		
Phosphorus	mg/L	5
Fluoride	mg/L	20
Total suspended solids	mg/L	30
Phosphoric Acid Plants	_	
Phosphorus	mg/L	5
Fluoride	mg/L	20
Total suspended solids	mg/L	30
Hydrofluric Acid Plants		
Fluorides	kg/ton HF	1
Suspended solids	kg/ton HF	1
Suspended solids	mg/L	30
Chlor-alkali / Hydrochloric Acid Plants	•	
Adsorbable organic halogens	mg/L	0.5
Chemical oxygen demand	mg/L	150
Chlorine	mg/L	0.2
Morouny	mg/L	0.05
Mercury	g/ton chlorine	0.1
Sulphides	mg/L	1
Total suspended solids	mg/L	20
Toxicity to fish eggs	T _F	2
Soda Ash Plants		
Ammonia (as Nitrogen)	mg/L	10
Phosphorus	kg/ton	0.2
Suspended solids	kg/ton	270
Total suspended solids	mg/L	30
Carbon Black Plants] 3	
Chemical oxygen demand	mg/L	100
Total suspended solids	mg/L	20
Coal Tar Distillation Plants	···9 [,]	- 0
5-day Biochemical oxygen demand	mg/L	35 (monthly average) 90 (daily maximum)
Anthracene, Naphthalene and Phenanthrene (each)	μg/L	20 (monthly average) 60 (daily maximum)
Total suspended solids	mg/L	50 (monthly average) 160 (daily maximum)

^a At the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

page 11-321

SAFEGE
Jueinieur Concile

TA 8758 - Preparing Third GMS Corridor Towns Development

hl and based suideline. O.1 lealton of mundust

^b Load based guideline: 0.1 kg/ton of product

Air Emissions

Parameter	Unit	Guideline Value
Ammonia Plants	<u> </u>	
Ammonia	mg/Nm ³	50
Nitrogen oxide	mg/Nm ³	300
Particulate matter	mg/Nm³	50
Nitric Acid Plants	•	
Ammonia	mg/Nm³	10
Nitrogen oxide	mg/Nm³	300
Nitrous oxide	mg/Nm³	800
Sulfuric Acid Plants		
Hydrogen sulfide	mg/Nm³	5
Nitrogen oxide	mg/Nm³	200
Sulfur dioxide	mg/Nm³	450 (2 kg/ton acid)
Sulfur trioxide	mg/Nm³	60 (0.075 kg/ton acid)
Phosphoric / Hydrofluoric Acids Plants	•	
Fluorides (gaseous as Hydrogen fluoride)	mg/Nm³	5
Particulate matter ^a / Calcium fluoride	mg/Nm³	50 (0.10 kg/ton phosphate rock)
Chlor-alkali / Hydrochloric Acid Plants	1	
Chlorine gas	mg/Nm³	1 (partial liquefaction) 3 (complete liquefaction)
Hydrogen chloride	ppmv	20
Mercury	mg/Nm³	0.2 (annual average emission of 1 g/ton chlorine)
Soda Ash Plants	•	
Ammonia	mg/Nm³	50
Hydrogen sulfide	mg/Nm³	5
Nitrogen oxide	mg/Nm³	200
Particulate matter ^a	mg/Nm³	50
Carbon Black Plants	•	
Carbon monoxide	mg/Nm³	500
Nitrogen oxide	mg/Nm³	600
Particulate matter ^a	mg/Nm³	30
Sulfur dioxide	mg/Nm³	850
Volatile organic compounds	mg/Nm³	50
Coal Tar Distillation Plants	<u> </u>	
Particulate matter ^a	mg/Nm³	50
Tar fume	mg/Nm³	10
Volatile organic compounds	mg/Nm³	50
	•	

^a PM₁₀ = particulate matter 10 micrometers or less in diameter

TA 8758 - Preparing Third GMS Corridor Towns Development

2.4 Oil and Gas

2.4.1 Offshore Oil and Gas Development⁴⁰

The following table presents effluent performance standards for offshore oil and gas development. These guidelines are primarily applicable to discharges in offshore locations (e.g. greater than 12 nautical miles from shore). Additional guidance on applicable standards is provided in the General EHS Guidelines.

Effluent Levels

Parameter	Guideline
Drilling fluids and cuttings (Non-aqueous drilling fluid)	Non-aqueous drilling fluid – re-inject or ship-to-shore, no discharge to sea Drilled cuttings – re-inject or ship-to-shore, no discharge except: Oil concentration lower than 1% by weight on dry cuttings Mercury – maximum 1 mg/kg dry weight in stock barite Cadmium – maximum 3 mg/kg dry weight in stock barite Discharge via a caisson at least 15 m below sea surface
Drilling fluids and cuttings (Water-based drilling fluid)	Water-based drilling fluid – re-inject or ship-to-shore, no discharge to sea except: In compliance with 96-hr LC-50 of SPP-3% volume toxicity test first for drilling fluids or alternatively testing based on standard toxicity assessment speciesa (preferably site-specific species) Water-based drilling fluids and cuttings – re-inject or ship-to-shore, no discharge to sea except: Mercury – 1 mg/kg dry weight in stock barite Cadmium – 3 mg/kg dry weight in stock barite Maximum chloride concentration must be less that four time's ambient concentration of fresh or brackish receiving water Discharge via a caisson at least 15 m below sea surface
Produced water	Re-inject – Discharge to sea maximum one day oil and grease discharge should not exceed 42 mg/L; 30 day average should not exceed 29 mg/L
Completion and well work-over fluids	Ship-to-shore or re-inject – No discharge to sea except: - Maximum one day oil and grease discharge should not exceed 42 mg/L; 30 day average should not exceed 29 mg/L - Neutralize to attain a pH of 5 or more
Produced sand	Ship-to-shore or re-inject – No discharge to sea except when oil concentration lower than 1% by weight on dry sand

page 11-323

SAFEGE

⁴⁰ Environmental, health, and safety guidelines for offshore oil and gas development. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Hydrotest water	 Send to shore for treatment and disposal Discharge offshore following environmental risk analysis, careful selection of chemicals Reduce use of chemicals
Cooling water	The effluent should result in a temperature increase of no more than 3°C at edge of the zone where initial mixing and dilution take place; where the zone is not defined, use 100 m from point of discharge
Desalination brine	Mix with other discharge waste streams if feasible ^b
Sewage	Compliance with MARPOL 73/78b
Food waste	Compliance with MARPOL 73/78b
Storage displacement water	Compliance with MARPOL 73/78b
Bilgewater	Compliance with MARPOL 73/78b
Deck drainage (non-hazardous and hazardous drains)	Compliance with MARPOL 73/78 ^b

^a 96-hr LC-50: Concentration in parts per million or percent of the suspended particulate phase from sample that is lethal to 50 percent of the test organism exposed to that concentration for a continuous period of 96 hours.

2.4.2 Onshore Oil and Gas Development⁴¹

Effluent Levels

Parameter	Guideline	
Drilling fluids and cuttings	Treatment and disposal in accordance with applicable standards provided in the General EHS Guidelines	
Produced sand	Treatment and disposal in accordance with applicable standards provided in the General EHS Guidelines	
Produced water	Treatment and disposal in accordance with applicable standards provided in the General EHS Guidelines For discharge to surface waters or to land: - Total hydrocarbon content 10 mg/L - pH 6-9 - Biochemical oxygen demand 25 mg/L - Chemical oxygen demand 125 mg/L - Total suspended solids 35 mg/L - Phenols 0.5 mg/L - Sulfides 1 mg/L	

pege 11-324 SAFEGE

^b In nearshore waters, carefully select discharge location based on environmental sensitivities and assimilative capacity of receiving waters.

⁴¹ Environmental, health, and safety guidelines for onshore oil and gas development. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

	- Heavy metals (total) ^a 5 mg/L
	- Chlorides 600 mg/L (average), 1,200 mg/L maximum
Hydrotest water	Treatment and disposal in accordance with applicable standards provided in the General EHS Guidelines For discharge to surface waters or to land, apply standards specified for Produced Water
Completion and well work-over fluids	Treatment and disposal in accordance with applicable standards provided in the General EHS Guidelines For discharge to surface waters or to land:
	Total hydrocarbon content 10 mg/LpH 6-9
Storm water drainage	Storm water runoff should be treated through an oil / water separation system able to achieve oil and grease concentration of 10 mg/L
Cooling water	The effluent should result in a temperature increase of no more than 3°C at edge of the zone where initial mixing and dilution take place; where the zone is not defined, use 100 m from point of discharge
Sewage	Treatment as per General EHS Guidelines, including discharge requirements
Air emissions	Treatment as per General EHS Guidelines Emission concentrations as per General EHS Guidelines, and: - Hydrogen sulfide 5 mg/Nm³

^a Heavy metals include: Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Silver, Vanadium and Zinc

2.4.3 Liquefied Natural Gas Facilities⁴²

Effluent Levels

Parameter	Guideline			
Hydrotest water	Treatment and disposal as per General EHS Guidelines For discharge to surface waters or to land: - Total hydrocarbon content 10 mg/L - pH 6-9 - 5-day Biochemical oxygen demand 25 mg/L - Chemical oxygen demand 125 mg/L - Total suspended solids 35 mg/L - Phenols 0.5 mg/L - Sulfides 1 mg/L - Heavy metals (total) 5 mg/L - Chlorides 600 mg/L (average), 1,200 mg/L maximum			

page 11-325 SAFEGE

⁴² Environmental, health, and safety guidelines for liquefied natural gas facilities. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Hazardous storm water drainage	Storm water runoff should be treated through an oil / water separation system able to achieve oil and grease concentration of 10 mg/L
Cooling water	The effluent should result in a temperature increase of no more than 3°C at edge of the zone where initial mixing and dilution take place; where the zone is not defined, use 100 m from point of discharge Free chlorine (total residual oxidant in estuarine / marine water) concentration in cooling / cold water discharges (to be sampled at point of discharge) should be maintained at 0.2 parts per million
Sewage	Treatment as per General EHS Guidelines, including discharge requirements Provision of facilities to receive liquefied natural gas tanker effluents may be required (see Ports and Harbors guidelines)

Air Emissions

Air emissions from liquefied natural gas facilities should be controlled through the application of techniques describes in the General EHS Guidelines.

2.5 Infrastructure

2.5.1 Tourism and Hospitality Development⁴³

Tourism and hospitality effluents levels and air emissions should be managed in a manner consistent with the conventional treatment and discharge of sanitary wastewater as specified in General EHS Guidelines.

2.5.2 Railways⁴⁴

Emissions from new engines used in the propulsion of locomotives and rail cars should be consistent with internationally recognized emissions limit values for nitrogen oxides, particulate

page 11-326 SAFEGE

⁴³ Environmental, health, and safety guidelines for tourism and hospitality development. 2007. International Finance Corporation, World Bank Group.

⁴⁴ Environmental, health, and safety guidelines for railways. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

matter, carbon monoxide, and total hydrocarbons. Effluents from maintenance facilities should be treated to a level consistent with the requirements of a local sewer network operation or, if discharged to surface waters, according to the guideline values provided for Metals, Plastics and Rubber Products Manufacturing, which provide treated effluent guideline values applicable to metals machining, cleaning, and plating and finishing processes, including painting. Site-specific discharge levels may be established for sewer and process effluents from maintenance facilities and terminals based on the availability of publicly-operated sewage collection and treatment systems or, if discharged directly to surface waters, on the receiving water use classification as described in General EHS Guidelines.

2.5.3 Ports, Harbors and Terminals⁴⁵

Given the nature of port operations where there are few stationary effluents (e.g. wastewater and storm water) it is difficult to continuously monitoring most emissions and effluents. Discrete point source sanitary wastewater and storm water should meet requirements described in General EHS Guidelines.

2.5.4 Airports⁴⁶

Airport operations should establish site-specific discharge levels based on the requirements of publicly-operated sewage collection and treatment systems or, if discharged directly to surface waters, according to requirements described in General EHS Guidelines.

2.5.5 Airlines⁴⁷

Aircraft air emissions and noise levels should meet the certification requirements established by the International Civil Aviation Organizations for their year of manufacture. Emission and effluents from heavy maintenance facilities should be treated to a level consistent with the requirements of a local sewer network operation or, if discharged to surface waters, according to the guideline

page 11-327 SAFEGE

⁴⁵ Environmental, health, and safety guidelines for ports, harbors and terminals. 2007. International Finance Corporation, World Bank Group.

⁴⁶ Environmental, health, and safety guidelines for airports. 2007. International Finance Corporation, World Bank Group.

⁴⁷ Environmental, health, and safety guidelines for airlines. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

values provided for Metals, Plastics and Rubber Products Manufacturing, which provide treated effluent guideline values applicable to metals machining, cleaning, and plating and finishing processes, including painting. Site-specific discharge levels may be established for sewer and process effluents from maintenance facilities and terminals based on the availability of publicly operated sewage collection and treatment systems or, if discharged directly to surface waters, on the receiving water use classification as described in General EHS Guidelines.

2.5.6 Shipping⁴⁸

For vessels engaged in national traffic only, environmental performance requirements are usually dictated by the flag state's maritime administration. Vessels engaged in international routes should also comply with environmental requirements set out in international regulations, primarily effluent standards for oil and grease and sewage as described in Annex I and IV of MARPOL, emissions standards for ozone depleting substances, and maritime diesel engine emissions and shipboard incinerator emissions described in Annex VI of MARPOL.

2.5.7 Gas Distribution Systems⁴⁹

Although there are no significant point source effluents or emissions for the gas distribution sector, fugitive emissions (from city gate and regulating stations, underground piping, and third party damage) from gas distribution systems constitute a significant portion of the overall atmospheric losses from the natural gas transmission and distribution industry. Gas distribution system should: i) conduct volume reconciliation programs as an indicator of leakages by comparing delivered amounts against sales to customers, and ii) implement inspection and maintenance programs to maintain and upgrade infrastructure and minimize fugitive gas emissions.

page 11-328 SAFEGE

⁴⁸ Environmental, health, and safety guidelines for shipping. 2007. International Finance Corporation, World Bank Group.

⁴⁹ Environmental, health, and safety guidelines for gas distribution systems. 2007. International Finance Corporation, World Bank Group.

⁵⁰ Environmental, health, and safety guidelines for toll roads. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

While roads do not typically give rise to significant point source effluents or air emissions, operators should comply with General EHS Guidelines, especially with regard to effluents or emissions from road maintenance facilities.

2.5.9 Telecommunications⁵¹

While telecommunications activities do not typically give rise to significant point source effluents or air emissions, site operations should comply with General EHS Guidelines, especially with regard to effluents or emissions during construction operations or from administrative and maintenance facilities. Additionally site operations should comply with guidance on exposure limits for general public exposure to electric and magnetic fields as set out by the International Commission on Non-ionizing Radiation Protection as summarized below.

Frequency	Electric Field (V/m)	Magnetic Field (μT)
3 – 150 kHz	87	6.25
10 – 400 MHz	28	0.092
2 – 300 GHz	61	0.20

2.5.10 Crude Oil and Petroleum Product Terminals⁵²

Storm water runoff should be treated through an oil / water separation system to achieve oil and grease concentration of less than 10 mg/L. Process effluent discharge quality should be established on a site-specific basis, taking into account effluent characteristics and receiving water use. Volatile organic compounds emitted during crude oil and petroleum product terminal storage activities have the potential to be significant from an environmental perspective. Best industry practice should be followed to control emissions of volatile organic compounds resulting from: evaporative losses during storage; from operational activities such as filling, withdrawal,

page 11-329 SAFEGE

⁵¹ Environmental, health, and safety guidelines for telecommunications. 2007. International Finance Corporation, World Bank Group.

⁵² Environmental, health, and safety guidelines for crude oil and petroleum product terminals. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

additive blending, and loading / unloading of transport links; and due to leaks from seals, flanges, and other types of equipment connections.

2.5.11 Retail Petroleum Networks⁵³

Storm water runoff should be treated through an oil / water separation system able to achieve an oil and grease concentration of less than 15 mg/L. The main sources of emissions to air include evaporative losses of volatile organic compounds of fuel product from storage, particularly during bulk deliveries, and during dispensing operations. Best industry practice should be followed to prevent and control the emission of volatile organic compounds from storage and working losses which apply to most bulk fuel storage tanks, piping and pump systems.

2.5.12 Health Care Facilities⁵⁴

Effluent Levels

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	50
Cadmium	mg/L	0.05
Chemical oxygen demand	mg/L	250
Chlorine (total residual)	mg/L	0.2
Chromium (total)	mg/L	0.5
Lead	mg/L	0.1
Mercury	mg/L	0.01
Oil and grease	mg/L	10
рН	S.U.	6-9
Phenols	mg/L	0.5
Polychlorinated dibenzodioxin and dibenzofuran	Ng/L	0.1
Temperature increase	°C	<3ª
Total coliform bacteria	MPNb/100 ml	400
Total suspended solids	mg/L	50

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

⁵⁴ Environmental, health, and safety guidelines for health care facilities. 2007. International Finance Corporation, World Bank Group.

^b MPN = Most Probable Number

⁵³ Environmental, health, and safety guidelines for retail petroleum networks. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Air Emissions (for hospital waste incineration facilities)

Parameter	Unit	Guideline Value
Antimony, Arsenic, Lead, Chromium, Cobalt, Copper, Manganese, Nickel, Vanadium	mg/Nm³	0.5
Cadmium + Thalium	mg/Nm³	0.05
Carbon monoxide	mg/Nm³	50
Hydrogen chloride	mg/Nm³	10
Hydrogen fluoride	mg/Nm³	1
Mercury	mg/Nm³	0.05
Nitrogen oxide	mg/Nm³	200-400 ^a
Polychlorinated dibenzodioxin and dibenzofuran	ng/Nm³TEQ	0.1
Sulfur dioxide	mg/Nm³	50
Total organic carbon	mg/Nm³	10
Total particulate matter	mg/Nm³	10

^a 200 mg/m³ for new plants or for existing plants with a nominal capacity exceeding 6 tons per hour, 400 mg/m³ for existing incinerators with a nominal capacity of 6 tons per hour or less

Waste Management Facilities⁵⁵ 2.5.13

Effluent Levels

		Guideline Value				
Parameter	Unit		Hazardous Waste Landfills		Municipal Solid Waste Landfills	
		Daily Max.	Monthly Average	Daily Max	Monthly Average	
5-day Biochemical oxygen demand	mg/L	220	56	140	37	
Ammonia (as Nitrogen)	mg/L	10	4.9	10	4.9	
Analine	mg/L	0.024	0.015	-	-	
Arsenic	mg/L	1.1	0.54	-	-	
a-Terpineol	mg/L	0.042	0.019	0.033	0.016	
Banzoic acid	mg/L	0.119	0.073	0.12	0.071	
Chromium (total)	mg/L	1.1	0.46	-	-	
Naphthalene	mg/L	0.059	0.022	-	-	
p-Cresol	mg/L	0.024	0.015	0.025	0,014	

page 11-331

⁵⁵ Environmental, health, and safety guidelines for waste management facilities. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

рН	S.U.	6-9	6-9	6-9	6-9
Phenol	mg/L	0.048	0.029	0.026	0,015
Pyridine	mg/L	0.072	0.025	-	-
Total suspended solids	mg/L	88	27	88	27
Zinc	mg/L	0.535	0.296	0.2	0.11

Air Emissions

Parameter	Unit	Guideline Value ^a
Cadmium	mg/m ³	0.05-0.1 (0.5-8 hour average)
Carbon monoxide	mg/m ³	50-150
Hydrochloric acid	mg/m ³	10
Hydrogen fluoride	mg/m ³	1
Mercury	mg/m ³	0.05-0.1 (0.5-8 hour average)
Nitrogen oxide	mg/m ³	200-400 (24 hour average)
Polychlorinated dibenzodioxin and dibenzofuran	ng TEQ/m³	0.1
Sulfur dioxide	mg/m ³	50 (24 hour average)
Total metals	mg/m ³	0.5-1 (0.5-8 hour average)
Total suspended particulates	mg/m ³	10 (24 hour average)

^aApplicable to both municipal solid waste and hazardous waste incinerators

2.5.14 Water and Sanitation⁵⁶

Water quality of potable water supply systems should meet national drinking water standards or, in their absence, the WHO Guidelines for Drinking Water Quality throughout the distribution network. Effluent water quality should meet internationally accepted standards such as summarized for the European Union below. Treated wastewater re-use and sludge quality for land application should be consistent with WHO Guidelines for the Safe Use of Wastewater, Excreta and Greywater.

Effluent Levels

Parameter	Unit	Guideline Value

page 11-332 SAFEGE

⁵⁶ Environmental, health, and safety guidelines for water and sanitation. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

5-day Biochemical oxygen demand	mg/L	25
Chemical oxygen demand	mg/L	125
Total nitrogen	mg/L	15
Total phosphorus	mg/L	2
Total suspended solids	mg/L	35

2.6 General Manufacturing

2.6.1 Cement and Lime Manufacturing⁵⁷

Effluent Levels

Parameter	Unit	Guideline Value
рН	S.U.	6-9
Temperature increase	°C	<3ª
Total suspended solids	mg/L	50

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

Air Emissions (for cement manufacturing)

Parameter	Unit	Guideline Value
Cadmium + Thallium	mg/Nm³	0.05
Dioxins / Furans	mg TEQ/Nm ³	0.1
Dust (other point sources including clinker cooling, cement grinding)	mg/Nm³	50
Hydrogen chloride	mg/Nm ³	10
Hydrogen fluoride	mg/Nm³	1
Mercury	mg/Nm³	0.05
Nitrogen oxide	mg/Nm³	600
Particulate matter (existing kilns)	mg/Nm³	100
Particulate matter (new kiln system)	mg/Nm³	30
Sulfur dioxide	mg/Nm³	400
Total metals ^a	mg/Nm³	0.5
Total organic carbon	mg/Nm ³	10

^a Total metals are Arsenic, Lead, Cobalt, Chromium, Copper, Manganese, Nickel, Vanadium and Antimony

page 11-333

⁵⁷ Environmental, health, and safety guidelines for cement and lime manufacturing. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Air Emissions (for lime manufacturing)

Parameter	Unit	Guideline Value
Dust	mg/Nm³	50
Sulfur dioxide	mg/Nm³	400
Nitrogen oxide	mg/Nm³	500
Hydrogen chloride	mg/Nm³	10

2.6.2 Ceramic Tile and Sanitary Ware Manufacturing⁵⁸

Effluent Levels (for ceramic tile)

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	50
Cadmium	mg/L	0.1
Chromium (total)	mg/L	0.1
Cobalt	mg/L	0.1
Copper	mg/L	0.1
Lead	mg/L	0.2
Nickel	mg/L	0.1
Oil and grease	mg/L	10
pH	S.U.	6-9
Temperature increase	°C	<3ª
Total suspended solids	mg/L	50
Zinc	mg/L	2

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

Air Emissions (for ceramic tile)

Parameter	Unit	Guideline Value

page 11-334

⁵⁸ Environmental, health, and safety guidelines for ceramic tile and sanitary ware manufacturing. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Cadmium	mg/Nm³	0.2
Hydrogen chloride	mg/Nm³	30
Hydrogen fluoride	mg/Nm³	5
Lead	mg/Nm³	0.5
Nitrogen oxide	mg/Nm³	600 ^a
Particulate matter	mg/Nm³	50 ^b
Sulfur dioxide	mg/Nm³	400 ^a
Total organic carbon	mg/Nm³	20

^a Kiln operations

2.6.3 Glass Manufacturing⁵⁹

Effluent Levels

Parameter	Unit	Guideline Value
Antimony	mg/L	0.3
Arsenic	mg/L	0.1
Boric acid	mg/L	2
Chemical oxygen demand	mg/L	130
Fluorides	mg/L	5
Lead	mg/L	0.1
Oil and grease	mg/L	10
рН	S.U.	6-9
Temperature increase	°C	<3ª
Total suspended solids	mg/L	30

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

Air Emissions

Parameter	Unit	Guideline Value
Arsenic	mg/Nm³	1
Cadmium	mg/Nm³	0.2
Fluorides	mg/Nm³	5
Hydrogen chloride	mg/Nm³	30
Lead	mg/Nm³	5
Nitrogen oxide	mg/Nm³	1,000

page 11-335 SAFEGE

^b Dryer and kiln stacks

⁵⁹ Environmental, health, and safety guidelines for glass manufacturing. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Other heavy metals (to	tal)	mg/Nm³	5 ^a
Particulates	Natural gas Other fuels	mg/Nm³	100 ^b 50 ^b
Sulfur dioxide		mg/Nm³	700-1,500°

^a 1 mg/Nm³ for Selenium

2.6.4 Construction Materials Extraction⁶⁰

Construction materials extraction operations do not typically generate point sources or effluents or emissions with the possible exception of dewatering effluents which may contain suspended solids. The implementation of total suspended solids prevention and control strategies should target concentrations of 50 mg/L at the point of discharge. Storm water flows should be managed so as to achieve the General EHS Guidelines for wastewater discharges. The principle sources of air emission are fugitive dust from earth works and materials handling and transport facilities. Prevention and control of air emissions should be sufficient to satisfy General EHS Guidelines for ambient air quality.

2.6.5 Textiles Manufacturing⁶¹

Effluent Levels^a

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	30
Adsorbable organic halogens	mg/L	1
Ammonia	mg/L	10
Cadmium	mg/L	0.02
Chemical oxygen demand	mg/L	160
Chromium (haxavalent)	mg/L	0.1
Chromium (total)	mg/L	0.5
Cobalt	mg/L	0.5
Color	m ⁻¹	7 (436 nm, yellow)

page 11-336

SAFEGE

^b Where toxic metals are present, not to exceed 20 mg/Nm³; to achieve dust emissions of 50 mg/Nm³ installation of secondary treatments (bag fillers or electrostatic precipitators) is necessary

^{° 700} mg/Nm³ for natural gas firing, 1,500 mg/Nm³ for oil firing

⁶⁰ Environmental, health, and safety guidelines for construction materials extraction. 2007. International Finance Corporation, World Bank Group.

⁶¹ Environmental, health, and safety guidelines for textiles manufacturing. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

		5 (525 nm, red)
		3 (620 nm, blue)
Copper	mg/L	0.5
Nickel	mg/L	0.5
Oil and grease	mg/L	10
Pesticides	mg/L	0.05-0.10 ^a
рН	S.U.	6–9
Phenol	mg/L	0.5
Sulfide	mg/L	1
Temperature increase	°C	<3 ^b
Total coliform bacteria	MPNa/100 ml	400
Total nitrogen	mg/L	10
Total phosphorus	mg/L	2
Total suspended solids	mg/L	50
Toxicity to fish eggs	T.U. 96h	2
Zinc	mg/L	2

^a 0.05 mg/L for total pesticides (organophosphorus pesticides excluded); 0.10 mg/L for organophosphorus pesticides

Air Emissions

Parameter	Unit	Guideline Value
Ammonia	mg/Nm³	30
Carbon disulfide	mg/Nm³	150
Chlorine	mg/Nm³	5
Formaldehyde	mg/Nm³	20
Hydrogen sulfide	mg/Nm³	5
Particulates	mg/Nm³	50 ^a
Volatile organic compounds	mg/Nm ³	2/20/50/75/100/150b,c

^a As the 30-minute mean for stack emissions

pege 11-337 SAFEGE

^b At the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

^b Calculated as total carbon

c As the 30-minute mean for stack emissions: 2 mg/Nm³ for volatile organic compounds classified as carcinogenic or mutagenic with mass flow greater than or equal to 10 g/hour; 20 mg/Nm³ for discharges of halogenated volatile organic compounds with a mass flow equal or greater than 100 g/hour; 50 mg/Nm³ for waste gases from drying of large installations (solvent consumption > 15 tons/year); 75 mg/Nm³ for coating application processes for large installations (solvent consumption < 15 tons/year); 100 mg/Nm³ for small installations (solvent consumption < 15 tons/year); if solvent is recovered from emissions and reused, the limit value is 150 mg/Nm³

TA 8758 - Preparing Third GMS Corridor Towns Development

2.6.6 Tanning and Leather Finishing⁶²

Effluent Levels (for tanning and leather finishing)

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	50
Ammonia	mg/L	10
Chemical oxygen demand	mg/L	250
Chloride	mg/L	1,000
Chromium (hexavalent)	mg/L	0.1
Chromium (total)	mg/L	0.5
Oil and grease	mg/L	10
рН	S.U.	6-9
Phenols	mg/L	0.5
Sulfate	mg/L	300
Sulfide	mg/L	1.0
Temperature increase	°C	<3ª
Total coliform bacteria	MPNb/100 ml	400
Total nitrogen	mg/L	10
Total phosphorus	mg/L	2
Total suspended solids	mg/L	50

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

Air Emissions (for leather finishing)

Pollutant		Unit	Guideline Value
Upholstery leather (= 4 g add-on / square feet	Kg of hazardous air pollutant loss per 100 m² of leather processed		1.3 / 0.2
Upholstery leather (< 4 g add-on / square feet			3.3 / 1.2
Water resistant / specialty leather			2.7 / 2.4
Non-water resistant leather			1.8 / 1.1

2.6.7 Semiconductors and Electronics Manufacturing⁶³

⁶³ Environmental, health, and safety guidelines for semiconductors and electronics manufacturing. 2007. International Finance Corporation, World Bank Group.

^b MPN = Most Probable Number

⁶² Environmental, health, and safety guidelines for tanning and leather finishing. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Effluent Levels

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	50
Adsorbable organic halogens	mg/L	0.5
Ammonia	mg/L	10
Arsenic	mg/L	0.1
Cadmium	mg/L	0.1
Chemical oxygen demand	mg/L	160
Chromium (hexavalent)	mg/L	0.1
Chromium (total)	mg/L	0.5
Copper	mg/L	0.5
Cyanide (free)	mg/L	0.1
Cyanide (total)	mg/L	1
Fluoride	mg/L	5
Lead	mg/L	0.1
Mercury	mg/L	0.01
Nickel	mg/L	0.5
Oil and grease	mg/L	10
рН	S.U.	6-9
Selenium	mg/L	1
Silver	mg/L	0.1
Temperature increase	°C	<3ª
Tin	mg/L	2
Total phosphorus	mg/L	2
Total suspended solids	mg/L	50
Zinc	mg/L	2

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

Air Emissions

Parameter	Unit	Guideline Value
Acetone	mg/Nm³	150
Ammonia	mg/Nm ³	30
Arsine and arsenic compounds	mg/Nm³	0.5
Hydrogen chloride	mg/Nm³	10
Hydrogen fluoride	mg/Nm³	5
Inorganic hazardous air pollutants ^a	Ppmv	0.42
Organic hazardous air pollutants ^a	Ppmv	20
Phosphine	mg/Nm³	0.5
Volatile organic compounds ^b	mg/Nm ³	20

^aIndustry-specific hazardous air pollutants include: Antimony compounds, Arsenic compounds, Arsine, Carbon tetrachloride, Catechol, Chlorine, Chromium compounds, Ethyl acrilate, Ethylbenzene, Elthylene glycol, Hydrochloric acid, Hydrofluoric acid, Lead compounds,

page 11-339

SAFEGE

TA 8758 - Preparing Third GMS Corridor Towns Development

Methanol, Methyl isobutyl ketone, Methylene chloride, Nickel compounds, Perchloroethylene, Phosphine, phosphorus, Toluene, 1,1,1-trichloroethane, Trichloroethylene (phased-out), and Xylenes

2.6.8 Printing⁶⁴

Effluent Levels

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	30
Adsorbable organic halogens	mg/L	1
Aluminum	mg/L	3
Cadmium	mg/L	0.1
Chemical oxygen demand	mg/L	150
Chromium (haxavalent)	mg/L	0.1
Chromium (total)	mg/L	0.5
Copper	mg/L	0.5
Cyanide	mg/L	0.2
Iron	mg/L	3
Lead	mg/L	1
Oil and grease	mg/L	10
рН	S.U.	6–9
Silver	mg/L	0.5
Temperature increase	°C	<3ª
Total phosphorus	mg/L	2
Total suspended solids	mg/L	50
Toxicity	To be determined on a case specific basis	
Zinc	mg/L	0.5

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

Air Emissions		

page 11-340 SAFEGE

^b Applicable to surface cleaning processes

⁶⁴ Environmental, health, and safety guidelines for printing. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Parameter	Unit	Guideline Value
Isocyanates	mg/Nm³	0.1 ^a
Nitrogen oxide	mg/Nm³	100 – 500 ^b
Particulates	mg/Nm³	50°
Volatile organic halogens ^d	mg/Nm³	100 ^{d,e}
		20 ^{d,f}
		75 ^{d,g}
		100 ^{d,h}

^a As 30 minute mean for contained sources, excluding particulates; from all processes / activities using Isocyanates

2.6.9 Foundries⁶⁵

Effluent Levels

Parameter	Unit	Guideline Value
Aluminum	kg/t	0.02ª
Ammonia	mg/L (as Nitrogen)	5
Cadmium	mg/L	0.01
Chemical oxygen demand	mg/L	125
Chromium (total)	mg/L	0.5
Copper	mg/L	0.5
Fluoride	mg/L (as Fluorine)	5
Iron	mg/L	5
Lead	mg/L	0.2

page 11-341

SAFEGE

^b As 30 minute mean for contained sources; from turbines, reciprocating engines or boilers used as volatile organic compounds abatement equipment

^c As 30 minute mean for contained sources; from all processes / activities

d Calculated as Total carbon

^e Heatset web offset printing with 15–25 tons/year solvent consumption

^f Heatset web offset printing with >25 tons/year solvent consumption

⁹ Publication rotogravure with >25 tons/year solvent consumption

^h Other rotogravure, flexography, rotary screen printing, laminating, or varnishing units (>15 tons/year solvent consumption); rotary screen on textile / card board (>30 tons/year solvent consumption

 $^{^{65}}$ Environmental, health, and safety guidelines for foundries. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Nickel	mg/L	0.5
Oil and grease	mg/L	10
рН	S.U.	6-9
Phenol	mg/L	1
Temperature increase	°C	<3 ^b
Tin	mg/L	2
Total suspended solids	mg/L	35
Zinc	mg/L	0.5

^aAluminum smelting and casting

Air Emissions

Parameter	Unit	Guideline Value
Amines	mg/Nm³	5
Carbon monoxide	mg/Nm³	200ª
Carbon monoxide	ing/ivin	150 ^b
Chloride	mg/Nm³	5°
Chlorine	mg/Nm³	5
Copper and compounds	mg/Nm³	5-20 ^d
Fluoride	mg/Nm³	5 ^e
Hydrogen sulfide	ppm v/v	5
Lead, cadmium and their compounds	mg/Nm³	1-2 ^f
Nickel, Cobalt, Chromium, Tin and their compounds	mg/Nm³	5
	mg/Nm³	400 ^g
Nitrogen oxide		120 ^h
		150 ⁱ
Oil Aerosol / mist	mg/Nm³	5 ^j
Darking later weather.		20 ^k
Particulate matter	mg/Nm ³	50 ^l
Polychlorinated dibenzodioxin and dibenzofuran	ng TEQ/m ³	0.1
		400 ^g
Sulfur dioxide	mg/Nm³	50 ^m
		120 ^g
	mg/Nm³	20 ⁿ
Volatile organic compounds		30 ⁹
		15 ⁰

^a Non-ferrous metal melting (aluminum)

page 11-342 SAFEGE

^b At the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

^b Thermal sand reclamation systems and solvent based investment foundry coating, shelling, and setting operation

^c Furnace emissions where chloride flux is used

^d Higher value applicable to copper and its alloy producing processes

TA 8758 - Preparing Third GMS Corridor Towns Development

- e Furnace emissions where fluoride flux is used
- ^f Higher value applicable to non-ferrous metal foundries from scrap
- ⁹ Non-ferrous metal melting (shaft furnaces)
- ^h From thermal sand reclamation systems / regeneration units
- ¹ Maximum emissions level considered on best available technology base and based on cold blast cupola furnaces
- Ferrous metal melting (maximum emissions level considered on best available technology base and based on cokeless cupola furnaces)
- ^k Particulate matter emissions when toxic metals are present
- Particulate matter emissions when toxic metals are not present
- ^m Ferrous metal melting (cupola furnaces)
- ⁿ Ferrous metal melting (electric arc furnaces); cupola furnaces may have higher emissions levels (up to 1,000 mg/Nm³)
- ° Cold box molding and core making shop

2.6.10 Integrated Steel Mills⁶⁶

Effluent Levels

Parameter	Unit	Guideline Value
Ammonia	mg/L (as Nitrogen)	5
Cadmium	mg/L	0.01
Chemical oxygen demand	mg/L	250
Chromium (hexavalent)	mg/L	0.1
Chromium (total)	mg/L	0.5
Copper	mg/L	0.5
Cyanides (free)	mg/L	0.1
Cyanides (total)	mg/L	0.5
Fluoride	mg/L (as Fluorine)	5
Iron	mg/L	5
Lead	mg/L	0.2
Mercury	mg/L	0.01
Nickel	mg/L	0.5

page 11-343

SAFEGE

⁶⁶ Environmental, health, and safety guidelines for integrated steel mills. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Oil and grease	mg/L	10
рН	S.U.	6-9
Phenol	mg/L	0.5
Polycyclic aromatic hydrocarbons	mg/L	0.05
Sulfides	mg/L	0.1
Temperature increase	°C	<3ª
Tin	mg/L	2
Total nitrogen	mg/L	30
Total phosphorus	mg/L	2
Total suspended solids	mg/L	35
Toxicity	To be determined on a case specific basis	
Zinc	mg/L	2

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

Air Emissions

Parameter	Unit	Guideline Value
Ammonia	mg/Nm³	30
Benzo(a)pirene	mg/Nm³	0.1
Cadmium	mg/Nm ³	0.2
Carbon monoxide	mg/Nm³	100 (electric arc furnace)
Carbon monoxide	ing/Nin-	300 (coke oven)
Chromium	mg/Nm ³	4
Fluoride	mg/Nm ³	5
Hydrogen chloride	mg/Nm³	10
Hydrogen fluoride	mg/Nm ³	10
Hydrogen sulfide	mg/Nm³	5
Lead	mg/Nm ³	2
Nickel	mg/Nm ³	2
Nitrogon ovido	mg/Nm³	500
Nitrogen oxide	ing/Nin-	750 (coke oven)
Oil mist	mg/Nm ³	15
Particulate matter	mg/Nm ³	20-50 ^a
Polychlorinated dibenzodioxin and dibenzofuran	ng TEQ/m ³	0.1
Sulfur dioxide	mg/Nm³	500
Tar fume	mg/Nm³	5
Volatile organic compounds	mg/Nm³	20

^a Lower value where toxic metals are present

TA 8758 - Preparing Third GMS Corridor Towns Development

2.6.11 Base Metal Smelting and Refining⁶⁷

Effluent Levels (for nickel, copper, lead, zinc and aluminum smelting and refining)

Parameter	Unit	Guideline Value
Aluminum	mg/L	0.2
Arsenic	mg/L	0.05
Cadmium	mg/L	0.05
Chemical oxygen demand	mg/L	50
Copper	mg/L	0.1
Fluoride	mg/L	5
Hydrocarbons	mg/L	5
Lead	mg/L	0.1
Mercury	mg/L	0.01
Nickel	mg/L	0.1
рН	S.U.	6-9
Temperature increase	°C	<3ª
Total suspended solids	mg/L	20
Toxicity	To be determined on a case specific basis	
Zinc	mg/L	0.2

Air Emissions (for nickel, copper, lead, zinc and aluminum smelting and refining – varying by metal type / smelting process)

Parameter	Unit	Guideline Value
Acid mists / gases	mg/Nm³	50
Ammonia	mg/Nm³	5
Arsine	mg/Nm³	0.5
Carbon monoxide and carbonyls	mg/Nm³	5
Chlorine	mg/Nm³	0.5
Dioxins	Ng TEQ/m ³	0.1-0.5
Dust	mg/Nm³	1-5
Hydrogen chloride	mg/Nm³	5
Hydrogen fluoride	mg/Nm³	0.5

pege 11-345

⁶⁷ Environmental, health, and safety guidelines for base metal smelting and refining. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Mercury	mg/Nm ³	0.02
Nitrogen oxides	mg/Nm ³	100-300
Polyfluorinated hydrocarbons	Anode effects/ cell /day	0.1
Sulfur dioxide	mg/Nm ³	< 50-200
Total fluoride	mg/Nm ³	0.8
Total organic carbon	mg/Nm ³	5-50
Volatile organic compounds / solvents	mg/Nm ³	5-15

2.6.12 Metal, Plastic, Rubber Products Manufacturing⁶⁸

Effluent Levels

Parameter	Unit	Guideline Value
Aluminum	mg/L	3
Ammonia		10
Animonia	mg/L	20 (electroplating)
Arsenic	mg/L	0.1
Cadmium	mg/L	0.1
Chemical oxygen demand	mg/L	250
Chromium (haxavalent)	mg/L	0.1
Chromium (total)	mg/L	0.5
Copper	mg/L	0.5
Cyanides (free)	mg/L	0.2
Cyanides (total)	mg/L	1
Fluorides	mg/L	20
Iron	mg/L	3
Lead	mg/L	0.2
Mercury	mg/L	0.01
Nickel	mg/L	0.5
Oil and grease	mg/L	10
pH	S.U.	6-9
Phenols	mg/L	0.5
Silver	mg/L	0.2
Sulfide	mg/L	1
Temperature increase	°C	<3ª
Tin	mg/L	2
Total nitrogen	T.U. 96h	15
Total phosphorus	mg/L	5

page 11-346

⁶⁸ Environmental, health, and safety guidelines for metal, plastic, rubber products manufacturing. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Total suspended solids	mg/L	50
		25 (electroplating)
Toxicity	To be determined on a case specific basis	
Volatile organic halogens	mg/L	0.1
Zinc	mg/L	2

^aAt the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity

Air Emissions

Parameter	Unit	Guideline Value
Ammonia	mg/Nm³	50
Hydrogen chloride	mg/Nm³	10
Nitrogen oxides	mg/Nm³	350
Particulate matter (metal surface treatments)	mg/Nm³	5
Particulate matter (plastic processing)	mg/Nm³	3
Total organic carbon (rubber vulcanization)	mg/Nm³	80
Volatile halogenated hydrocarbons (metal surface treatments)	mg/Nm³	20
		100 (up to 15 ton/year solvent consumption)
Volatile organic compounds (metal and plastic coating)	mg/Nm³	75 (more than 15 ton/year solvent consumption)
		50 (drying processes)
Volatile organic compounds (rubber conversion)	mg/Nm³	20 ^a
Volatile organic compounds(surface cleaning)	mg/Nm³	20-75 ^b

^a Facilities with solvent consumption greater than 15 ton/year.

2.7 Mining⁶⁹

Effluent Levels

Parameter	Unit	Guideline Value
5-day Biochemical oxygen demand	mg/L	50
Arsenic	mg/L	0.1

⁶⁹ Environmental, health, and safety guidelines for mining. 2007. International Finance Corporation, World Bank Group.

^b 20 mg/Nm³ for waste gases from surface cleaning using VOC classified as carcinogenic, mutagenic or toxic to reproduction; 75 mg/Nm³ for waste gases from other surface cleaning.

TA 8758 - Preparing Third GMS Corridor Towns Development

Cadmium	mg/L	0.05
Chemical oxygen demand	mg/L	150
Chromium (hexavalent)	mg/L	0.1
Copper	mg/L	0.3
Cyanide	mg/L	1
Cyanide (free)	mg/L	0.1
Cyanide (weak acid dissociable)	mg/L	0.5
Iron (total)	mg/L	2
Lead	mg/L	0.2
Mercury	mg/L	0.002
Nickel	mg/L	0.5
Oil and grease	mg/L	10
рН	S.U.	6-9
Phenols	mg/L	0.5
Temperature	°C	<3 degree differential
Total suspended solids	mg/L	50
Zinc	mg/L	0.5

2.8 Power

2.8.1 Wind Energy⁷⁰

Wind energy facilities do not typically generate process effluents and emissions during operations. Wastewater discharges, air emissions and solid wastes related to construction and decommissioning activities should comply with General Guidelines. Noise impacts during operations should not exceed the levels stipulated in the General Guidelines, nor result in a maximum increase in background levels of 3 dB at the nearest receptor location.

2.8.2 Geothermal Power Generation⁷¹

page 11-348 SAFEGE

⁷⁰ Environmental, health, and safety guidelines for wind energy. 2007. International Finance Corporation, World Bank Group.

⁷¹ Environmental, health, and safety guidelines for geothermal power generation. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Spent geothermal fluids are typically re-injected to the host rock formation, resulting in minor effluent volumes involving reject water. If spent geothermal fluids are not re-injected, effluents should meet site-specific discharge levels for surface water as stipulated in the General Guidelines. Minor air emissions of hydrogen sulfide, mercury vapor, and sulfur dioxide may arise as fugitive emissions from the cooling tower if the condensation process involves direct contact of steam with cooling water. Although geothermal energy projects do not normally generate significant point source emissions during construction and operations, hydrogen sulfide and other types of emissions should not result in ambient concentrations exceeding internationally recognized guidelines (e.g. WHO Air Quality Guidelines).

2.8.3 Electric Power Transmission and Distribution⁷²

The power transmission and distribution sector does not typically give rise to significant effluents or air emissions. Where potentially contaminated water run-off or dust exists, site operations should comply with General Guidelines for surface water quality and air quality. Exposure limits for general public exposure to electric and magnetic fields should comply with International Commission on Non-ionized Radiation Protection guidelines for limiting general public exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz).

Frequency	Electric Field (V/m)	Magnetic Field (μT)
50 Hz	5000	100
60 Hz	4150	83

2.8.4 Thermal Power⁷³

Effluent Levels

Parameter	Unit	Guideline Value
Arsenic	mg/L	0.5
Cadmium	mg/L	0.1
Chromium (total)	mg/L	0.5
Copper	mg/L	0.5
Iron	mg/L	1
Lead	mg/L	0.5
Mercury	mg/L	0.005
Oil and grease	mg/L	10
рН	S.U.	6-9

page 11-349

SAFEGE

⁷² Environmental, health, and safety guidelines for electric power transmission and distribution. 2007. International Finance Corporation, World Bank Group.

⁷³ Environmental, health, and safety guidelines for thermal power. 2007. International Finance Corporation, World Bank Group.

TA 8758 - Preparing Third GMS Corridor Towns Development

Temperature increase ^a	°C	<3
Total residual chlorine	mg/L	0.2
Total suspended solids	mg/L	50
Zinc		1

^a Temperature increase due to discharge of once-through cooling water

Air Emissions (applicable to non-degraded airsheds)

	Parameter / Guideline Values			
Combustion Technology / Fuel	Particulate matter	Sulfur dioxide	Nitrogen oxides	
Combustion turbine				
Fuels other than natural gas (unit > 50 MW)	50 mg/Nm ³	Use of ≤ 1% Sulfur fuel	152 ppm	
Natural gas (all turbine types; unit > 50 MW)	N/A	N/A	51 ppm	
Boiler				
Liquid fuels (plant > 600 MW)	50 mg/Nm ³	200 mg/Nm ³	400 mg/Nm ³	
Liquid fuels (plant 50-600 MW)	50 mg/Nm ³	900 mg/Nm ³	400 mg/Nm ³	
Natural gas	N/A	N/A	240 mg/Nm ³	
Other gaseous fuels	50 mg/Nm ³	400 mg/Nm ³	240 mg/Nm ³	
Solid fuels (plant > 600 MW)	50 mg/Nm ³	200 mg/Nm ³	510 mg/Nm ³	
Solid fuels (plant 50-600 MW)	50 mg/Nm ³	900 mg/Nm ³	510 mg/Nm ³	
Reciprocating engine				
Biofuels / gaseous fuels other than natural gas	50 mg/Nm ³	N/A	30% higher than for other fuels	
Liquid fuels (plant > 300 MW)	50 mg/Nm ³	585 mg/Nm ³	740 mg/Nm ³	
Liquid fuels (plant 50-300 MW)	50 mg/Nm ³	1170 mg/Nm ³	1460 mg/Nm ³	
Natural gas	N/A	N/A	200 mg/Nm ³	

TA 8758 - Preparing Third GMS Corridor Towns Development

Annex 1 Unit Table

No	Unit	Expression
1.	mg/L	milligram of pollutant per liter
2.	mg urea/L	milligram of urea per liter
3.	μg/L	Microgram of pollutant per liter
4.	ng/L	nanogram of pollutant per liter
5.	MPN	Most Probable Number
6.	S.U.	Standard Unit
7.	dBA	Decibel
8.	mg/m³	milligram of pollutant per cubic meter
9.	mg/Sm ³	milligram per standard cubic meter
10.	mg/Nm ³	milligram of pollutant per normal cubic meter (273K, 1 atm)
11.	°C	Degree Celsius
12.	kg/ADt	kilograms of pollutant per 1,000 of air dry pulp
13.	m ³ /ADt	volume in cubic meter per 1,000 of air dry pulp
14.	kg/ton NPK	kilogram per one ton of compound fertilizer
15.	kg/ton Phosphorus oxide	kilogram per one ton of Phosphorus oxide
16.	kg/ton HF	kilogram per one ton of HF
17.	mg/kg	milligram of pollutant per kilogram
18.	TEQ	Toxic Equivalent (for dioxins and related compounds)
19.	V/m	volts per meter
20.	μТ	micro tesla
21.	m ⁻¹	per meter
22.	T.U.	Toxicity Unit (100 / no effects dilution rate (%) of wastewater)
23.	T.U. 96h	Toxicity Unit for 96 hour
24.	ppm	parts per million
25.	ppmv	parts per million (volume)

